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For two adjacent buildings connected by a joint damper, an inverse problem is formulated based on the pole allocation method in
control theory. Te structural system is simplifed as a two-degrees-of-freedom (2-DOF) lumped-mass damped shear model. Te
unifed governing equation, which expresses the relationship between an assigned control target and the structural parameters for
an earthquake-resistant building, seismically isolated building, or passively controlled building, is extended to structural control
using a joint damper. Te introduced equation automatically constrains the variations in the structural parameters under the
assigned modal properties. Te integration of the pole allocation method and fxed-point theory directly estimates the additional
damping efect on the target buildings from the optimum capacity of the joint damper, which improves the trial-and-error steps at
the preliminary design stage.Te past fxed-point theories do not provide the additional damping efect but the optimum damping
coefcient of the joint damper. Te present study directly links the additional damping with the damping of the joint damper.
Numerical examples are used to verify the theoretical integration using a 20-DOF buildingmodel wherein two 10-DOFmodels are
connected by a joint damper between the top lumped masses.

1. Introduction

Te pole allocation method, which is widely used in control
engineering, has already been applied to amultilumpedmass
stick-shaped shear model and determined that there is
a mathematical equation governing the vibration of build-
ings [1–4]. Tis equation is referred to as either a unifed or
governing equation [3, 4]. For a base-isolated structure,
interstory-isolated structure, or passively controlled struc-
ture using tuned mass dampers (TMDs) or interstory vis-
cous dampers, the equation constrains the variations in the
structural parameters and control devices by specifying the
poles. Tese poles correspond to the natural frequencies and
damping ratios of the vibration modes, and they serve as
control targets. Te introduced equation aids in physically
understanding the control efect of seismic isolation and
passive dampers and helps improve the trial-and-error TMD
design [1, 2]. Pole allocation is related to the performance-

based design in structural dynamics because the application
starts by assigning a control target to the vibration modes. In
this study, frst, the unifed description considering the vi-
bration of one building is extended to two adjacent buildings
connected by a joint damper. Subsequently, the introduced
closed-form description is integrated with the fxed-point
theory because the theory does not provide the structural
damping efect; rather, it provides the optimum damping
coefcient for the joint damper. Tis integration directly
links the structural damping with the damping of the joint
damper. Consequently, a simple method is proposed at the
preliminary design stage to predict additional structural
damping without dynamic analysis.

Passive joint damper is a structural control strategy
aimed at reducing the vibration of one or two buildings by
connecting them [5–31]. Te authors in [5, 6] proposed the
optimization of a joint damper in simple uniform shear
beam models representing two adjacent buildings of
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diferent heights. From the perspective of the optimization of
lumped-mass models, a majority of the research on joint
dampers is derived from the fxed-point theory applied to
a two-degrees-of-freedom (2-DOF) system wherein two
single-degree-of-freedom (S-DOF) undamped models are
connected using a dashpot [7]. Te application of a 2-DOF
system with a joint damper is an extension of the fxed-point
theory for an S-DOF undamped model with a TMD [8].
When the two S-DOF models are undamped, two fxed
points appear in the frequency transfer functions of the
structural response to excitation. Tese points cannot be
moved by changing the damping coefcient of the dashpot.
Te fxed-point theory determines the damping coefcient
to ensure that the transfer functions for the S-DOF models
achieve the same peak value at two fxed points. Tis is
because the heights of the transfer functions cannot be
lowered below the fxed points, which are often referred to as
points P and Q [7, 8]. Te optimum damping coefcient at
each fxed point can be obtained by solving the corre-
sponding quadratic equation. Te fxed-point theory em-
ploys the average of the two optimum damping coefcients
for the dashpot. Tis theory proposes an optimization ap-
proach to determine damper capacity as a damping co-
efcient and has become a standard design method for joint
dampers. Essentially, a damper is selected to minimize the
frequency response in the frst and second modes of the
structural system. Te original fxed-point theory selects the
base and structural displacements as the input and outputs
of the structural system, respectively, in the transfer func-
tions [7]. Tis theory is derived using a similar mathematical
process wherein accelerations are the input and outputs [9].
Te authors in [9] confrmed through numerical examples
that the damping of connected structures does not have
a signifcant efect on optimization. Tis unnoticeability
supports the two S-DOF undamped models in the fxed-
point theory.

Te early fxed-point theory in [7] was extended to a 2-
DOF model wherein a spring was placed parallel to the
dashpot between two S-DOF undamped models; however,
this optimization was proposed for numerical analysis [10].
Subsequently, corresponding closed-form solutions were
introduced for the same problem [11–13]. When a spring is
inserted between the two S-DOF models, a control efect can
be obtained, even when the mass ratio between the two
S-DOF models is one. Te spring-dashpot parallel ar-
rangement is known as the Kelvin–Voigt model. Te in-
troduced closed-form optimizations simplify the design
process of the coupling structures. Te optimizations can be
applied to various transfer functions, where the input is the
base displacement, velocity, or acceleration and the outputs
are structural displacements or accelerations. However,
when the spring value increases, the optimum damping
coefcient defned in the early fxed-point theory cannot be
obtained, because the peak values at the two fxed points
difer signifcantly. Te authors in [11] stated that there is
a fxed-point independent of the connecting spring, which
can better explain the characteristics of frequency trans-
missibility using the closed-form expression. Tus, the
corresponding system is independent of the Kelvin–Voigt

model. Te authors in [11] highlighted that when the
product of the mass and stifness ratios between the two
S-DOF models is constant, the connecting spring is not
necessary. Te conspicuous case for necessity is limited to
when the masses of the two models difer signifcantly, and
the natural frequency of an S-DOF model with a smaller
mass is lower than that of another S-DOF model with
a larger mass. Tis may be a rare case, wherein two buildings
with almost the same height are adjoined. A joint damper is
a structural control strategy that uses the diference between
the dynamic properties of two buildings. Te connecting
spring aligned the seismic responses of both buildings,
which may have caused slight contradictions. Although the
authors in [7, 9–13] focused on a 2-DOF model, they solved
the signifcant problem of determining the optimum damper
parameters. However, these fxed-point theories do not
provide the structural damping efect but the optimum
damping coefcient of the joint damper. Te present study
directly links structural damping with the damping of the
joint damper by integrating pole allocation and the fxed-
point theory.

Some closed-form solutions for the optimum parameters
of the Kelvin–Voigt damper model have been provided
using the eigenvalue problem [14–16] and byminimizing the
time-averaged energy of the two buildings [17]. Parametric
studies have highlighted the presence of a distinct point
where two complex eigenvalues coincide, thus leading to the
maximum value of one of the two damping ratios [18]. Te
authors in [14] improved the structural control efect by
increasing the damping ratios in the frst vibration modes of
two adjacent structures. Te improvement yielded the same
maximum damping ratio in the frst modes under the
condition that the two natural frequencies in the frst modes
are equal. Essentially, when the product of the mass and
stifness ratios is constant, the additional damping ratios for
the two S-DOF models become the same [11, 15, 16]. Te
studies in [14, 18] frst clarifed the fundamental dynamic
properties of joint damper from the viewpoint of modal
damping maximization; furthermore, it highlighted the
distinct point at which the two complex eigenvalues coincide
with the maximum damping ratio. Even if the product is not
constant, the efect can be similar within the practical range
of the dashpot capacity [16]. Te optimization in the studies
in [14] may be acceptable in applications owing to the same
damping ratio for the two structures, whereas the condition
of the frst same natural frequencies may be too strong for
the adjacent structures. Te consideration of structural
damping is a new viewpoint compared with the fxed-point
theory. Te studies in [15, 16, 18] follow the studies in [14].

When the fxed-point theory is applied to the 2-DOF
model with the Kelvin–Voigt connection, its modal char-
acteristics are classifed into three types based on the mass
and frequency ratios between the two S-DOF models [19].
Tis classifcation also provides a joint damper from
a contrasting viewpoint, compared with that of fxed-point
theories. A similar characteristic was expressed in a closed
form for the early 2-DOF model with only a dashpot [16].
Tis expression indicates that the modal characteristics
depend on the relationship between the mass and stifness
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ratios of the two buildings. Te authors in [16] presented
another perspective wherein the modal characteristics
change in conjunction with the dashpot capacity. Tis
phenomenon has been overlooked in fxed-point theories
emphasizing dashpot optimization. Tus, the present study
also considers the relationship between the structural
damping and dashpot capacity.

Joint dampers have been proposed to suppress the vi-
bration of a single building, for example, seismic retroftting
using outer frames [20], exoskeleton structures [21, 22],
double-skin facades [23–26], and inertial mass dampers [27].
In studies involving applications, the main structures are
typically connected to uncontrolled substructures using
dashpots and/or springs. Tus, reducing the response of
a building may be relatively easy because the dampers work
on the principle of absorbing seismic energy by moving
themselves, and the substructure works as a damper.
However, in practical applications, a standard design is used
to suppress the responses of the two buildings. Tis study
aims to address this research gap by suppressing the seismic
responses of two buildings with diferent natural frequencies
at the same level.

A design procedure with higher generality was estab-
lished to consider diferent control targets: the minimum
response of one building, minimum response peak, balance
of the dynamic behavior, and in any case for both accel-
erations and displacements [28]. Te minimization of the
total energy is strongly linked to high damping efect [28],
which follows the modal damping maximization described
in [14]. Te authors in [15, 18, 28] indicated design maps
with nondimensional structural parameters for a clear un-
derstanding of the dynamic properties of joint damper
control. However, the understanding of the dynamic
characteristics, particularly the control efect, in parametric
and numerical analyses may not be required at the pre-
liminary design stage [15, 18, 28–31]. Tis existing research
requires further advancement to estimate the control efect
in a closed form based on the capacity of the damper.

Application examples include one damper connecting
two adjacent buildings [6] and multiple dampers connecting
diferent foors [20, 29, 30]. Tis study focuses on a case of
two adjacent buildings of almost the same height, with
a joint damper installed near both their top foors to si-
multaneously reduce the vibration of the buildings. Te
viscous joint damper is assumed to maintain an ideal state in
which no friction occurs at the joint and the damping force is
directly applied to the two buildings. Tis study applies the

pole allocation method that assumes a linear system. Al-
though nonlinearity in structures and control devices should
be considered in practical designs of structural control
systems, the nonlinear behaviors are out of this study. Te
focus on linear performance has three following reasons: (1)
this study aims to introduce a basic equation which can
easily understand the relation between additional damping
efect and damper’s capacity at the preliminary design stage
for a joint damper; (2) to decrease the repair efort after
a large earthquake, structural control technologies have been
expected to be able to control, as much as possible, the
seismic responses during an earthquake within the elastic
ranges of structural members; and (3) actually and generally,
the preliminary design stage for controllers considers the
linear region in which they work most efectively.

Te remainder of this paper is organized as follows.
Section 2 extends the unifed description for the vibration of
one building to two adjacent buildings connected by a joint
damper, based on the pole allocation method. It integrates
the unifed description with the fxed-point theory to predict
the additional damping efect on two adjacent buildings.
Section 3 presents the fundamental characteristics of the
prediction equation for the damping efect. Section 4
presents the application of the prediction equation for the
damping efect in a structural system wherein two multi-
degrees-of-freedom (M-DOF) stick-shaped shear models are
connected by a joint damper on the top foors. Similar to this
paper, the authors in [7, 9–13, 15–19, 21, 22] handle 2-DOF
systems which link S-DOF systems with a joint damper.
Although the authors in [14, 20] initially make M-DOF
systems, they fnally simplify the M-DOF systems into 2-
DOF systems. Te authors in [14] approximate the M-DOF
system as the corresponding 2-DOF system by using the
frst-modal information. Te authors in [23–25] utilize
M-DOF systems with numerical analyses. Considering the
current facts, theoretical approaches to joint damper may be
limited within a 2-DOF system. Section 4 reports an ex-
tension of the formulation developed for the 2-DOF system
to M-DOF systems. Finally, Section 5 concludes the study.

2. Pole Allocation Applied to Joint Damper

2.1. Equation of Motion and State Equation. When two
S-DOF damped structures are passively controlled by a joint
damper, as shown in Figure 1, the equation of motion can be
expressed as follows:

mA 0

0 mB

􏼢 􏼣
€xA

€xB

􏼨 􏼩 +
cA + cJ − cJ

− cJ cB + cJ

⎡⎣ ⎤⎦
_xA

_xB

􏼨 􏼩 +
kA + kJ − kJ

− kJ kB + kJ

⎡⎣ ⎤⎦
xA

xB

􏼨 􏼩 � −
mA 0

0 mB

􏼢 􏼣
1

1
􏼨 􏼩€y0, (1)

where mA is the lumped mass of building A, mB is the
lumped mass of building B, kA is the shear stifness of
building A, kB is the shear stifness of building B, kJ is the
axial spring connecting buildings A and B, cA is the damping
coefcient of building A, cB is the damping coefcient of

building B, cJ is the damping coefcient of the dashpot
connecting buildings A and B, xA is the relative displace-
ment of building A to the base, xB is the relative dis-
placement of building B to the base, and €y0 is the ground
input acceleration to the buildings.
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A natural circular frequency and the corresponding
damping ratio are defned for each S-DOF building model:
ωA and ωB are the natural frequencies for building A and
building B, respectively, and hA and hB are the corre-
sponding damping ratios.

ω2
A �

kA

mA

,

ω2
B �

kB

mB

,

2hAωA �
cA

mA

,

2hBωB �
cB

mB

.

(2)

Furthermore, μ is the mass ratio of building B to
building A.

μ �
mB

mA

. (3)

For the joint damper, the natural circular frequency (ωJ)
and damping ratio (hJ) are defned as follows:

ω2
J �

kJ

mB

,

2hJωB �
cJ

mB

.

(4)

Tese defnitions introduce the following relations:

kJ

mA

�
mB

mA

kJ

mB

� μω2
J,

cJ

mA

�
mB

mA

cJ

mB

� 2μhJωB.

(5)

Considering equations (2)–(5), the equation of motion
(1) can be written as follows:

€xA

€xB

􏼨 􏼩 +
2hAωA + 2μhJωB − 2μhJωB

− 2hJωB 2hBωB + 2hJωB

⎡⎣ ⎤⎦
_xA

_xB

􏼨 􏼩 +
ω2

A + μω2
J − μω2

J

− ω2
J ω2

B + ω2
J

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
xA

xB

􏼨 􏼩 � −
1

1
􏼨 􏼩€y0. (6)

Tis is transformed into the state equation, as follows:

€xA

€xB

_xA

_xB

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

− 2hAωA − 2μhJωB 2μhJωB − ω2
A − μω2

J μω2
J

2hJωB − 2hBωB − 2hJωB ω2
J − ω2

B − ω2
J

1 0 0 0

0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_xA

_xB

xA

xB

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

−

1

1

0

0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

€y0. (7)

kA kB

mA mB

kJ

cJ

cA cB

Figure 1: Te 2-DOF model for joint damper.
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2.2. Characteristic Equations for Assigned Poles and 2-DOF
System. Under practical circumstances, the 2-DOF model
shown in Figure 1 has two sets of conjugate poles. When ωj

and hj are defned as the natural circular frequency and
damping ratio, respectively, in the j-th mode, the charac-
teristic equation with the Laplace operator s � iω (where ω is
the circular frequency) is introduced, as follows:

s
2

+ 2h1ω1s + ω2
1􏼐 􏼑 s

2
+ 2h2ω2s + ω2

2􏼐 􏼑 � 0. (8)

Tis equation can be rewritten in the following poly-
nomial form:

s
4

+ 2 h1ω1 + h2ω2( 􏼁s
3

+ ω2
1 + 4h1h2ω1ω2 + ω2

2􏼐 􏼑s
2

+ 2ω1ω2 h2ω1 + h1ω2( 􏼁s + ω2
1ω

2
2 � 0.

(9)

Te characteristic equation for the state equation (7) is
expressed as follows:

− 2hAωA − 2μhJωB − s 2μhJωB − ω2
A − μω2

J μω2
J

2hJωB − 2hBωB − 2hJωB − s ω2
J − ω2

B − ω2
J

1 0 − s 0

0 1 0 − s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (10)

When the four-dimensional full matrix A is divided into
four two-dimensional submatrices A11, A12, A21, and A22,
the following equation can be applied to obtain the de-
terminant of equation (10):

|A| � A22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 A11 − A12A
− 1
22A21

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

Consequently, this determinant can be expressed in the
polynomial form as follows:

s
4

+ 2 hAωA + hBωB +(1 + μ)hJωB􏽮 􏽯s
3

+ ω2
A + ω2

B +(1 + μ)ω2
J + 4 hAhBωAωB + hAhJωAωB + μhBhJω

2
B􏼐 􏼑􏽮 􏽯s

2

+ 2 hAωA ω2
B + ω2

J􏼐 􏼑 + hBωB ω2
A + μω2

J􏼐 􏼑 + hJωB ω2
A + μω2

B􏼐 􏼑􏽮 􏽯s + ω2
Aω

2
B + μω2

Bω
2
J + ω2

Aω
2
J � 0.

(12)

2.3. Pole Allocation. Equation (12) must be designed to be
equal to the target characteristic in equation (9), which
requires satisfying the following parameter relationships:

hAωA + hBωB +(1 + μ)hJωB � h1ω1 + h2ω2, (13)

ω2
A + ω2

B +(1 + μ)ω2
J + 4 hAhBωAωB + hAhJωAωB + μhBhJω

2
B􏼐 􏼑 � ω2

1 + 4h1h2ω1ω2 + ω2
2, (14)

hAωA ω2
B + ω2

J􏼐 􏼑 + hBωB ω2
A + μω2

J􏼐 􏼑 + hJωB ω2
A + μω2

B􏼐 􏼑 � ω1ω2 h2ω1 + h1ω2( 􏼁, (15)

ω2
Aω

2
B + μω2

Bω
2
J + ω2

Aω
2
J � ω2

1ω
2
2. (16)

Dividing equation (15) by equation (16) yields the fol-
lowing expression:
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hAωA ω2
B + ω2

J􏼐 􏼑

ω2
Aω

2
B + μω2

Bω
2
J + ω2

Aω
2
J

+
hBωB ω2

A + μω2
J􏼐 􏼑

ω2
Aω

2
B + μω2

Bω
2
J + ω2

Aω
2
J

+
hJωB ω2

A + μω2
B􏼐 􏼑

ω2
Aω

2
B + μω2

Bω
2
J + ω2

Aω
2
J

�
h1

ω1
+

h2

ω2
.

(17)

Substituting equations (2)–(5) into equation (17) yields
the following expression:

1
2

cA

kA + 1/ 1/kB + 1/kJ􏼐 􏼑
+

cB

kB + 1/ 1/kA + 1/kJ􏼐 􏼑
+

cJ

kJ + 1/ 1/kA + 1/kB( 􏼁
⎛⎝ ⎞⎠ �

h1

ω1
+

h2

ω2
. (18)

Te introduced equation automatically constrains the
variations in the structural parameters under the assigned
modal properties. For example, when the values on the right
side and those of kA, kB, and kJ are fxed, the variations in cA,
cB, and cJ are constrained.

On the left side, the denominators and numerators
represent the equivalent stifness and damping coefcients,
respectively. Tis equation is similar to equation (19) for the
3-DOF damped model shown in Figure 2 [3, 4].

1
2

c1
k1

+
c2
k2

+
c3
k3

􏼠 􏼡 �
h1

ω1
+

h2

ω2
+

h3

ω3
, (19)

where ki and ci are the shear stifness and damping co-
efcient, respectively, in the i-th story and ωj and hj are the
natural circular frequency and damping ratio, respectively,

in the j-th mode. Figure 3 shows the third term on the left
side of equation (18). Te denominator in the third term is
the equivalent spring, where kJ is parallel to the combined
springs of kA and kB in the series.

2.4. Closed Expression of the Optimum Damping for Joint
Damper. Te fxed-point theory optimizes the damping
coefcient of a joint damper connecting two adjacent
buildings [7]. Tis theory assumes a 2-DOF model wherein
only a dashpot connects two S-DOF undamped models
because, in general, the structural damping ratios are smaller
than those of the dashpot. Tis assumption sets cA � cB �

kJ � 0 in equation (1), which introduces the following
expression:

€xA

€xB

􏼨 􏼩 +
2μhJωB − 2μhJωB

− 2hJωB 2hJωB

⎡⎣ ⎤⎦
_xA

_xB

􏼨 􏼩 +
ω2

A 0

0 ω2
B

⎡⎢⎣ ⎤⎥⎦
xA

xB

􏼨 􏼩 � −
1

1
􏼨 􏼩€y0. (20)

Notably, the spring kJ becomes unnecessary when the
product of mass ratio μ and frequency ratio c � ωB/ωA, in
other words, the product of the mass ratio and stifness ratio,
is constant [11, 15, 16]. Furthermore, a spring is required only
when themasses of the twomodels difer signifcantly, and the
natural frequency of an S-DOF model with a smaller mass is
lower than that of another S-DOF model with a larger mass.

Te original theory was introduced using absolute co-
ordinates, where the structural displacements included the
base displacement [7]. In architectural engineering, base
displacement is the ground displacement that cannot be
controlled by dampers. Terefore, before pole allocation is
applied to a joint damper for buildings, the absolute co-
ordinates should be converted into relative coordinates, where
the structural displacement is relative to the base. Appendix A
introduces the fxed-point theory in the relative coordinates.

Te optimal hJ,opt for the joint damper is defned as the
average value using equations (A.29) and (A.30), which
implies that the coordinate conversion does not afect the
optimization.

hJ,opt �
|1 − μ|

4(1 + μ)
�������
2(1 + μ)

􏽰 2 + μ +
1 + 2μ

��μ√􏼠 􏼡. (21)

Tis closed expression plays a signifcant role when
equation (18) is integrated with the fxed-point theory.

2.5. Integration of Governing Equation and the Fixed-Point
Teory. Equation (18) and the early fxed-point theory are
combined to produce a simple design method for a joint
damper because the fxed-point theory provides not the
structural damping efect but the optimum damping co-
efcient for the joint damper, and the equation expresses the
relationship among all the structural parameters under the
assigned modal damping ratios.Tis integration directly links
the structural damping with the damping of the joint damper.
As described in Subsection 2.4, the proposed fxed-point
theory [7] assumes cA � cB � kJ � 0. Tis assumption leads
to the following equation from Equation (18):

1
2

cJ

1/ 1/kA + 1/kB( 􏼁
�
1
2

cJ

kAkB/ kA + kB( 􏼁
�

h1

ω1
+

h2

ω2
. (22)

6 Shock and Vibration



When cJ,opt is defned as the damping coefcient cor-
responding to hJ,opt, equations (2)–(4) yield equations (23)
and (24), respectively, as follows:

cJ,opt � 2mBωBhJ,opt � 2μcmAωAhJ,opt, (23)

kAkB

kA + kB

�
μc

2

1 + μc
2mAω

2
A. (24)

Substituting equations (23) and (24) in equation (22)
yields the following expression:

1 + μc
2

c

hJ,opt

ωA

�
h1

ω1
+

h2

ω2
. (25)

Numerous practical applications of structural control,
excluding seismic isolation, have reported additional
damping efect on buildings [32, 33]. From the viewpoint of
equivalent damping, the authors in [32] summarized several

reports on active and semiactive control and the authors in
[33] summarized several reports on passive control during
the 2011 Great Tohoku Earthquake. Tis study considered
only the dashpot between two adjacent buildings, which
primarily afects the additional damping of the two adjacent
buildings. Terefore, this study focused on an additional
damping efect. To provide two buildings with the same
damping ratio (h � h1 � h2), equation (25) can be written as
follows:

1 + μc
2

c

hJ,opt

ωA

� h
1
ω1

+
1
ω2

􏼠 􏼡. (26)

Considering that both the buildings are connected by
only a dashpot, the natural frequencies, ω1 and ω2, ap-
proximately equal ωA and ωB, respectively. It cannot be
determined which vibrationmode is responsible for building
A or building B. However, this selection is not an issue in this
formulation because the two S-DOF models are ex-
changeable in the 2-DOF model.

1 + μc
2

c

hJ,opt

ωA

� h
1
ωA

+
1
ωB

􏼠 􏼡, (27)

h �
1 + μc

2

1 + c
hJ,opt. (28)

Tis equation shows the relationship between the op-
timal damping of the damper itself hJ,opt and the additional
damping of the structure h. Using this equation, it is
possible to directly estimate the damping of the structure
from the damper damping. Substituting the optimum
damping ratio from equations (21) into (28) yields the
following expression:

h �
1 + μc

2
􏼐 􏼑|1 − μ|

4(1 + c)(1 + μ)
�������
2(1 + μ)

􏽰 2 + μ +
1 + 2μ

��μ√􏼠 􏼡. (29)

Te structural damping ratio h can be obtained by the
mass ratio μ and frequency ratio c. Tis is an advantage of
integrating pole allocation and fxed-point theory. Te au-
thors in [7, 9–13] do not directly provide the control
efectiveness.

3. Fundamental Characteristics via
2-DOF Model

Figure 4 shows the frequency transmissibilities of the two
S-DOF buildings when μ is 0.8 and c is 1.25. Te solid lines
represent building A, whereas the dashed lines represent
building B. Here, hJ is 1%, 8.35%, and 50%. Te optimum
damping ratio hJ,opt is 8.35% when μ is 0.8. With hJ of 1%,
the peaks for buildings A and B appear when ξ is 1.0 and
1.25. With hJ of 50%, two buildings are rigidly connected;
consequently, the peaks appear when ξ is equal to 1.12,
which is close to the average of 1.0 and 1.25. Fixed points P
and Q are shown in the fgure.

Figure 5 shows the relationship between μ and hJ,opt,
based on equations (A.29), (A.30), and (21). Although this
study expresses the damper’s optimum damping ratio in

m3

m2

c3

c2

c1

k3

k2

m1

k1

Figure 2: Te 3-DOF model.

kA

kB

kJ cJ

Figure 3:Te equivalent S-DOFmodel for 3rd term on the left side
of equation (18).
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a closed form, it is the same as that presented in [7]. For μ
ranging from 0.5 to 2.5, equations (A.29) and (A.30) have
a marginal diference, and the averaged equation (21) ef-
fectively approximates equations (A.29) and (A.30). When
both masses are the same (μ � 1), hJ,opt approaches zero and
the joint damper is unavailable.

Based on equation (29), Figure 6 shows the structural
damping ratio h depending on μ and c. When μ is the
same, a higher frequency ratio increases the structural
damping ratio. When μ is smaller, h is not signifcantly
afected by c. In general, the frst natural frequency of
a building is strongly afected by both the building height
and structural materials, such as steel and reinforced
concrete. If the materials of the two buildings are similar,
the frequency ratio is close to unity for practical
applications.

Figure 6 also shows the optimum damping ratio hJ,opt for
structural damping ratio h. Te damping ratios h and hJ,opt
have the same scale, thus implying that the damper directly
contributes to the control efect. Tis is because this damper
can secure a large reaction using an adjacent building, as
described in [11]. Equation (28) demonstrates this
advantage.

4. Application of Equations (28) and (29) to Two
M-DOF Models

Equations (28) and (29) are introduced based on the 2-DOF
model, which considers only the frst modes of both
buildings. In this study, two adjacent buildings with almost
the same height are passively controlled using a joint damper
connected to the top foors. Consequently, the frst modes of
both buildings are controlled. When M-DOF models are
used in the design, higher modes must be considered, even if
only the frst modes are the objectives. Tis section describes
the application of equations (28) and (29) to M-DOF
models.

4.1. Numerical Models. As shown in Figure 7, a 10-DOF
shear model with ten lumped masses was frst assumed to be
building A. Table 1 lists the distributions of the lumped
masses, shear stifness values, and damping coefcients. Te
total mass was 5000×103 kg, and the damping coefcients
were proportional to the corresponding stifness matrix,
which indicates internal viscous damping. Te damping
ratio of building A is 1% in the frst mode.
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Figure 4: Frequency transmissibilities based on equations (A.2) and (A.3) (µ� 0.8 and c � 1.25).
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Figure 5: Optimum damping ratio hJ,opt for joint damper.
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In Japan, the initial damping ratio for the frst vibration
mode is assumed to be 1% for steel buildings or 3% for
reinforced concrete buildings. Te analytical 10-DOF model
assumes a 10-story building, and the frst natural frequencies
are around 1Hz. Te model images a steel building. Te
proposed method can determine the damper’s capacity after
specifying the additional damping ratio. As a result, the
initial structural damping does not directly afect the
specifcation of the additional damping ratio. Table 2 lists the
natural frequencies and corresponding damping ratios, and
Figure 8 shows the three lowest mode shapes with the
participation factors for the seismic input. Tis model is
referred to as model A in the numerical examples.

Te adjacent 10-DOF building is building B, and the four
submodels are labelled models B1, B2, B3, and B4. Evidently
from Table 3, these submodels have two total mass ratios and
two frequency ratios in the frst modes. Te mass and
stifness distributions of the submodels are proportional to
those of model A. Similarly, the damping ratio for each
submodel is 1% in the frst mode. For all submodels,
Tables 4–6 present the distributions of the lumped masses,
shear stifness values, and damping coefcients. Table 7 lists
the two pairs of natural frequencies. Evidently, the mode
shapes of each submodel are similar to those of model A
because the mass and stifness distributions are similar to
those of model A. A joint damper is installed as a dashpot
between the top masses of the models A and B.

4.2. Optimum Damping Using First Efective Mass in Each
Building. Te optimum damping ratio and coefcient for
the joint damper are calculated using equations (21) and
(23), where equation (23) uses the frst efective modal mass
of each model. Te efective mass indicated in equation (30)
does not depend on normalizing the mode shapes, and the
sum of all efective masses matches the total mass [34].

Mj �
􏽐

n
i�1miuij􏼐 􏼑

2

􏽐
n
i�1miu

2
ij

, (30)

where Mj is the j-th efective modal mass, mi is the i-th
lumped mass, uij is the j-th mode shape of the i-th lumped
mass, and n is the total number of modes. For the 20-DOF
model, n � 10. Table 8 lists the frst efective modal mass, frst
natural frequency, and optimal damping coefcient of each
joint damper.

4.3. Correction for Structural Damping Ratio. Even if
a damper with the optimum damping coefcient calculated
from the frst mode information is installed in a 20-DOF
model, it is efective for higher modes. Tis requires cor-
recting the structural damping ratio in equations (28) and
(29) to predict control efectiveness.

A viscous joint damper determines the relative velocity
between the top lumped masses, which is expressed as the
corresponding relative displacement in an eigenvalue
problem. Currently, an undamped eigenvalue problem is
applied to the 20-DOF model because only two 10-DOF
submodels are connected by a dashpot. In the application,
each 10-DOF model has 10 modes, which are completely
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Figure 6: Structural damping ratio h in comparison to optimum
damping ratio hJ,opt for joint damper.
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Figure 7: Te 20-DOF model.

Table 1: Structural parameters for the model A.

Lumped
mass no.

Mass
(103 kg) Story Stifness

(MN/m)
Damping coefcient

(MNs/m)
10 600 10 318.7 1.090
9 450 9 367.7 1.257
8 450 8 441.3 1.509
7 450 7 514.8 1.760
6 470 6 588.4 2.012
5 470 5 656.5 2.347
4 490 4 784.5 2.682
3 510 3 882.6 3.018
2 560 2 980.7 3.353
1 550 1 1078.7 3.688
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independent of the others. As shown in Figure 9, the frst and
second modes of the 20-DOF model form a pair of frst
modes of the 10-DOF submodels and the third and fourth
modes of the 20-DOF model form a pair of second modes of
the 10-DOF submodels.

For each mode pair, the maximum relative displacement
between the topmasses is assumed as the sum of the absolute
amplitudes of the corresponding modes. In the j-th mode of
each 10-DOF submodel, the maximum relative displace-
ment at the top masses is expressed as follows:

u
A
10jβ

A
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + u
B
10jβ

B
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (31)

where uA
10jβ

A
j and uB

10jβ
B
j are the j-th mode amplitudes

considering the input participation at the top masses in
models A and B, respectively. Figure 10 shows the contri-
bution of the damper to each mode, as follows:

Table 2: Natural frequencies and modal damping ratios of the
model A.

Mode no. Natural frequency (Hz) Damping ratio (%)
1 0.931 1.00
2 2.389 2.57
3 3.887 4.18
4 5.344 5.74
5 6.686 7.18
6 7.856 8.44
7 8.966 9.63
8 10.01 10.76
9 11.19 12.02
10 12.45 13.38
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Figure 8: Mode shapes (model A).

Table 3: Total mass ratios and 1st frequency ratios for models B1,
B2, B3, and B4.

Model B1 B2 B3 B4
Mass ratio μ 0.9 1.1 0.9 1.1
Frequency ratio c 1.25 1.25 0.80 0.80

Table 4: Lumped-mass distributions for models B1, B2, B3, and B4.

Lumped mass no. B1 and B3 (103 kg) B2 and B4 (103 kg)
10 540 660
9 405 495
8 405 495
7 405 495
6 423 517
5 423 517
4 441 539
3 459 561
2 504 616
1 495 605
Total mass 4500 5500
Mass ratio μ 0.9 1.1

Table 7: Natural frequencies of models B1, B2, B3, and B4.

Mode no. B1 and B2 (Hz) B3 and B4 (Hz)
1 1.164 0.745
2 2.986 1.911
3 4.859 3.110
4 6.680 4.275
5 8.357 5.348
6 9.820 6.285
7 11.21 7.173
8 12.52 8.011
9 13.99 8.951
10 15.57 9.963
Frequency ratio c 1.25 0.80

Table 5: Stifness distributions for models B1, B2, B3, and B4.

Story B1 (MN/m) B2 (MN/m) B3 (MN/m) B4 (MN/m)
10 448.2 547.8 183.6 224.4
9 517.1 632.1 211.8 258.9
8 620.6 758.5 254.2 310.7
7 724.0 884.9 296.6 362.5
6 827.4 1011.3 338.9 414.2
5 965.3 1179.9 395.4 483.3
4 1103.2 1348.4 451.9 552.3
3 1241.2 1517.0 508.4 621.3
2 1379.1 1685.5 564.9 690.4
1 1517.0 1854.1 621.3 759.4

Table 6: Damping distributions for models B1, B2, B3, and B4.

Story B1 (MNs/m) B2 (MNs/m) B3 (MNs/m) B4 (MNs/m)
10 1.226 1.498 0.785 0.959
9 1.414 1.728 0.905 1.106
8 1.697 2.074 1.086 1.328
7 1.980 2.420 1.267 1.549
6 2.263 2.766 1.448 1.770
5 2.640 3.226 1.690 2.065
4 3.017 3.687 1.931 2.360
3 3.394 4.148 2.173 2.655
2 3.771 4.609 2.414 2.951
1 4.148 5.070 2.655 3.246
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u
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10jβ

A
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + u
B
10jβ

B
j

􏼌􏼌􏼌􏼌􏼌
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􏽐
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􏼌􏼌􏼌􏼌􏼌
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10jβ

B
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

. (32)

In Figure 10, A1 is the contribution of the frst mode in the
model A and B2 is the contribution to the second mode in the
model B. Te sum of A1 and B1 (54.6%) represents the frst-
mode contributions of the 10-DOF submodels to the global 20-
DOFmodel, whereas the sum of A2 and B2 (22.4%) represents
the second-mode contributions of the 10-DOF submodels.Te
A1 contribution is similar to the B1 contribution, and the A2
contribution is similar to the B2 contribution because all the

building models have similar mode shapes. In the higher
modes, the mode contributions decrease. Figure 10 indicates
that the damper works for higher modes even if the optimum
damping coefcient is calculated from the frst mode in-
formation. Essentially, 45.4% (100.0%–54.6%) damper capacity
is used for the higher modes. Terefore, an increase of 1.83
(1.000/0.546) times was proposed as the optimum damping
coefcient, as listed in Table 8.

Subsequently, the proposed increase procedure, which is
a correction, is verifed using the poles of the system matrix of
each 20-DOF model. Table 8 lists the optimum damping co-
efcients installed in each 20-DOF model, and Table 9 lists the

Table 8: First efective modal masses, frst natural frequencies, and optimum damping coefcients for joint dampers.

Model A B1 B2 B3 B4
Efective modal mass M1 (103 kg) 3771 3394 4148 3394 4148
Mass ratio μ — 0.9 1.1 0.9 1.1
Optimum damp. ratio hJ,opt (%) — 3.95 3.57 3.95 3.57
Natural frequency f1 (Hz) — 1.164 1.164 0.745 0.745
Frequency ratio c — 1.25 0.80
Optimum damping coefcient cJ,opt (MNs/m) — 1.961 2.168 1.254 1.387

B1dg.A
1st mode for 20-DOF model

1st mode for each 10-DOF model

3rd mode for 20-DOF model

2nd mode for each 10-DOF model

4th mode for 20-DOF model

2nd mode for 20-DOF model

B1dg.B

B1dg.A B1dg.B

B1dg.A B1dg.B

B1dg.A B1dg.B

B1dg.A B1dg.B

B1dg.A B1dg.B

Figure 9: Modes (1st–4th) for the 20-DOF model.
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additional damping ratios in the frst mode of each 10-DOF
model by the joint damper. Te additional damping ratios are
defned as the diference from the initial damping ratio of 1%
for the 10-DOF models. Te damping ratio of the model B
difers from that of the model A.Te average ratio is compared
with the value predicted using equation (28). In models A-B1,
the additional damping ratios are 8.14% for building A
and 8.01% for building B, with an average of 8.07%. Te
average value is 1.91 times 4.22%, which is predicted using
equation (28) for the 2-DOF model. Furthermore, the
average ratio of the 20-DOF model to the 2-DOF model is
1.89, which aligns with the value of 1.83, as shown in
Figure 10. Equation (28) links the damping coefcient of
the damper to additional structural damping ratio. An
increase of 1.83 times implies that the predicted structural
damping ratio should increase proportionally. To predict
the control efectiveness for both M-DOF buildings, the
additional damping ratios from Equations (28) and (29)
should be updated by considering the mode contribution.

Based on the optimization of the joint damper through
the fxed-point theory, this study proposed a simple method
to predict additional structural damping without dynamic
analysis. Tis introduces an assumption that equally con-
siders the maximum relative displacements with input
participation efects in all modes. Although Table 9 indicates
that this assumption is acceptable at the preliminary design
stage, a theoretical approach may be required in the future.

4.4. Verifcation via Seismic Response Analyses. In general,
the fxed-point theory and the pole allocation method
cannot predict structural response, damper’s stroke, and
damping force under a seismic excitation, because the fxed-
point theory shapes the frequency transfer functions and the
pole allocation method assigns the system’s poles. All the
responses including the stroke and damping force depend
on dynamic nature of earthquakes. However, the pole al-
location method has an advantage that the system’s poles are
independent of seismic nature, which can make the pre-
liminary design easier. Te seismic response analyses are
needed to know the structural and damper’s responses.

Te seismic response analyses input the 1940 El Centro
wave (NS component) and the 1952 Taft wave (EW com-
ponent) into the four 20-DOF models described in Section
4.1. Te inputs excite them sufciently because the frst

natural frequencies of the models range from 0.745 to
1.164Hz. Te input amplitude is normalized such that the
peak velocity is 25 cm/s. Te corresponding peak accelera-
tions are 255.5 cm/s2 for El Centro and 248.4 cm/s2 for Taft.
Tis normalization scale assumes that the pole allocation can
be applied to linear or equivalent linear systems.
Figures 11–14 show the structural responses under the El
Centro excitation.

Figure 11 shows the peak response distributions when
model A is connected to model B1, referred to as models A-
B1. Figure 11(a) shows the response accelerations at the
lumped masses; Figures 11(b) and 11(c) show the response
velocities and displacements to the base, respectively; and
Figure 11(d) shows the corresponding response interstory
displacements. Te two dashed lines represent the un-
controlled responses when the two 10-DOF models are not
connected, whereas the two solid lines represent the con-
trolled responses of the 20-DOF model. Black represents
model A, whereas red represents model B1. Te optimum
damping coefcient for the damper cJ,opt is 1.961MNs/m, as
listed in Table 8. Te damping ratios in the frst mode are
9.14% and 9.01% for models A and B1, respectively. Te
additional damping ratios of 8.14% and 8.01% in Table 9
difer from those for an initial structural damping ratio of
1%. At lumped mass no. 7 in Figure 11(b), the controlled
velocity slightly exceeds the uncontrolled velocity in model
A, and the overall control efectiveness is evident. In
Figures 11(a) and 11(b), the uncontrolled responses difer in
both buildings, whereas the controlled responses are similar.

Figure 12 depicts the peak response distribution for
models A-B2. Te response distributions are almost the
same as those of models A-B1 because its frequency ratio c is
1.25, similar to that of models A-B1. In both the models, the
response reduction efectiveness of building B is higher than
that of building A. It is relatively easy for a joint damper to
reduce uncontrolled responses to the same level.

Figures 13 and 14 show the peak response distribu-
tions for models A-B3 and models A-B4, respectively. In
building A, all controlled responses are smaller than the
uncontrolled responses, whereas in building B, the con-
trolled responses are close to the uncontrolled responses,
and certain controlled velocities and displacements are
slightly larger than the uncontrolled responses. Te re-
sponse distributions of models A-B4 are almost the same

22.4%

B2

A3
B311.4%

A4
B4

A2 B1

54.6%

A1

Figure 10: Joint damper contribution to each mode.

12 Shock and Vibration



Table 9: Comparison of damping ratios in the frst modes.

Model for building B Damping ratio by
equation (28) (%)

Additional damping ratio in the 1st mode (%)
Average/equation (28)

Building A Building B Average
B1 4.22 8.14 8.01 8.07 1.91
B2 4.32 9.42 6.72 8.07 1.87
B3 3.46 5.48 7.52 6.50 1.88
B4 3.38 6.19 6.67 6.43 1.90

Average 1.89
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Figure 11: Peak response distributions of models A-B1 under El Centro excitation. (a) Acceleration. (b) Velocity. (c) Displacement.
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Figure 12: Peak response distributions of models A-B2 under El Centro excitation. (a) Acceleration. (b) Interstory displacement.
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(d) Interstory displacement.
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Figure 14: Peak response distributions of models A-B4 under El Centro excitation. (a) Acceleration. (b) Interstory displacement.
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Figure 15: Continued.
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Figure 15: Peak response distributions of models A-B1 under Taft excitation. (a) Acceleration. (b) Velocity. (c) Displacement. (d) Interstory
displacement.
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Figure 16: Peak response distributions of models A-B2 under Taft excitation. (a) Acceleration. (b) Interstory displacement.
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as those of models A-B3 because its frequency ratio c is
0.80, similar to that of models A-B3. Te tendencies
observed in Figures 13 and 14 are similar to those in
Figures 11 and 12, respectively.

Equations (28) and (29) provide the two buildings with
the same additional damping ratio. Although this intention
was almost achieved, as presented in Table 9, the controlled
responses are slightly larger than the uncontrolled responses
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Figure 17: Peak response distributions of models A-B3 under Taft excitation. (a) Acceleration. (b) Velocity. (c) Displacement. (d) Interstory
displacement.

18 Shock and Vibration



10

9

8

7

6

5

4

3

2

1

0 200 400 600
Acceleration (cm/s2)

800 1000

Lumped mass no.

GL

Controlled A
Controlled B

Uncontrolled A

Uncontrolled B

(a)

0.0 0.5 1.0 1.5
Interstory displecement (cm)

2.0 2.5

Story no.
10

9

6

7

8

5

4

3

2

1

Controlled A
Controlled B

Uncontrolled A

Uncontrolled B

(b)

Figure 18: Peak response distributions of models A-B4 under Taft excitation. (a) Acceleration. (b) Interstory displacement.

Table 10: Peak strokes and peak damping forces of joint dampers.

Excitation El Centro Taft
Models A-B1 A-B2 A-B3 A-B4 A-B1 A-B2 A-B3 A-B4
Stroke (cm) 13.7 13.6 13.4 13.0 8.1 8.1 11.8 11.7
Damping force (kN) 1978 2195 1004 1078 1395 1574 916 1021

Table 11: Peak accelerations under El Centro excitation.

Model A-B1 A-B2 A-B3 A-B4
Building mass no. Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled
A-10 705.3 680.0 705.3 696.4 705.3 584.7 705.3 577.5
A-9 666.2 613.7 666.2 636.6 666.2 567.5 666.2 557.3
A-8 554.4 510.6 554.4 507.7 554.4 445.9 554.4 439.1
A-7 511.5 480.0 511.5 478.8 511.5 474.6 511.5 475.7
A-6 496.3 426.8 496.3 426.5 496.3 438.7 496.3 438.9
A-5 466.1 390.5 466.1 391.1 466.1 400.3 466.1 393.7
A-4 406.2 383.7 406.2 370.4 406.2 355.2 406.2 349.5
A-3 337.4 340.6 337.4 333.5 337.4 316.6 337.4 317.7
A-2 283.5 260.7 283.5 258.5 283.5 283.3 283.5 283.3
A-1 235.2 232.6 235.2 232.3 235.2 238.3 235.2 238.6
B-10 1143.0 818.0 1143.0 818.7 584.3 561.8 584.3 563.7
B-9 1021.0 709.7 1021.0 716.0 429.0 410.1 429.0 411.0
B-8 908.1 587.2 908.1 595.0 344.7 347.0 344.7 345.0
B-7 836.1 454.4 836.0 473.9 394.1 370.0 394.1 371.0
B-6 700.5 415.3 700.5 433.8 365.3 323.1 365.3 323.1
B-5 566.0 432.0 566.0 434.4 430.0 378.7 430.0 383.4
B-4 497.3 449.9 497.3 454.0 395.2 373.8 395.2 375.5
B-3 447.6 402.9 447.6 406.9 398.7 324.2 398.7 330.8
B-2 340.5 312.4 340.5 314.7 323.3 305.5 323.3 307.1
B-1 236.5 210.5 236.5 211.8 291.6 283.7 291.6 284.4
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at some locations in some models. However, the controlled
responses in both the models are almost identical. As de-
scribed in the Introduction, a joint damper experiences
difculty in reducing uncontrolled responses with a certain
reduction ratio. Tis difculty has already been observed in
seismic response analyses where two buildings with diferent
heights are controlled passively or semiactively using
magnetorheological dampers [35].

Figures 15–18 show the similar responses under the Taft
excitation. In Figure 15, the uncontrolled responses difer in
both buildings, whereas the controlled responses are similar.
Figure 16 depicts the peak response distribution for models
A-B2. Te response distributions are almost the same as those
of models A-B1 in Figure 15, because its frequency ratio c is
1.25, similar to that ofmodels A-B1. Figures 17 and 18 show the
peak response distributions formodels A-B3 andmodels A-B4,
respectively. Te response distributions of models A-B4 are
almost the same as those of models A-B3 because of the similar
frequency ratio. Under the Taft excitation, it is also confrmed
that a joint damper easily reduces uncontrolled responses to the
same level, and certain controlled responses are slightly larger
than the uncontrolled responses even if two buildings have the
same additional damping ratio.

Table 10 indicates strokes and damping forces by the
joint dampers responding to Figures 11–18. Similar to the
structural responses, the strokes and the damping forces
depend on the dynamic nature of earthquakes.

5. Conclusion

For two adjacent buildings with a joint damper, an inverse
problem was formulated based on the pole allocation
method. Te structural system was simplifed as a 2-DOF
model, wherein two S-DOF-dampedmodels were connected
by the damper. Te unifed governing equation, which ex-
presses the relationship between an assigned control target

and the structural parameters for an M-DOF shear building
model, was extended to two buildings passively controlled by
a joint damper. Te governing equation was integrated with
the fxed-point theory to directly estimate the additional
damping efect on both buildings based on the capacity of
the joint damper; this helps improve the past trial-and-error
work at the preliminary design stage. Te integration was
verifed using numerical examples of a 20-DOF building
model, in which two 10-DOF models were connected by
a damper between the top lumped masses. Te results of this
study are summarized as follows:

(1) Te pole allocation method revealed a unifed gov-
erning equation in the 2-DOF model, wherein two
S-DOF damped models are connected by a joint
damper. Te equation automatically constrains the
variations in the structural parameters under the
assigned modal properties and similarly expresses
the tradeof relationship among the structural pa-
rameters under the controlled modal target, in-
cluding the joint damper capacity.

(2) For building applications, the previously proposed
fxed-point theory for joint dampers was rewritten in
a closed form by converting the absolute coordinates
into relative coordinates. Te coordinate conversion
interchanges twomathematical equations that express
the optimum damping coefcients for the damper at
two fxed points. However, the fnal optimum
damping coefcient in the relative coordinates was
similar to that in the absolute coordinates because the
fxed-point theory adopts the average of the two
optimum damping coefcients.

(3) Te governing equation extended to the joint
damper was integrated with fxed-point theory. In
contrast to the fxed-point theory, the integration can

Table 12: Peak displacements relative to the base under El Centro excitation.

Model A-B1 A-B2 A-B3 A-B4
Building mass no. Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled
A-10 18.56 14.27 18.56 13.89 18.56 14.13 18.56 13.92
A-9 17.26 13.73 17.26 13.40 17.26 12.95 17.26 12.74
A-8 15.36 12.64 15.36 12.38 15.36 11.32 15.36 11.14
A-7 13.21 11.22 13.21 11.04 13.21 9.60 13.21 9.43
A-6 10.96 9.58 10.96 9.48 10.96 7.94 10.96 7.79
A-5 8.71 7.83 8.71 7.77 8.71 6.35 8.71 6.21
A-4 6.86 6.11 6.86 6.08 6.86 4.88 6.86 4.77
A-3 5.12 4.45 5.12 4.46 5.12 3.51 5.12 3.43
A-2 3.38 2.89 3.38 2.90 3.38 2.28 3.38 2.20
A-1 1.66 1.40 1.66 1.41 1.66 1.13 1.66 1.08
B-10 19.89 13.33 19.89 13.34 12.26 12.46 12.26 12.40
B-9 18.58 12.02 18.58 12.06 11.36 11.84 11.36 11.72
B-8 16.66 10.32 16.66 10.46 10.03 10.81 10.03 10.64
B-7 14.47 8.64 14.47 8.78 8.77 9.60 8.77 9.40
B-6 12.17 7.04 12.17 7.21 7.45 8.29 7.45 8.08
B-5 9.84 5.70 9.84 5.84 6.09 6.88 6.09 6.70
B-4 7.62 4.45 7.62 4.54 4.85 5.44 4.85 5.30
B-3 5.52 3.25 5.52 3.32 3.62 4.00 3.62 3.90
B-2 3.55 2.12 3.55 2.16 2.41 2.59 2.41 2.54
B-1 1.71 1.03 1.71 1.05 1.21 1.25 1.21 1.23
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express the structural additional damping ratio of
two adjacent buildings in a closed form and clearly
indicates the relationship between the damper ca-
pacity and additional damping ratio. Te control
efectiveness depended on both the mass and fre-
quency ratios of the two buildings, which did not
necessitate that the two complex eigenvalues co-
incide. Te closed-form expression improves the
trial-and-error design of joint dampers at the pre-
liminary design stage. Te additional structural
damping ratio had the same scale as the damping
ratio of the damper, thus indicating that the joint
damper worked efectively for structural control. A
closed-form expression can contribute to a deeper
physical understanding of the dynamic properties of
joint dampers.

(4) Te proposed prediction equation for the damping
efect of the 2-DOF model was applied to two ad-
jacent M-DOF buildings. A damper with an opti-
mum damping coefcient, calculated from the frst-
mode information installed in the M-DOF model,
was determined to be efective for higher modes.Tis
required a correction for the structural damping
ratio in the prediction of the control efectiveness. A
correction method was proposed by considering the

mode contributions based on the modal shapes, and
it was verifed through the damping ratios of the 20-
DOF models. Although the correction method was
verifed in eigenvalue problems, a theoretical ap-
proach is required.

(5) Te prediction equation for the damping efect was
also studied in the seismic response analyses of 20-
DOF models. Although the additional damping
ratios and controlled seismic responses were almost
identical for the two buildings, the response re-
duction rates difered in the two buildings. Tis
result confrms that a joint damper experiences
difculty in reducing the uncontrolled responses at
a certain reduction ratio.

Appendix

A. Fixed-Point Theory in Relative Coordinates

When both buildings are excited by a harmonic ground
motion with a circular frequency ω, the ground displace-
ment can be defned as y � Y exp(iωt) and the structural
responses as xA � XA exp(iωt) and xB � XB exp(iωt).
Furthermore, equation (20) can be expressed in the fre-
quency domain, as follows:

ω2
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Te corresponding transmissibilities are as follows:
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where

ξ �
ω
ωA

,

c �
ωB

ωA

.

(A.4)

Tese transmissibilities have two fxed points in-
dependent of hJ. Te existence conditions for these fxed
points for buildings A and B are, respectively, expressed as
follows:
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With physical meaning, these equations can be trans-
formed into the following expression.

For building A,

ξ2 �
2 + μ + μc

2

2(1 + μ)
. (A.6)

For building B,

ξ2 �
1 + c

2
+ 2μc

2

2(1 + μ)
. (A.7)

Because the fxed points are independent of hJ, the
transmissibility at these points can be expressed as follows.
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For building B,
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Substituting equation (A.6) into (A.8) yields equation
(A.10) and substituting equation (A.7) into (A.9) yields
equation (A.11), as follows.

For building A,
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For building B,

XB

Y

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌hJ�0
�

ξ2

c
2

− ξ2
� ±

1 + c
2

+ 2μc
2

c
2

− 1
. (A.11)

Both the fxed points have the same transmissibility:
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Based on a physical understanding, the selection of the
positive sign in equation (A.12) results in the following
expression:

c �
ωB

ωA

�
1
μ

. (A.13)

Tis condition is similar to that indicated in [7], which
implies that it is independent of the selected coordinates.

Substituting equation (A.13) into equations (A.10) and
(A.11) yields the same transmissibility at the fxed points,
which is expressed as follows.
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For building B,
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Substituting equation (A.13) into equations (A.6) and
(A.7) yields the nondimensional frequencies at the fxed
points P and Q, respectively, as follows.

First fxed-point P for building A is as follows:

ξ2P �
1 + μ
2μ

. (A.16)

Second fxed-pointQ for building B is as follows:

ξ2Q �
1 + μ
2μ2

. (A.17)

Tus, the optimum damping ratios for both buildings
can be obtained, and the peak transmissibilities at P and Q
can be determined. For building A, frst, equation (A.13) is
substituted into equation (A.2), which yields the following
expression:
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Introducing a new parameter λ � ξ2 in equation (A.18)
results in the following expression:
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(A.19)

Equation (A.19) is diferentiated with respect to λ to
obtain the peak at P. Te numerator of the diferentiated
equation is extracted, as follows:
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Substituting
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in equation (A.20) results in the following expression:
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Tis equation can be written in the polynomial form of
hJ, as follows:
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Equation (A.23) satisfes the optimum damping ratio for
the second fxed-pointQ, as introduced in [7]. Alternatively,
the second fxed-pointQ is changed to the frst fxed-point P

via coordinate conversion. Equation (A.23) can be solved for
the factors not indicated in [7], as follows:

− 64μ(1 + μ)
6
(1 − μ)h

4
J − 8(1 + μ)

3
(1 − μ)

4
(μ + 2)

2
h
2
J +(1 − μ)

5
(μ + 2)

4
� 0. (A.24)

For building B, the optimum damping ratio for
achieving the peak atQ in the transmissibility equation (A.3)
satisfes the following condition:

μ6λ5 + 8μ5(1 + μ)
2
h
2
J − μ4 4μ2 + 1􏼐 􏼑􏽮 􏽯λ4

+ 16μ3(1 + μ)
4
h
4
J − 2μ2(1 + μ)

2 4μ + 13 + 7μ2􏼐 􏼑h
2
J + 2μ4 2 + 3μ2􏼐 􏼑􏽮 􏽯λ3

+ − 16μ2(1 + μ)
4
h
4
J + 8μ2(1 + μ)

2 1 + 2μ2􏼐 􏼑h
2
J − 2μ4 3 + 2μ2􏼐 􏼑􏽮 􏽯λ2

+ μ4 4 + μ2􏼐 􏼑 − 2μ2(1 + μ)
2 3 + μ2􏼐 􏼑􏽮 􏽯λ − μ4 � 0.

(A.25)

Tis pairs with equation (A.20).
Substituting
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ξ2Q �
1 + μ
2μ2

� λ, (A.26)
in equation (A.25) yields the following expression:

(1 + μ)
5

+ 2(1 + μ)
4 8μ(1 + μ)

2
h
2
J − 1 + 4μ2􏼐 􏼑􏽮 􏽯

+ 4(1 + μ)
3

(16μ1 + μ)
4
h
4
J − 2(1 + μ)

2 4μ3 + 7μ2 + 1􏼐 􏼑h
2
J + 2μ2 2 + 3μ2􏼐 􏼑􏽮 􏽯

+ 8μ2(1 + μ)
2

− 16(1 + μ)
4
h
4
J + 8(1 + μ)

2 1 + 2μ2􏼐 􏼑􏽮 􏽯

+ 16μ4(1 + μ) μ2 4 + μ2􏼐 􏼑 − 2(1 + μ)
2 3 + μ2􏼐 􏼑􏽮 􏽯.

(A.27)

Tis equation can be written in the polynomial form of
hJ, as follows:

64μ(1 + μ)
6
(1 − μ)h

4
J − 8(1 + μ)

3
(1 − μ)

4
(1 + 2μ)

2
h
2
J − (1 − μ)

5
(1 + 2μ)

4
� 0. (A.28)

Tis equation satisfes the optimum damping ratio for
the frst fxed-pointP, as introduced in [7]. Similarly, the frst
fxed-pointP is changed to the second fxed-pointQ via
coordinate conversion.

Equation (A.24) can be solved with respect to h2
J to

obtain the optimum hP,J,opt at P for building A, as follows:

hP,J,opt� −
|1 − μ|(2 + μ)

2(1 + μ)
�������
2(1 + μ)

􏽰 . (A.29)

Similarly, equation (A.28) can be solved to obtain the
optimum hQ,J,opt at the fxed-pointQ for building B, as
follows:

hQ,J,opt� −
|1 − μ|(1 + 2μ)

2(1 + μ)
��������
2μ(1 + μ)

􏽰 . (A.30)

B. Validation Data When El Centro Wave Is
Input to 2 -DOF Models

Te numerical analysis results are indicated as the validation
studies when the El Centro wave is input to the 20-DOF
models.Tese results respond to Figures 11–14 with the used
models shown in Tables 1–7. Table 11 indicates the peak
absolute accelerations, and Table 12 indicates the peak
displacements relative to the base. Te used gravity accel-
eration is 9.80665m/s2 as the standard value in Japan.
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