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Tis paper introduces an innovative approach, Deep Multiscale Soft-Treshold Support Vector Data Description (DMS-SVDD),
designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). Te model
combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating
a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In
comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE),
DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by
39.15%). Te model excels particularly in feature extraction, denoising, and early fault detection, ofering a proactive strategy for
maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efciency with a reduction in the convergence
rounds by 66% and overall training times by 34.13%.Te study concludes that DMS-SVDD presents a robust and efcient solution
for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could
explore additional refnements and applications of the DMS-SVDD model across diverse industrial contexts.

1. Introduction

Power generators, particularly thermal power generators,
play a signifcant role in the global power market. In regions
such as China, heavy-duty gas turbine generator sets
(GENSETs) are commonly utilized as peak load units, be-
yond their original continuous service designation. Te
frequent start-stop cycles of these GENSETs, due to the
variable load, can lead to a reduction in their lifespan.
Unforeseen malfunctions, anomalies, degradation, and
faults during operation can further impact the reliability and
safety of GENSETs. As a result, anomaly diagnosis is es-
sential for maintaining the optimal working status of
GENSETs.

Te increasing complexity of engineering systems, along
with the emphasis on safety and cost-efectiveness, has
underscored the need for reliable, efcient, and autonomous

diagnostic and health monitoring systems. Tese systems
should be capable of real-time interaction with human
experts, surpassing traditional statistical trend analysis and
out-of-species monitoring techniques. With advancements
in data acquisition capabilities, there is a growing shift to-
ward data-driven approaches for anomaly diagnosis. Tese
methods, based on statistical learning, regression, and neural
networks, ofer simpler forms and require less project work,
making them increasingly popular in both academia and
industry [1–4].

Traditional algorithms such as support vector machines,
linear regression, and neural networks play a signifcant role
in the data-based anomaly diagnosis of dynamic systems.
However, the implementation of supervised learning algo-
rithms in fault diagnosis presents challenges, particularly in
industrial settings where data are often unlabeled and ab-
normal data are scarce and hidden within large volumes of
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normal data [5, 6]. Te complex confguration of gas tur-
bines, along with the interference experienced by its com-
ponents during monitoring, results in a diverse array of
signal data with intertwined internal fault modes and sig-
nifcant redundant noise, complicating the extraction of
fault characteristics [7–15].

A method for assessing rolling-bearing degradation is
proposed to address the issues of limited information in
single vibration features and inaccurate high-dimensional
feature sets.Te approach involves adaptive sensitive feature
selection and a multistrategy optimized SVDD [16]. Fan
et al. [17] developed an unsupervised anomaly detection
method for intermittent time-series in manufacturing en-
terprises. It utilizes a new abnormal fuctuation similarity
matrix and agglomerative hierarchical clustering to identify
the anomalies. Te support vector data description model
was used for feature extraction and hypersphere training,
enabling the detection of abnormal points at a micro-
granularity level. Navarro-Acosta et al. [18] applied a fault
detection system that combines SVDD with metaheuristic
algorithms to a real-world industrial process with a limited
number of measured faults. Te primary contribution of this
research is the comparison of various swarm intelligence
algorithms for efectively optimizing the SVDD hyper-
parameters.Te ensemble deep-SVDD (EDeSVDD) method
was introduced in Ref. [19] for improved anomaly detection
and more efective monitoring of process faults. It utilizes
a DeSVDD framework with a multilayer feature extraction
structure and regularization of deep network weights.
Bayesian inference-based ensemble learning was employed
to generate DeSVDD submodels at the parameter and
structure levels, integrating them for comprehensive mon-
itoring. Fan et al. [20] proposed a novel hybrid method for
key performance indicator anomaly detection based on the
VAE and SVDD. BiLSTM and batch normalization are
introduced into the VAE reconstruction module to capture
time correlation and prevent divergence. Te method uti-
lizes EWMA to smooth reconstruction errors and reduce
false positives and false negatives. In the SVDD anomaly
detection module, smoothed reconstruction errors were
used to train the SVDD and adaptively determine the
anomaly detection threshold.

However, the traditional SVDD encounters the challenge
of lacking labeled information for anomalous samples
during the training phase. Tis defciency complicates the
distinction between the normal and anomalous patterns
throughout the learning process, especially when the dis-
tribution of anomalous patterns closely aligns with that of
the normal patterns. Unlabeled data typically introduce
noise, and SVDD demonstrates increased sensitivity to such
noise. In the absence of labeled information, determining
which data genuinely represent anomalies, as opposed to
mere noise, becomes exceedingly challenging, thus
impacting the precision of the model in anomaly detection.
Tis paper introduces a construction approach for an ad-
vanced fault warning model, the Deep Multiscale Soft-
Treshold Support Vector Data Description (DMS-
SVDD). Te model was designed based on a deep AE
backbone network architecture that integrates information

from diverse sources [10, 21, 22]. To address the challenge of
extracting fault features from unlabeled data, the original
autoencoder network is enhanced with a multiscale con-
volutional feature extraction module, refning features and
improving the model’s capability to represent the intricate
samples. To mitigate the issue of noise redundancy, a soft-
threshold activation module was integrated into the network
to eliminate noise, thereby enhancing the accuracy and
stability of the model in recognizing patterns. Experimental
validation using real operational data from a specifc gas
turbine illustrates the superiority of the proposed enhanced
model in terms of monitoring the accuracy, noise reduction,
and training efciency when compared to the original
model. A comparative analysis with classical unsupervised
learning methods, such as the OCSVM and AE, further
corroborates the efectiveness of the proposed approach in
augmenting the anomaly detection capabilities of GENSETs.
Te following sections of this article provide a comprehen-
sive exploration of the proposed anomaly detection ap-
proach for GENSETs. In Section 2, related theories are
discussed, with a focus on the SVDD model and the Deep
Autoencoder Backbone Network Framework. Furthermore,
the chapter outlines the incorporation of these theories into
the proposed the Deep-SVDD Network Model, ofering
a thorough comprehension of the model’s architecture and
training procedures. In Section 4, a case study is presented
that employs data from GENSET, with a specifc emphasis
on preprocessing sensor data from various components. Te
case study includes temporal waveform representations of
diverse parameters, such as engine speed and temperatures,
accompanied by a detailed description of the process, dataset
division, and normalization procedures. In addition, this
section discusses the experimental platform, hyper-
parameter confguration, and evaluation metrics used to
assess the performance of the proposed anomaly detection
model. Section 4 presents the results and discussions of the
ablation experiments and compares the proposed
DMS-SVDD method with other anomaly detection algo-
rithms. Te evaluation metrics, confusion matrices, and
efciency analysis highlight the superior performance and
efciency of the DMS-SVDD model, demonstrating its ef-
fectiveness in anomaly detection and training efciency
compared to alternative methods. Finally, Section 5 sum-
marizes the fndings of the investigation, highlighting su-
perior performance of the DMS-SVDD approach in gas
turbine anomaly detection.

2. Related Theories

2.1. Support Vector Data Description Model. SVDD is
a single-value classifcation algorithm based on statistical
theory and the principle of structural risk minimization. It
aims to distinguish between the target and nontarget
samples and is commonly applied in felds such as anomaly
detection and intrusion detection [23–25]. Because data are
typically linearly inseparable under normal circumstances,
SVDD frst performs nonlinear mapping on the original
training samples X, projecting them into a high-dimensional
feature space. Subsequently, in this feature space, SVDD
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seeks to determine the minimum-volume hypersphere,
which is referred to as the optimal hypersphere. Tis
hypersphere encompasses all or most of the training samples
mapped to the feature space. Te optimal hypersphere can
be described by its center and radius, providing a repre-
sentation of the boundary of the normal samples. Te basic
concept is illustrated in Figure 1.

Based on the considerations mentioned above, we as-
sume that we have samples N, denoted by x1, x2, . . . , xn. We
can formulate the following constrained optimization
problem:

min R
2

+ c 􏽘
m

i�1
ξi

⎛⎝ ⎞⎠,

s.t. ‖ϕ xi( 􏼁 − a‖
2 ≤R

2
+ ξi, ξi ≥ 0, ∀i � 1, 2, · · ·n,

(1)

where a, R, and ξi indicate the hypersphere center, radius,
and relaxation factor, respectively, and each training sample
xi should satisfy the condition of being inside or on the
boundary of the hypersphere. ϕ(xi) represents the nonlinear
mapping of the training sample xi to the high-dimensional
feature space. Tis optimization problem aims to achieve
a compact and representative description of the data dis-
tribution in the feature space.

In this constrained optimization problem, the objective
function comprises two terms: the frst term seeks to
minimize the radius of the hypersphere (representing
structural risk), and the second term aims to provide
a hypersphere with a certain degree of tolerance (repre-
senting empirical risk). Ideally, when all data points lie
within a hypersphere, the empirical risk becomes zero.
Terefore, we introduce the following constraints to this
optimization problem ‖ϕ(xi) − a‖2 ≤R2 + ξi and ξi ≥ 0. Te
introduction of a relaxation factor enhances the robustness
of the model to mitigate the impact of individual extreme
data points. Parameter c acts as a penalty factor that strikes
a balance between the volume of the hypersphere and
misclassifcation rate, thus enabling control over the mag-
nitude of the infuence exerted by the relaxation factor.

By solving (1), the center and radius of the hypersphere
are obtained. For a new data point x′, its distance d from the
center of the hypersphere is calculated using the following
formula:

d �

��������

‖x′ − a‖
2

􏽱

. (2)

If d≥R, the data point is located outside the hyper-
sphere, indicating that it can be classifed as an abnormal
value. If d≤R, the data point is located inside the hyper-
sphere, indicating that it can be classifed as a normal value.

2.2. Deep Autoencoder Backbone Network Framework. An
autoencoder is an unsupervised method for data di-
mensionality reduction and feature representation [26–29].
A deep autoencoder network consists of an encoder function
fθand decoder function gθ. For a dataset xi|x1, x2, · · ·xn􏼈 􏼉,
the encoding process learns the hidden features of the input
signals h� fθ(x), where h is the feature vector of the input

data x, achieving dimensionality reduction and feature ex-
traction in the hidden layers. Te decoding process maps the
features back into the input space, thereby producing
a reconstructed feature vector z� gθ(x). Te output signal
has the same dimensions as the input signal. Autoencoders
obtain robust feature representations by comparing the
diferences between inputs and outputs. Tey can extract
features from signals and reduce the dimensionality. During
the training process of the autoencoder backbone network,
the encoder and decoder were jointly trained to fnd the
parameter vectors that minimized the reconstruction error.
Efective encoding of the original data were obtained by
learning in the hidden layers

θ � argmin􏽘
n

i�1
L xi, zi( 􏼁, (3)

where θ represents the model parameters, a set of values that
we aim to fnd through the optimization process to minimize
the total sum of the loss function L. In other words, θ en-
compasses all the weights and bias terms that need to be
learned within the model. In deep learning, θ is typically
updated iteratively through optimization algorithms such as
backpropagation and gradient descent, with the goal of
fnding a set of parameters that allow the model to make
predictions on the training data as accurately as possible. In
the context of autoencoders, θ can include the parameters of
both the encoder and decoder. L(xi, zi) denotes the re-
construction error function, typically calculated using either
the mean squared error (MSE) function or the cross-entropy
function [30].

2.3. Deep Support Vector Data Description Network Model.
Traditional support vector data description (SVDD)
methods have been widely used for anomaly detection due to
their efectiveness in capturing the boundary of normal data
in a feature space. However, these methods have certain
limitations that can impact their performance and appli-
cability in various scenarios. One of the main drawbacks of
traditional SVDD is its poor scalability. As the size of the
dataset increases, the computational complexity of SVDD
increases signifcantly, making it challenging to apply to
large-scale data. Additionally, traditional SVDD methods
are limited by their dimensional constraints. Tey often
struggle to handle high-dimensional data efectively, as the
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Figure 1: Te basic idea of SVDD.
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complexity of the boundary enclosing the normal data in-
creases with the dimensionality of the feature space.Tis can
lead to suboptimal performance in scenarios where the data
have a large number of features. Furthermore, traditional
SVDD methods rely heavily on the choice of the kernel
function, which can be difcult to tune for diferent types of
data, leading to further limitations in their fexibility and
adaptability. To overcome the drawbacks of traditional
SVDD methods, such as poor scalability and dimensional
limitations, this study proposes a new approach for anomaly
detection based on neural networks and Deep-SVDD. Te
core concept is to use neural networks to extract kernel
features for SVDD, leveraging the learned center of the
normal features from normal data to identify anomalies. Te
neural network maps normal data into a hypersphere with
the minimum volume defned by center a and radius R (the
objective is to determine a and R). Te mapping of normal
data resides within the surface of the hypersphere, whereas
themapping of anomalous data lies outside the surface of the
hypersphere.

Te left-hand side of Figure 2 illustrates the original data
points. For simplicity, in the analysis, it is assumed that the
feature vectors of the data are two-dimensional, representing
an input space. Te objective was to enclose normal data
samples using a hypersphere with the smallest possible
radius. Te Deep-SVDD approach involves training a neural
network to transform the input data into the output space
depicted on the right-hand side. When a new data point is
processed through the model and falls within a circle
(known as a hypersphere in high-dimensional space) with
center c and radius R, it is classifed as normal (blue circles).
Conversely, if it falls outside of the circle, it is classifed as an
anomaly (yellow triangles). In mapping all normal samples
onto the hypersphere, the red circle represents the normal
sample point furthest from the center of the hypersphere,
thereby determining the radius of the hypersphere. Addi-
tionally, the distance between the data point and the center
of the circle denotes the severity of the anomaly, with greater
distances indicating more severe anomalies.

Moreover, when constructing a Deep-SVDD network
directly using a neural network, there are certain re-
quirements for the initial parameters during training. First,
the initial vector of center a must not be set to 0. Second,
each neuron in the neural network must not have a bias
term, b. Finally, bounded activation functions should not be
used. Failure to meet these conditions may cause Deep-
SVDD to map all data samples to the same point during
training, minimizing the volume of the hypersphere and
resulting in a collapsed hypersphere with a radius R of 0. By
combining an autoencoder with the Deep-SVDD network,
the neural network maps the data points closer to the center
while reconstructing them to resemble the original signals as
much as possible. If the encoder maps all data points to
a single point, the decoder cannot reconstruct distinct input
signals, thereby efectively preventing the collapse of the
hypersphere.Te network structure depicted in Figure 3 was
obtained by integrating the autoencoder with the
SVDD model.

An autoencoder consists of an encoder and a decoder.
Te encoder projects the original data into a low-
dimensional feature space to perform the feature extrac-
tion and dimensionality reduction. By contrast, the decoder
attempts to reconstruct the original data from the projected
low-dimensional space.Te parameters of both networks are
learned using a reconstruction loss function. Te re-
construction cost function is defned as follows:

L � 􏽘
n

i�1
‖xi − xi
′‖. (4)

Te hidden layers of the autoencoder perform di-
mensionality reduction on the input, thereby guiding the
neural network to extract features from the dataset. Te
autoencoder network is trained using a normal dataset,
denoted as X � xi􏼈 􏼉

n
i�1, to obtain the hidden layer features

Z � zi􏼈 􏼉
n
i�1.Te dimensionality of each zi in the hidden layer

can be designed based on specifc requirements or charac-
teristics of the data. x represents the original sample points,
while x′ denotes the reconstructed sample points obtained
after passing through the encoder and decoder. Te encoder
is extracted separately and optimized using a specifc cost
function. Te cost function is defned as follows:

L �
1
n

􏽘

n

i�1
‖zi − a‖

2
+
λ
2

􏽘

L

l�1
‖W

l
‖
2
, (5)

where a is the center of the hypersphere, and a � 1/n􏽐
n
i�1z

i.
Te frst term in the equation applies quadratic loss to
penalize the distance of each data point to the center of the
hypersphere, with the aim of minimizing the volume of the
hypersphere. Te second term represents the weight decay
regularization in the network, which helps to prevent
overftting. λ is a hyperparameter that controls the strength
of the regularization term. Deep-SVDD aims to shrink the
hypersphere by minimizing the average distance of all data
representations to the center. Trough iterative training of
the network, we eventually obtained the feature space
mapping, as well as the center a and radius R of the
hypersphere. Create a scoring function that measures the
anomaly score

d � ‖zi − a‖
2
. (6)

Te distance between the new data points and the center
of the hypersphere obtained through the network model was
utilized to determine whether the data were anomalous.
Additionally, the distance can provide insights into the
degree of abnormality in data [31–36].

2.4.ModelMultiscaleConvolutionalNeuralNetworks. As the
signals are sourced from diferent components and systems,
they lack a consistent scale. To efectively capture multiscale
information from diverse sources at both the macro- and
microlevels, the entire model was designed as a multiscale
hierarchical structure. Te encoding section of the model
architecture includes the parallel concatenations of con-
volutional kernels of varying sizes.
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Convolutional neural networks (CNNs) are particularly
well-suited for feature extraction in the encoding section of
an autoencoder due to their ability to preserve spatial re-
lationships and capture local patterns in the input data. By
employing a multiscale CNN architecture, we can efciently
extract signal features at various scales, thereby enhancing
the model’s expressive capacity and generative efectiveness.
Utilizing the feature extraction capabilities of these distinct
kernels progressively captures multiscale information.
Subsequently, the multiscale features acquired by the parallel
convolutional units are combined to create the input data for
the subsequent decoding section. In a multilayered network
structure, a multiscale CNN can efciently extract signal
features at various scales, thereby enhancing the model’s
expressive capacity and generative efectiveness.

2.5. Soft-Treshold Activation Network. Soft thresholding is
a widely used technique for feature fltering in various felds
such as signal processing, statistics, and machine learning
[37–41]. It involves setting features with values close to
0 directly by establishing a feature threshold, while retaining
crucial features exceeding the threshold. Tis method was
designed to efectively suppress the noise. Te soft thresh-
olding function is represented by the following equation:

STh � sgn(s) · max[(|s| − Th), 0], (7)

where s represents the input signal, sTh denotes the soft-
threshold signal, sgn(·) is the sign function, and T is the
threshold [42–44].

Under the infuence of the soft thresholding function,
when the threshold is set to Th � τ, the input signal is zeroed
within the threshold range |s|< τ and shifted outside the
threshold range, thereby reducing the impact of signal values
near zero.Tis enhances the “contrast” of internal data in the
signal, akin to elevating the importance of critical data
points, allowing the network to focus on clean data. As il-
lustrated in Figure 4, the gradient of the function is 1 when
the absolute value of the input signal exceeds the threshold,
and 0 otherwise. Tis behavior is similar to the ReLU ac-
tivation function depicted in Figure 5 and efectively pre-
vents the vanishing gradient problem, facilitating gradient
backpropagation. Furthermore, compared with the ReLU
function, it better preserves the negative features of the input
signal, thus preventing information loss.

For soft thresholding operations, the selection of the
threshold signifcantly infuences the denoising efective-
ness of the signal. Terefore, the key is to determine an
appropriate threshold. However, manually setting the
threshold is not only time-consuming but also challenging
to guarantee the fnal outcome. Neural network models,
with the advantage of data-driven intelligent learning,
circumvent manual intervention and can serve as an ef-
fective means for threshold learning. To address the issue of
severe noise in gas turbine monitoring signals, which
complicates pattern recognition during anomaly detection,
this study integrates attention mechanisms with the soft
thresholding model. Tis established a soft-threshold ac-
tivation network, thereby mitigating the interference of
redundant noise in the signal.
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Figure 2: Te basic idea of Deep-SVDD.
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Figure 6 depicts the designed soft-threshold activation
network, where ⊗ represents the element-wise multiplication
of the matrices. In this module, the absolute values of all
features in the absolute value layer are frst input, and the
absolute values of the obtained input undergo global average
pooling to obtain a feature, denoted as A. In another path,
the feature output of the global average pooling layer is fed
into a subnetwork with the sigmoid function as its last layer.
Consequently, the network’ output was normalized to the
range of 0 to 1, and the output of the fully connected layer
was denoted as α. Te fnal threshold can be expressed as
α×A. Terefore, the threshold is a number between 0 and 1,
multiplied by the average value of the absolute values of the
feature map. Tis ensures that the threshold is positive and
not excessively large and allows the model to continuously
adjust the local weights of each feature. Tis enhancement
strengthens the ability of the model to express features for
the current task, thereby eliminating the impact of noise on
the recognition model.

2.6. DMS-SVDD Network. Based on the Deep-SVDD
model, the DMS-SVDD model was constructed by
employing a multiscale convolutional neural network
(CNN) to replace the encoding module of the deep
autoencoder for feature extraction. Te rationale behind
this modifcation is twofold:

Enhanced Feature Extraction: Multiscale CNNs are ca-
pable of capturing features at diferent spatial scales, which is
particularly benefcial for processing time-series data like
vibration signals. By using convolutional kernels of varying
sizes (e.g., 1× 3, 1× 5, and 1× 7), the model can extract
a richer set of features, encompassing both local and global
patterns. Tis is crucial for accurately identifying anomalies
in complex systems.

Improved Noise Reduction: Te integration of a soft-
threshold activation network within the DMS-SVDD model
further enhances its ability to eliminate noise and redundant
information. By selectively attenuating features that are
irrelevant to the current task, the model can focus on the

Th

0

−Th

τ

τ

−τ

Input signal S
Soft-thresholded signal STh

(a)

1

0 τ−τ

(b)

Figure 4: Soft-threshold activation function: (a) soft-threshold function curve and (b) soft-threshold gradient.

0 τ−τ

(a)

0 τ−τ

1

(b)

Figure 5: ReLU activation function: (a) ReLU function curve and (b) ReLU activation function gradient.
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most pertinent features, leading to more accurate and re-
liable anomaly detection. Te model is divided into three
components, as illustrated in Figure 7.

(a) Multiscale feature extraction. Te original vibration
data are directly fed into three parallel branches of
convolutional neural networks with diferent-sized
kernels: 1× 3, 1× 5, and 1× 7. Varying kernel sizes
allow for the extraction of features at diferent scales,
and multiple layers of convolutional networks are
employed to capture features at diferent levels. Te
features extracted at diferent scales are then sub-
jected to global average pooling, channelwise, and
concatenated along the channels to achieve the in-
tegration of deep-level features.

(b) Soft-threshold activation. Fused features are input
into a soft-threshold activation network that learns
distinct channelwise threshold vectors. Tese vectors
are then applied to diferent channels, employing the
soft-threshold function to selectively attenuate fea-
tures irrelevant to the current task by setting them to
0. Simultaneously, the features relevant to the task
are preserved and outputted. During the training
process, the model dynamically adjusts the thresh-
olds to minimize the diference between the model
output and ground truth.

(c) Decoder. By utilizing the encoded features from the
hidden layer, the decoder reconstructs the original
sample data through a mapping process. Sub-
sequently, the performance of the model is assessed
by evaluating the similarity between the recon-
structed and original samples to gauge the re-
construction capability of the autoencoder model.

Te parameter confguration for the encoder backbone
network of the DMS-SVDD model is outlined in Table 1.
Given that the inputs consist exclusively of one-dimensional
time-series data, the network employs one-dimensional
convolutional kernels. Te notation Cov1d (133, 128, 3, 2,
1) signifes the use of one-dimensional convolutional ker-
nels, with an input channel count of 133, an output channel
count of 128, a kernel size of 1× 3, a stride of 2, and
a padding of 1. To capture themultiscale temporal features of
the monitoring data, three parallel submodules of con-
volutional neural networks with distinct kernel sizes were
designed. After the convolutional layer block, the length of
the time-series progressively diminishes layer-by-layer,

while concurrently, the channel count undergoes continu-
ous variation. Subsequently, global average pooling was
applied channelwise to capture the data features for each
channel. In the fnal stage of the multiscale feature extraction
module, a concatenation layer was employed to integrate the
features extracted by the convolutional kernels of diferent
sizes. Subsequently, the extracted features are input into
a soft-threshold module to learn distinct thresholds. Ulti-
mately, the input feature map undergoes decoding pro-
cessing through an upsampling operation. Te upsampling
operation is employed to increase the spatial resolution of
the encoded feature map, efectively reversing the di-
mensionality reduction performed during the encoding
process. Tis is achieved by interpolating additional points
between the existing data points in the feature map, thereby
expanding its size. In the context of our DMS-SVDDmodel,
the upsampling operation is applied to the encoded features
to reconstruct the original sample data with the same di-
mensions as the input signal.

Te decoder employs a series of upsampling layers, each
followed by a convolutional layer. Te upsampling layers
increase the temporal resolution of the feature map, while
the convolutional layers refne the upsampled features to
ensure that the reconstructed signal closely resembles the
original input. Te combination of upsampling and con-
volutional layers in the decoder allows for a gradual and
controlled reconstruction of the input signal from the
compressed feature representation.

By utilizing this decoding process, the model is able to
assess the reconstruction capability of the autoencoder by
evaluating the similarity between the reconstructed and
original samples. A high degree of similarity indicates that
the model has efectively captured the essential features of
the input data, while a low similarity suggests that the model
may have failed to accurately encode and decode the input
signal.

Te DMS-SVDD model underwent training solely with
normal sample data.Te network training process comprises
two distinct phases: the autoencoder network training phase
and feature hypersphere construction phase. In the initial
phase, feature extraction and dimensionality reduction were
accomplished through an autoencoding structure. In the
subsequent phase, the features extracted by the encoder are
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Figure 7: DMS-SVDD network framework.
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exclusively utilized to construct a hypersphere representing
a healthy state, with a focus on minimizing its volume.
Following the completion of training, anomaly de-
termination for new samples can be performed based on the
distance between their features and the center of the
hypersphere.

2.7. Model Training. Te training of models is segmented
into two distinct phases, where the loss incurred during
model training is analogous to that described by a network
model employing deep support vector data.

In the initial phase, the backbone of the AE network is
trained with the optimization objective of preserving the
similarity between the original input data and the recon-
structed data. Tis is achieved through a reconstruction loss
function designed to learn and optimize the model, thereby
extracting the corresponding latent features. Te re-
construction loss function is defned as follows:

L � 􏽘
n

i�1
‖xi − 􏽢xi‖. (8)

Te hidden layer representation of AE is a di-
mensionality reduction of the input, which, in turn, guides
the neural network in extracting features from the dataset.
By training the AE network with a normal dataset
X � xi􏼈 􏼉

n

i�1, we obtain the hidden layer features Z � zi􏼈 􏼉
n

i�1,
where n� 96, indicating that the hidden layer features are
96-dimensional.

Te algorithm for the frst phase is presented in Table 2,
in a pseudocode format resembling Algorithm 1.

In the second phase, the trained encoder is utilized to
extract hidden features and perform hypersphere optimi-
zation. Te optimization objective is to adjust the model
parameters such that normal samples cluster near the center
of the sphere, while anomalous samples are pushed away
from the center, thereby minimizing the volume of the
hypersphere. Te loss function is as follows:

L �
1
n

􏽘

n

i�1
‖zi − ai‖

2
+
λ
2

􏽘

L

l�1
‖w

l
‖
2
, (9)

where a � 1/n􏽐
n
i�1z

i represents the center of the sphere. Te
frst term in the formula employs a quadratic loss to penalize
the distance of each data point from the center of the
hypersphere, thus minimizing the volume of the hyper-
sphere.Te second term, whereW represents the parameters
of the network model, acts as a network weight decay
regularization term to prevent overftting, with λ being
a hyperparameter. Deep-SVDD minimizes the average
distance of all data representations to the center, efectively
shrinking the sphere. Trough continuous iterations of the
network, a feature space mapping will eventually be ob-
tained, along with the center a and radius R of the
hypersphere.

In the fnal step, a scoring function is designed as follows:

d � ‖zi − a‖
2
. (10)

Utilize the distance between new data, after being
processed by the networkmodel, and the center of the sphere
to determine whether it is faulty data and the degree of
the fault.

Te pseudocode for the second phase algorithm is
presented in Table 3, resembling Algorithm 2.

3. Case Study

3.1. Process Description. Tis case study utilizes data from
the gas turbine monitoring system of Unit 3 in a power plant
using the GE 9FA GENSET model. Te dataset includes
records from 133 sensors at 139 h. Te sensor parameters
originate from the diferent components of the gas turbine
and belong to various hardware management systems. Te
sensor data include turbine speed, turbine exhaust disper-
sion, compressor inlet temperature, outlet temperature,
atmospheric temperature, and atmospheric pressure. Con-
sequently, they often have diferent sampling frequencies
and representation ranges. Terefore, preprocessing is re-
quired to use them as input variables for deep neural net-
works and other models. Tis preprocessing ensures that
equal importance is assigned to diferent parameters during
the network training. Owing to compressor malfunction
necessitating factory maintenance, operational data

Table 1: Confguration of the main encoder backbone network parameters.

Layer Algorithm structure Parameters

Branch 1
Convolution, batch normalization, ReLU activation Cov1d (133, 128, 3, 2, 1)
Convolution, batch normalization, ReLU activation Cov1d (128, 64, 3, 2, 1)
Convolution, batch normalization, ReLU activation Cov1d (64, 32, 3, 2, 1)

Branch 2
Convolution, batch normalization, ReLU activation Cov1d (133, 128, 5, 2, 2)
Convolution, batch normalization, ReLU activation Cov1d (128, 64, 5, 2, 2)
Convolution, batch normalization, ReLU activation Cov1d (64, 32, 5, 2, 2)

Branch 3
Convolution, batch normalization, ReLU activation Cov1d (133, 128, 7, 2, 3)
Convolution, batch normalization, ReLU activation Cov1d (128, 64, 7, 2, 3)
Convolution, batch normalization, ReLU activation Cov1d (64, 32, 7, 2, 3)

GAP layer Global average pooling C:32
Feature fusion layer Feature concatenation C:96
Soft thresholding activation layer Soft thresholding activation module C:96
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preceding the occurrence of the alarm were gathered from
the gas turbine unit for validation purposes. Temporal
waveform representations of some parameters, such as the
temporal signals of the parameters, including the engine
speed, compressor inlet and outlet temperatures, and tur-
bine exit temperature.

Te data for 39 h preceding the occurrence of the fault
are presented in Figure 8. To validate the feature extraction
capabilities of the anomaly state assessment method,
monitoring data from the turbine unit were divided into two
parts. Te initial 100 h of stable and normal operation was
chosen as the training set for model training.Te 39 h of data
monitored before the unit underwent maintenance were
utilized for model testing. Because these testing data did not
appear during model training, they were more indicative of
the model’s generalization performance. Within these 39 h
of data, the last 4 h exhibited a distinctly abnormal turbine
state, allowing this period to be defned as anomalous data,
while the preceding 35 h of monitoring data are still des-
ignated as normal. Tis design enabled the evaluation of the
model’s performance in unforeseen abnormal situations and
tested its robustness under normal operating conditions. To
facilitate computation, the data were normalized. Blades in
compressor stages 10 to 16 incurred varying degrees of
damage, along with the impairment of the frst-stage nozzles
and moving blades of the high-pressure turbine. Tese
parameters, encompassing aspects such as the engine speed
and temperatures at the inlet and outlet of the compressor
and turbine, provide vital insights into the operational state
and performance of the equipment. Temporal signal
waveforms provide an intuitive visual display of the

operating conditions of the equipment. By scrutinizing
features such as waveform shape, amplitude, and frequency,
preliminary insights into changing trends and anomalies in
the parameters can be obtained. Nevertheless, relying solely
on waveform observation often proves insufcient for
precisely discerning whether the equipment is undergoing
degradation or is facing a malfunction. Consequently, an in-
depth analysis necessitates a comprehensive consideration of
these waveforms alongside other parameter data to establish
more reliable indicators for the assessment of abnormal
states.

Considering the substantial number of parameters col-
lected, they can be broadly categorized into two main types:
gas path parameters and rotational speed parameters, with
gas path parameters encompassing temperature and pres-
sure parameters. In the process of constructing the sample
set, for the gas path parameters, random sampling was
conducted by unfolding the gas path data in the training set
using a sliding window with a length of 200, establishing gas
path training samples. Simultaneously, for the rotational
speed data, random sampling was performed on the data
using a sliding window of the same length, creating rota-
tional speed training samples. Te testing samples were
obtained by sequentially sampling the test set using a sliding
window with a length of 200 and an overlap rate of 0.3.
Following the sampling process, the fnal counts of training
and test set samples were 3600 and 2005, respectively. All
samples in the training set were healthy, whereas there were
1800 healthy samples and 205 anomalous samples in the test
set. To analyze and evaluate the trained network, precision,
recall, F1 score, and smoothness were employed as the four

Table 2: Te backbone of the AE network.

Algorithm 1: Te algorithmic procedure for the frst phase
Input: Te training set xi􏼈 􏼉

N

i�1, batch size B, the learning rate a, iteration count K
Output: Encoder ψ(·), decoder φ(·)
Initialization: Encoder ψ(·), decoder φ(·), parameter set θE and θD

(1) for k� 1 to K do:
(2) Randomly select a mini-batch of data xi􏼈 􏼉

B

i�1 from the training set xi􏼈 􏼉
N

i�1

(3) Obtain the reconstructed samples 􏽢xi􏼈 􏼉
B

i�1 from the training samples xi􏼈 􏼉
B

i�1
(4) LθE

,θE
⇐ 1

B
􏽐

B
i�1‖xi − 􏽢xi‖

(5) θE⇐ θEα∇θE
LθE

, θD⇐ θDα∇θD
LθD

(6) end for

Table 3: Extraction of hidden features and hypersphere optimization.

Algorithm 2: Te algorithmic procedure for the second phase
Input: Te training set xi􏼈 􏼉

N
i�1, batch size B, the learning rate a, iteration count M, encoder ψ(·;W), regularization parameter λ

Output: Encoder ψ(·;W), the center of the hypersphere a
Initialization: Encoder ψ(·;W), model parameters W
(1) Te center a of a hypersphere can be calculated by a � 1

n
􏽐

n
i�1z

i

(2) for m� 1 to M do:
(3) Randomly select a mini-batch of data xi􏼈 􏼉

B

i�1 from the training set xi􏼈 􏼉
N

i�1
(4) Randomly select a mini-batch of data
(5) Input to the encoder ψ(·; W) to obtain the hidden features Z
(6) Lw⇐ 1

B
􏽐

B
i�1‖zi − a‖2 + λ

2􏽐
L
l�1‖wl‖2

(7) w⇐w − α∇wLw

(8) end for
(9) Te updated center a of the hypersphere is obtained by a � 1

n
􏽐

n
i�1z

i
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metrics for the model assessment. Te frst three metrics
were utilized to measure the anomaly detection accuracy of
the model, while smoothness is employed to evaluate the
denoising ability of the model, using the mean absolute
deviation. A smaller smoothness value indicates that the
model is less infuenced by noise.

3.2. Experimental Platform and Hyperparameter
Confguration. Te network was built on the PyCharm
platform using the PyTorch framework. Te experiments
were conducted on a computer equipped with an RTX 2060
GPU and i5-8400 CPU. Te model training utilized the
Adam optimizer with an initial learning rate of 0.001, a batch
size of 18, 50 iterations for the frst stage, and 30 iterations
for the second stage.

To prevent overftting during the training process, L2
regularization, early stopping, and learning rate annealing
techniques were employed in the network structure. Te
introduction of L2 regularization parameters compresses the
weight values of the neural network close to zero, reducing
the magnitude of parameter changes. In this experiment, L2
was set to 10−5. Te learning rate annealing technique in-
volves reducing the learning rate when the model perfor-
mance ceases to improve signifcantly after several training
rounds. If the loss value did not decrease for three con-
secutive rounds, the learning rate was halved; for example,
automatically adjusting from 0.1 to 0.05. Early stopping aims
to halt training when the model performance reaches
a plateau, which was triggered if the loss value did not
decrease for fve consecutive rounds in this experiment.
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Figure 8: Temporal waveform: (a) rotate speed of engine; (b) compressor inlet temperature; (c) compressor outlet temperature; (d) turbine
exit temperature.
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4. Results and Discussion

4.1. Ablation Experiments. To validate the efectiveness of
the DMS-SVDD method, ablation experiments were per-
formed to assess the impact of each component (multiscale
convolutional neural network (M) and soft-threshold acti-
vation network (S)) on the overall performance of themodel.
Specifcally, we compared the performance of the original
Deep-SVDD model with three variants: Deep-SVDD+ S
(with only the soft-threshold activation network added),
Deep-SVDD+M (with only the multiscale convolutional
neural network added), and DMS-SVDD (with bothM and S
added). Te comparison was based on metrics such as ac-
curacy, recall, F1 score, and smoothness. Tese metrics are
defned as follows.

Precision: Precision is the ratio of true positive pre-
dictions to the total number of positive predictions made. It
measures the accuracy of the positive predictions

Precision �
True Positives (TP)

True Positives (TP) + False Positives (FP)
.

(11)

Recall: Recall, also known as sensitivity, is the ratio of
true positive predictions to the total number of actual
positives. It measures the ability of the model to capture all
relevant instances

Recall �
True Positives (TP)

True Positives (TP) + FalseNegatives (FN)
.

(12)

F1 Score:Te F1 score is the harmonic mean of precision
and recall. It provides a single metric that balances both the
precision and recall of a model

F1 Score � 2 ×
Precision × Recall
Precision + Recall

. (13)

Smoothness: Smoothness is not a standard metric like
the others and can be defned in various ways depending on
the context. In the context of time-series data or signal
processing, smoothness could refer to the degree of fuc-
tuation or variation in the signal. One way to quantify
smoothness is by calculating the average absolute diference
between consecutive data points

Smoothness �
1

N − 1
􏽘

N−1

i�1
|xi+1 − xi| , (14)

whereN is the total number of data points and xi is the value
of the data point at position i. A lower value of smoothness
indicates a smoother signal. Tese formulas can be used to
evaluate the performance of classifcation models and the
quality of signals or time-series data.

Te confusion matrix for the SVDD network with the
added module is shown in Figure 9. Te comparison was
based on metrics such as accuracy, recall, F1 score, and
smoothness, as shown in Table 2.

Te analysis in Table 4 reveals that DMS-SVDD achieves
a very high accuracy (0.9985), indicating its efectiveness in
classifying normal and anomalous instances. F1 refects
a good balance between the precision and recall. A high
recall of 0.9989 indicated its ability to identify a high pro-
portion of actual anomalies. Simultaneously, lower
smoothness indicates that it defnes tight decision bound-
aries. Te DMS-SVDD excels in terms of accuracy, recall, F1
score, and smoothness. Particularly noteworthy is its out-
standing performance in smoothness, where it consistently
achieved the lowest values among the four comparison sets.
Tis is attributed to the fact that in certain contexts of
anomaly detection or signal processing, lower smoothness
indicates a better capability to capture sudden changes or
anomalies efectively. Compared with Deep-SVDD,
DMS-SVDD exhibited an improvement of 21.04% in ac-
curacy, a 24.09% increase in recall, a 12.02% enhancement in
F1 score, and a reduction in smoothness by 51.38%. In
contrast to OCSVM, DMS- SVDD demonstrates a notable
enhancement, with a 47.1% increase in accuracy, a 45.27%
increase in recall, a 25.91% improvement in F1 score, and
a decrease in smoothness by 52.68%. Relative to AE,
DMS-SVDD showed improvements across metrics, in-
cluding a 22.94% increase in accuracy, a 32% increase in
recall, a 16.87% enhancement in F1 score, and a decrease in
smoothness by 39.15%.

Te changes in the anomaly evaluation metrics, nor-
malized on the test set, for the four methods are shown in
Figure 10. Te anomaly evaluation metrics include accurate,
recall, F1, and smoothness.Tese metrics were used to assess
the model’s ability to correctly identify anomalies and
distinguish them from normal instances. A comparison
indicates that the multiscale module (M) efectively en-
hances the feature extraction capabilities and improves
model recognition accuracy. Meanwhile, the soft-threshold
module (S) slightly enhanced the model accuracy but sig-
nifcantly enhanced the denoising ability of the model. Te
synergistic application of both methods (M and S) in
DMS-SVDD achieved optimal performance.

4.2. Model Training Efciency. In the comparison of model
performance, particular attention was given to two key
aspects of model training for DMS-SVDD, in contrast to the
original Deep-SVDD, Deep-SVDD+ S, and Deep-
SVDD+M models: convergence epochs and training
time. Te following is a summary of the convergence epochs
and duration of single-round training for eachmodel in each
training stage, as presented in Table 5.

By comparing these data sets, it can be inferred that the
refned model demonstrates a signifcant reduction in the
number of rounds needed for convergence, despite expe-
riencing an increase in the duration of single-round training
at each stage. As a result, the overall training duration
paradoxically became shorter, emphasizing improved
training efciency. DMS-SVDD displays notable advantages
over the other models in terms of convergence rounds and
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training time. In particular, in the initial stage, DMS-SVDD
shows a faster convergence rate while remaining competitive
in the duration of single-round training in the second stage.
Tis underscores the exceptional performance of
DMS-SVDD in enhancing model training efciency, pro-
viding robust support for practical applications where
sensitivity to training time is crucial. Compared to Deep-
SVDD, DMS-SVDD achieved an overall reduction of 34.13%
in the training time.

In the comparative analysis of model training efcien-
cies, incorporate the computational demands and parameter
counts of various models, as illustrated in Table 6.

Synthesizing data from Tables 5 and 6 yields the following
insights: from the perspective of model complexity, as the
complexity increases (through the incorporation of multi-
scale convolutional neural networks and soft-threshold
activation networks), both the computational complexity
(FLOPs) and the number of parameters rise. Te
DMS-SVDD model exhibits the highest values in both
computational demand and parameter count in its two
phases, indicating its status as the most complex model. Data
from Table 6 suggests that despite the increased computa-
tional load of the DMS-SVDD model, its total training time
is comparatively reduced. Tis reduction is attributed to the
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Figure 9: Confusion matrix of the original model: (a) Deep-SVDD; (b) DMS-SVDD; (c) Deep-SVDD+ S; (d) Deep-SVDD+M.

Table 4: Comparative performance of DMS-SVDD and other anomaly detection algorithms in ablation experiments.

Accurate Recall F1 score Smoothness
Deep-SVDD 0.8249 0.8050 0.8920 0.00617
Deep-SVDD+S 0.8584 0.8422 0.9144 0.00402
Deep-SVDD+M 0.9930 0.9922 0.9961 0.00515
OCSVM 0.6788 0.6876 0.7936 0.00634
AE 0.7696 0.7567 0.8550 0.00493
DMS-SVDD 0.9985 0.9989 0.9992 0.00300
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DMS-SVDD model’s enhanced efciency in feature ex-
traction and denoising, allowing it to converge in fewer
training rounds and, thereby, learn data representations
more swiftly, reducing the time required for training.
Furthermore, the DMS-SVDD model’s high precision, re-
call, and F1 scores in anomaly detection tasks demonstrate
its ability to utilize computational resources more efectively
during training, leading to performance improvements.

According to Table 5, the DMS-SVDD model converges
in 12 rounds in the frst phase and 7 rounds in the second
phase, with a total training duration shorter than other

models. Tis indicates that the model can reach a conver-
gence state within a relatively small number of training
rounds, reducing training time and improving efciency,
meaning the model can learn the data distribution more
quickly. Te model’s high precision, recall, and F1 scores on
the test set indicate that, even with fewer convergence
rounds, it still maintains good performance. Tis further
confrms the model’s convergence; i.e., the model can reach
a satisfactory level of performance within a limited training
time. Noise can mask or distort the true patterns in data,
making it difcult for models to accurately identify
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Figure 10: Anomaly evaluation metrics: (a) Deep-SVDD; (b) Deep-SVDD+ S; (c) Deep-SVDD+M; (d) DMS-SVDD.

Table 5: Te time consumed during model training.

Convergence rounds
in the initial stage

Duration of a single-round
training in the initial

stage(s)

Convergence rounds
in the second stage

Duration of a single-round
training in the second

stage(s)

Total training
duration(s)

Deep-SVDD 36 12.7 21 9.2 650.4
Deep-SVDD+S 27 15.4 12 11.8 557.4
Deep-SVDD+M 16 23.5 14 16.9 612.6
DMS-SVDD 12 25.2 7 18.0 428.4

Table 6: Computational resources consumed by model training.

Model
Te initial stage Te second stage

Computation/FLOPs (M) Number
of parameters (106) Computation/FLOPs (M) Number

of parameters (106)
Deep-SVDD 92 8.0 72 6.6
Deep-SVDD+S 142 10.3 102 8.4
Deep-SVDD+M 264 14.7 183 11.4
DMS-SVDD 292 16.3 215 13.9
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anomalies. If a model is very sensitive to noise, its output
may become unstable in the presence of noise, afecting the
accuracy of anomaly detection. Te minimal smoothness of
the DMS-SVDD model proposed in this paper means the
model’s output changes less between consecutive data
points, typically indicating that the model can stably handle
data, maintaining consistency even in the presence of noise.
Te DMS-SVDD model exhibits good convergence in terms
of training efciency, model performance, and denoising
capability.

4.3. Comparative Analysis of Anomaly Detection Models.
To demonstrate the signifcant advantages of the proposed
DMS-SVDD model, a comparison was conducted with two
conventional unsupervised learning methods: OCSVM and
AE for anomaly detection.

OCSVM is a variant of the traditional support vector
machine designed for anomaly detection. After training, the
model acquired an optimal hyperplane. Te model takes
manually engineered features as input, namely, peak-
to-peak value, root mean square, standard deviation, and
skewness of the segmented raw data from each sensor signal.
Te optimal parameters of the model were determined
through fve repeated experiments.

Te principle of AE in unsupervised anomaly detection
relies on a smaller reconstruction error for normal data and
a larger reconstruction error for anomalous data. Tis is
owing to the AE’s limited exposure to abnormal data during
the training process, resulting in weaker reconstruction
capabilities for such data. Consequently, when the input data
signifcantly deviate from the normal patterns, the re-
construction error increases, leading to an anomalous
classifcation. Te model structure shares the autoencoding
component with Deep-SVDD, with the input as the raw
signals from multiple sensors, and the training was con-
ducted over 50 iterations.

In Figure 11, a horizontal black dashed line has been
added to represent the threshold for fault detection across all
three models. Observations below this line are considered
normal, while those above indicate potential faults. From
Figure 11, the following conclusions can be drawn:

(i) Trend and Stability of Indicators. Distinct variations
were observed among the methods concerning their
ability to refect the trend and stability of anomaly
development. Te DMS-SVDD model, indicated by
the blue line, remains consistently below the
threshold, demonstrating its stability and suggesting
a high degree of reliability in distinguishing between
normal operation and genuine anomalies. Te AE
model, depicted by the red line, shows a spike
crossing the threshold at the 13th hour, which does
not align with the actual occurrence of anomalies,
indicating potential false positives. Te OCSVM
model, represented by the green line, exhibits fre-
quent oscillations crossing the threshold, high-
lighting its potential instability and tendency for
false alarms.

(ii) Early Fault Detection Capability. Te DMS-SVDD
model’s ability to detect early faults is substantiated
by its evaluation metrics, which closely align with the
actual anomalies observed in the original time-
domain signals. Tis is in stark contrast to the AE
model, which shows delayed and less distinct re-
sponses, and the OCSVM model, which demon-
strates erratic behavior before detecting actual faults.

It is worth noting that the OCSVM model’s early in-
dications of a fault, as seen in Figure 11, could be misleading
due to its higher sensitivity to noise, resulting in a higher rate
of false alarms. Te DMS-SVDD model’s approach to bal-
ance sensitivity with specifcity aims to minimize such false
positives while maintaining the capability for timely and
accurate fault detection.

Trough this comparative analysis, the DMS-SVDD
model not only efectively integrates anomalous features for
the early detection of faults but also demonstrates a clear
trend of performance changes without the instability ob-
served in other models. Tis supports the model’s appli-
cation as a valuable tool for decision-making in the
maintenance of combustion engines.

5. Conclusion

In this investigation, we introduced an innovative approach
for detecting anomalies and predicting faults in gas turbines
by employing a DMS-SVDD. Te pivotal elements of our
proposed methodology include the application of an SVDD
and a Deep Autoencoder Backbone Network Framework.

Te primary innovation lies in the integration of
a multiscale convolutional neural network (M) and soft-
threshold activation network (S) into the Deep-SVDD
framework. Tis fusion enhances the feature extraction
capabilities and improves the ability of the model to denoise,
resulting in a more robust anomaly detection model.
Compared with Deep-SVDD, DMS-SVDD exhibits an im-
provement of 21.04% in accuracy, a 24.09% increase in recall,
a 12.02% enhancement in F1 score, and a reduction in
smoothness by 51.38%. In contrast to OCSVM, DMS-SVDD
demonstrates a notable enhancement, with a 47.1% increase
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Figure 11: Anomaly evaluation metrics of DMS-SVDD, AE, and
OCSVM.
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in accuracy, a 45.27% increase in recall, a 25.91% im-
provement in F1 score, and a decrease in smoothness by
52.68%. Relative to AE, DMS-SVDD showed improvements
across metrics, including a 22.94% increase in accuracy,
a 32% increase in recall, a 16.87% enhancement in F1 score,
and a decrease in smoothness by 39.15%.

Te DMS-SVDD model exhibits exceptional perfor-
mance, outperforming traditional methods such as OCSVM
and AE in terms of accuracy, recall, F1 score, and
smoothness. Tis signifes the ability of the model to ac-
curately identify anomalies and maintain low sensitivity to
noise. By efectively capturing subtle changes in operational
patterns, the DMS-SVDD proves invaluable in identifying
anomalies at an early stage, ofering a proactive approach to
maintenance.

DMS-SVDD demonstrates improved training efciency
by reducing convergence rounds and overall training times.
Te DMS-SVDD demonstrated enhanced training efciency
with a reduction in the convergence rounds by 66% and
overall training times by 34.13%. Tis efciency enhance-
ment is crucial for practical applications, in which timely
responses to changing conditions are imperative.

Te DMS-SVDD ofers a promising solution for gas
turbine anomaly detection by combining feature extraction,
denoising, and early fault detection capabilities. While the
model’s performance improvements over existing methods
are notable, it is important to acknowledge that the current
application has been limited to a restricted number of hours
for only one fault type in onemachine. Future research could
explore further refnements to the DMS-SVDD model and
its application to diverse industrial contexts, including more
extensive datasets and a broader range of fault types and
machines. By expanding the scope of the study, the practical
advantages of the DMS-SVDD model can be more thor-
oughly evaluated, potentially making it a valuable tool for
decision support in the maintenance of gas turbine systems
and other industrial applications.
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