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Te rolling bearing is one of the commonly used mechanical components in rotating machinery, and its health directly afects the
normal operation of equipment. However, the fault signal of rolling bearing is susceptible to noise interference, which makes it
difcult to extract the fault characteristics of the rolling bearing and thus afects the accuracy of the diagnosis results. To address
this problem, this paper proposes a method by using a snake optimization algorithm to optimize variational mode decomposition
(SOA-VMD) and applies it to the extraction of the fault feature of rolling bearing. First, the minimum Shannon entropy to
kurtosis ratio (EKR) is used as the ftness function of SOA to search for the best parameter combination of VMD. Second, the
optimized VMD is used to decompose the vibration signal of rolling bearing to obtain K intrinsic mode functions (IMFs). Ten,
the IMF with the most fault information is selected for reconstruction through EKR. Te Teager–Kaiser energy operator (TKEO)
spectrum analysis is performed on the reconstructed signal. Finally, this method is used to analyze the simulation signal and
rolling bearing vibration signal and compared with empirical mode decomposition (EMD), ensemble empirical mode de-
composition (EEMD), and complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) algorithms to verify
the feasibility and efectiveness of the SOA-VMD method.

1. Introduction

Rolling bearings are one of the important components in
rotating mechanical equipment and are widely used in
various felds such as automobiles, aerospace, and machine
tools [1, 2]. Terefore, the health of the rolling bearing
determines the operating conditions of most mechanical
equipment. Once a rolling bearing fails, the corresponding
mechanical equipment will also produce a series of adverse
efects. Terefore, it is of great signifcance to diagnose faults
in rolling bearings [3]. Te fault signals of rolling bearing
usually exhibit nonlinear and nonstationary characteristics
and are also easily afected by the environment, resulting in
a large amount of noisemixed in the fault signals.Tis makes
it difcult to extract fault features, which in turn afects the
diagnosis of rolling bearing faults.

In recent years, many scholars have conducted in-depth
research and exploration to address the abovementioned
problem and have proposed many methods for extracting
fault features of rolling bearings. Hemmati et al. [4]
addressed the issue of rolling bearing acoustic emission
signals being easily masked by the noise by proposing
a method that combines kurtosis with Shannon entropy
ratio (EKR) and WPT. Tis method searches for the best
fltering band by combining EKR and WPT, and experi-
ments have shown that this method can efectively extract
fault features from noisy acoustic emission signals. Liu et al.
[5] proposed an optimized kurtogrammethod for low-speed
rolling bearing acoustic emission signals. First, this method
generates an optimized kurtogram with kurtosis to Shannon
entropy ratio (KSR) as the optimization goal. Second, it
flters out fltering bands with a high signal-to-noise ratio
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through KSR. Finally, it uses the envelope spectrum to
analyze the acoustic emission signals of the best band.
Huang et al. [6] proposed an adaptive decomposition al-
gorithm called empirical mode decomposition (EMD) for
nonlinear and nonstationary signals. Te main idea of this
method is to decompose the signal into a series of intrinsic
mode functions (IMFs) that can characterize local features.
Based on the above, Tabatabaei Aasi et al. [7] proposed
a method combining EMD and EKR. Tis method frst uses
EMD to denoise the noisy acoustic emission signals, then
selects the best IMF to improve the signal-to-noise ratio
through the EKR index, and fnally obtains the fault char-
acteristic frequency of the best IMF using envelope spectrum
analysis. Experimental results show that the EKR index can
efectively select IMF with a high signal-to-noise ratio.
However, this method has some drawbacks, such as mode-
mixing and end-efects [8]. To address the limitations of
EMD, Wu and Huang [9] proposed an ensemble empirical
mode decomposition (EEMD) method that adds Gaussian
white noise before decomposing the signal to overcome the
drawbacks of EMD. Many scholars [10–12] have successfully
used this method in fault diagnosis of rolling bearings.While
adding white noise can improve the limitations of EMD, it
can also signifcantly afect the decomposition results of fault
signals if the white noise coefcient is improperly set [13]. To
solve this problem, many scholars [14, 15] have proposed
varied solutions.

On this basis, Dragomiretskiy and Zosso [16] proposed
a new adaptive decomposition algorithm called variational
mode decomposition (VMD) in 2014. Tis method achieves
signal decomposition by constructing and solving variational
problems and defning constraints. VMD not only overcomes
the limitations of EMD and EEMD but also has advantages
such as sound mathematical theory, good signal de-
composition performance, and low computational com-
plexity [17]. Mohanty et al. [18] compared VMD and EMD
decomposition methods through rolling bearing vibration
signals, and the results showed that VMD was superior to
EMD in noise robustness and resistance to mode-mixing.
Zhang et al. [19] compared VMD and EMD decomposition
methods by using a rolling bearing experiment of a multistage
centrifugal pump. Zhang et al. [20] combined VMD and
majorization-minimization-based total variation and applied
it to noisy rolling bearing experiments, and the results showed
that this method had good noise robustness. However, VMD
also has some shortcomings, the most obvious being that its
decomposition performance depends on the choice of pa-
rameters such as the number of decomposition levels K and
the quadratic penalty factor α. Te number of decomposition
levels K determines the number of IMF obtained after de-
composition [21]. When K is too large, overdecomposition
may occur, meaning that the center frequencies of each IMF
are close to each other, resulting in mode-mixing. When K is
too small, underdecomposition may occur, meaning that
some efective information in the original signal may be
fltered out. Te penalty factor α determines the bandwidth of
the center frequency of each IMF [22]. When α is too large,
frequency band information may be lost, while when α is too
small, redundant information may appear.

To address the parameter selection problem of VMD, Gu
et al. [23] proposed a fault feature extraction method based
on minimum envelope entropy-optimized VMD. First, this
method uses the minimum envelope entropy as the ftness
function and uses the gray wolf optimization algorithm to
optimize the VMD parameters. Second, it uses the optimized
VMD to perform VMD decomposition on the fault signal.
Finally, it selects IMF through the weighted kurtosis index
(WKI) and extracts fault features using the TKEO envelope
spectrum. Zhang et al. [24] proposed a method based on
grasshopper optimization algorithm (GOA)-optimized
VMD. Tis method uses the WKI as the optimization goal
and optimizes it through the GOA. Finally, it uses WKI to
select sensitive IMF and extracts fault features using the
Hilbert envelope spectrum. Liu et al. [25] proposed a kur-
tosis-optimized VMD method for detecting milling chatter.
Tis method sets the step size and then searches for the
VMD parameters corresponding to the maximum kurtosis
within a certain range. Second, it uses the maximum energy
entropy of IMF to flter the results and extract chatter
features. Wang et al. [26] proposed a denoising method
based on optimized VMD for mining cable partial discharge
signals that are easily interfered by noise. Tis method uses
the minimum envelope entropy as the optimization goal and
optimizes the VMD parameters through a genetic algorithm.
Ten, it uses optimized VMD to decompose the signal to
obtain multiple IMFs. Afterward, it uses wavelet threshold
denoising on each IMF to further eliminate noise. Finally, all
denoised IMFs are reconstructed to obtain the fnal denoised
signal. Yang et al. [27] proposed an information entropy-
optimized VMD method for bearing vibration signals,
combined with kurtosis and correlation coefcient criteria to
achieve separation of noise and efective signals. Trough
simulation and experimental verifcation, this method can
efectively achieve the separation of noise signals. Yi et al.
[28] proposed a particle swarm-optimized VMD method,
with the optimization goal being the ratio between the mean
value and the variance of the cross-correlation coefcient. Li
et al. [29] proposed an optimized VMD method with the
optimization objective being the maximum envelope en-
tropy. Tis method sets the step size and range to perform
VMD optimization and uses frequency band entropy as the
criterion for measuring the efective signal containing the
most fault information. Finally, it obtains bearing fault
features through envelope spectrum analysis. Shi et al. [30]
proposed a method using a niche genetic algorithm (NGA)
to optimize VMD.Tis method uses Shannon entropy as the
ftness function and uses NGA to optimize VMD. Ten, it
extracts energy features from the optimized VMD results
and inputs them into an optimized support vector machine
for classifcation. Liang et al. [31] proposed an optimized
VMDmethod by using a multiobjective multi-island genetic
algorithm (MIGA). Tis method uses envelope entropy and
Renyi entropy as optimization functions and optimizes
VMD through MIGA. Tis paper uses a novel optimization
algorithm called snake optimization algorithm (SOA) to
optimize the parameters of VMD. SOA is a new meta-
heuristic optimization algorithm proposed by Hashim and
Hussien, and inspired by the mating behavior of snakes [32].
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Tis algorithm achieves a good balance between exploration
and exploitation, and its superiority and convergence over
other optimization algorithms such as TEO, GOA, and
WOA have been verifed on 30 unconstrained functions and
4 engineering instances.

Based on the abovementioned research, this paper
proposes a rolling bearing fault diagnosis method based on
the snake optimization algorithm-optimized VMD (SOA-
VMD). First, with the minimum EKR value of the intrinsic
mode components after VMD decomposition as the opti-
mization objective, the VMD parameters are optimized
through the SOA to obtain the optimal parameters α and K.
Second, the obtained optimal parameters α and K are
substituted into VMD to decompose the fault signal. Ten,
EKR is used as a screening criterion to flter and reconstruct
the modal components obtained by VMD decomposition to
reduce possible noise interference. Finally, TKEO energy
spectrum analysis is performed on the reconstructed signal
to extract the fault characteristic frequency of rolling
bearings and achieve fault diagnosis.

Te main contributions of this paper are as follows:

(1) A method is proposed that utilizes the EKR index as
the optimization objective and uses the snake op-
timization algorithm to address the VMD parameter
selection problem

(2) Trough the verifcation of simulation and experi-
mental signals, the feasibility and efectiveness of this
method are demonstrated

(3) Te proposed method is compared with other
common signal decomposition methods, such as
EMD, EEMD, and CEEMDAN, to verify its
efectiveness

2. Background Theories

2.1. Basic Principles of the VMD. VMD is an adaptive and
nonrecursive signal decomposition algorithm. Its core idea
is to construct a constrained variational model and solve it
iteratively to decompose a nonlinear and nonstationary
signal into multiple IMFs, each of which corresponds to

a specifc frequency and amplitude. Te specifc process of
this algorithm is as follows [16]:

(1) By analyzing uk(t) through the Hilbert transform,
the unilateral spectrum corresponding to uk(t) can
be obtained as shown in the following equation:

δ(t) +
j

πt
 ∗ uk(t). (1)

(2) By adding an exponential term to modulate the
center frequency, the spectrum of each IMF is
modulated to the baseband, as shown in the fol-
lowing equation:

δ(t) +
j

πt
 ∗ uk(t) e

−jωkt
. (2)

(3) By using the Gaussian smoothness index to de-
modulate the signal to estimate the bandwidth of
each IMF, the constrained variational model is ob-
tained as shown in the following equation:

min
uk{ }, ωk{ }
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(3)

where K is the number of IMFs, zt is the partial
derivative with respect to time, δ(t) is the impulse
function, j is the imaginary number, uk(t) is the k −

th IMF,ωk(t) is the estimated center frequency of the
k − th IMF, X(t) is the original signal, and ∗ is the
convolution operator.

(4) To obtain the optimal solution, a quadratic penalty
factor α and the Lagrange multiplier operator λ(t)

are introduced to transform the constrained varia-
tional problem into an unconstrained optimization
problem, as shown in the following equation:
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where α can guarantee the reconstruction accuracy
of the signal under Gaussian noise and <·> repre-
sents the inner product operator.

(5) Te alternating direction method of multipliers
(ADMM) is used for iterative updates, and the
original signal is decomposed into K-modal
components.

2.2. Snake Optimization Algorithm. Te SOA is a new
metaheuristic algorithm proposed by Hashim and Hussien
in 2022. Te algorithm simulates the foraging, mating, and
reproduction behaviors of snakes and has a fast search rate
and high optimization accuracy. Te mathematical de-
scription of the algorithm is as follows [32]:

(1) Uniformly distributed random snake swarm posi-
tions are generated and their corresponding ftness is
calculated by using the following formula:

Xi � Xmin + rand∗ Xmax − Xmin( ,

Fi � object Xi( ,
 (5)

where rand is a random number in the range [0, 1],
Xmin and Xmax are the lower and upper bounds of the
optimization problem, Xi is the random position of
the ith snake, object is the ftness function or ob-
jective function, and Fi is the ftness value.

(2) Ten, the snake swarm X and ftness values F are
divided into two groups of males and females in a 1 :
1 ratio by using the following formula:

Xm � X1, X2, · · · , XN/2 ,

Xf � XN/2+1, · · · , XN ,

Fm � F1, F2, · · · , FN/2 ,

Ff � FN/2+1, · · · , FN ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

where N is the total number of snakes in the swarm
(an integer), Xm and Xf are the male and female
groups, and Fm and Ff are the ftness values of the
male and female groups.

(3) Now, the best ftness values and food locations are
obtained from the male and female groups.

Fmin � Min(F),

Xfood � pos Fmin( ,

Fm min � Min Fm( ,

Xm food � pos Fm min( ,

Ff min � Min Ff ,

Xf food � pos Ff min ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where Fmin is the best ftness of all snake swarms,
Xfood is the location of the best ftness, and
Fm min, Ff min, Xm food, and Xf food are the best
ftness and locations of the male and female groups.
Te formula for defning the temperature (Temp)
and food quantity (Q) of a snake is as follows:

Temp � exp
−t

T
 ,

Q � C1 ∗ exp
t − T

T
 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where t is the current number of iterations, T is the
maximum number of iterations, and the constant is
C1 � 0.5.

(4) When Q< 0.25 (no food), the snake swarm enters the
exploration stage, that is, they choose any position to
search for food and update their positions. Te
position update formula for the male snake swarm is
as follows:

Xm,i � Xm,rand ± C2Am Xmax − Xmin( rand + Xmin ,

Am � exp
−Fm,rand

Fm,i

 ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where Xm,i is the position of the ith male snake in the
male swarm, Xm rand is the position of a random
male snake, Am is the ability of the male snake to fnd
food, Fm rand is the ftness of Xm rand, Fm,i is the
ftness of the ith male snake, and the constant is
C2 � 0.05.

Similarly, the position update formula for the female
group is as follows:

Xf,i � Xf,rand ± C2Af Xmax − Xmin( rand + Xmin ,

Af � exp
−Ff,rand

Ff,i

 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)
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When Q> 0.25 (food exists) and Temp> 0.6 (hot state),
the snake swarm enters the development phase; that is, the
snake swarm only moves in the direction of food, as shown
in the following formula:

Xi,j(t + 1) � Xfood ± C3 ∗Temp∗ rand∗ Xfood − Xi,j(t) ,

(11)

where Xi,j is the jth position of the ith snake in the snake
swarm and the constant is C3 � 2.

When Q> 0.25 and Temp< 0.6 (cold state), the snake
group is in a fghting and mating mode. For the male snake
group, the fghting mode formula is as follows:

Xm,i(t + 1) � Xm,i(t) + C3Lm ∗ rand∗ Q∗Xf food − Xm,i(t) ,

Lm � exp
−Ff min

Fi

 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where Lm is the fghting ability of the male snake. Similarly, the formula for the combat mode of the female
snake group is as follows:

Xf,i(t + 1) � Xf,i(t) + C3Lf ∗ rand∗ Q∗Xm food − Xf,i(t) ,

Lf � exp
−Fm min

Fi

 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Temating mode formula for the male snake swarm is as
follows:

Xm,i(t + 1) � Xm,i(t) + C3Mmrand∗ QXf,i(t) − Xm,i(t) ,

Mm � exp
−Ff,i

Fm,i

 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where Mm is the mating ability of the male snake. Similarly, the pairing mode formula for the female snake
group is as follows:

Xf,i(t + 1) � Xf,i(t) + C3Mfrand ∗ QXm,i(t) − Xf,i(t) ,

Mf � exp
−Fm,i

Ff,i

 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)
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After the mating mode, if the snake eggs hatch suc-
cessfully, a snake with the worst ftness will be selected from
both themale and female snake swarms for replacement.Te
replacement formula is as follows:

Xm worst � Xmin + rand∗ Xmax − Xmin( ,

Xf worst � Xmin + rand∗ Xmax − Xmin( ,

⎧⎨

⎩ (16)

where Xm worst and Xf worst are the snakes with the worst
ftness in the male and female groups.

2.3. Teager–Kaiser Energy Operator. TKEO is a nonlinear
diferential operator proposed by Kaiser in 1990 for cal-
culating signal energy. It can refect the impact character-
istics of signals and has the advantages of simple operation
and high time resolution [33]. In recent years, this algorithm
has been widely used in the feld of rolling bearing fault
diagnosis.

For continuous signals g(t), the TKEO calculation
formula is as follows:

T[g(t)] � g′(t) 
2

− g(t)∗g″(t), (17)

where g′(t) � dg/dt, g″(t) � d′g/dt.
For discrete signals X(n), the TKEO calculation formula

is as follows:

T[X(n)] � [X(n)]
2

− X(n + 1)∗X(n − 1). (18)

2.4. Shannon Entropy to Kurtosis Ratio (EKR)

2.4.1. Shannon Entropy. Shannon entropy was frst pro-
posed in communication theory to describe the complexity
of observed signal sequences. Te smaller the entropy value,
the more ordered the signal, and the larger the entropy value,
the more complex the signal [34, 35]. In statistics, Shannon
entropy is also considered as a measure of information loss
of random variables. In the case of rolling bearing, when
a defect occurs, the defect surface collides periodically with
other components, producing evenly spaced pulses.
Terefore, the smaller the Shannon entropy value of the
rolling bearing signal, the higher the concentration of signal
energy and signal-to-noise ratio, and the more efective
information it contains.

Let the discrete signal be X(t) � x1, x2, . . . , xN , and
the mathematical description of Shannon entropy is as
follows:

E � − 
N

i�1
pi ∗ log2 pi,

pi �
xi( 

2


N
i�1 xi( 

2,

s.t. 
N

i�1
pi � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where pi is the probability distribution of X(t).

2.4.2. Kurtosis. Kurtosis is a dimensionless index used to
characterize the fatness of a waveform, and its mathematical
expression is shown as follows:

K �
1
N



N

i�1

xi − �X

σ
 

4

, (20)

where X is the mean value of the signal and σ is the standard
deviation of the signal.

In the diagnosis of the rolling bearing fault, kurtosis, as
a dimensionless index, is not only unafected by parameters
such as bearing speed, size, and load but also very sensitive to
impact signals, making it particularly suitable for judging
rolling bearing damage [36, 37]. When the rolling bearing
operates normally, due to the infuence of some uncertain
factors, its signal amplitude follows a normal distribution, so
the kurtosis value is approximately 3. However, when the
rolling bearing is damaged, the damage will cause the signal
amplitude to increase, causing the amplitude to deviate from
the normal distribution, thereby increasing the kurtosis
value. Te larger the kurtosis value, the more severe the
rolling bearing fault and the more fault information the
signal contains.

2.4.3. EKR. Shannon entropy and kurtosis are both in-
dicators used to refect the sequentiality and distribution of
signals. Terefore, combining them can provide a more
comprehensive signal evaluation. Considering the sequen-
tiality and distribution of signals comprehensively can help
us to understand the characteristics of signals more fully,
thus enabling more accurate signal analysis and processing.
Its mathematical expression is as follows:

EKR �
Shannon entropy

kurtosis

�
E

K
.

(21)

3. Procedure of the Proposed Method

Te two key parameters of VMD, namely, the de-
composition level K and the quadratic penalty factor α, have
a signifcant impact on the signal decomposition results. In
order to obtain suitable parameters, this paper uses the
minimum EKR value as the ftness function of the opti-
mization algorithm and uses SOA to optimize the K and α of
VMD. EKR combines the advantages of Shannon entropy
and kurtosis indexes, so it can provide a more compre-
hensive signal evaluation. When the EKR value of the signal
is smaller (Shannon entropy is smaller and kurtosis is
larger), the signal contains more efective information and is
more helpful for subsequent analysis. Te specifc optimi-
zation steps are as follows:

(1) Te snake swarm of SOA is initialized and the pa-
rameters of VMD are optimized. Te specifc pa-
rameters are shown in Table 1. In Table 1, Dim
represents the dimension, X represents the number
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of snake swarms, T represents the maximum number
of iterations, t represents the current number of
iterations, and Xmin and Xmax represent the opti-
mization range of α and K.

(2) Te snake swarm is divided according to equation (6)
and the ftness function is calculated to obtain the
EKR value.

(3) We then fnd the best ftness value and its position
according to equation (7).

(4) Te temperature (Temp) and food quantity (Q) are
then calculated according to equation (8).

(5) Te corresponding stage is entered according to the
conditions satisfed by Q, Temp, and Rand to per-
form the corresponding actions.

(6) Steps 3–5 are then repeated until the maximum
number of iterations is reached.

(7) Finally, the position of the snake swarm is given as
output, that is, the parameters K and α after VMD
optimization.

Te fowchart of the method proposed in this paper is
shown in Figure 1. Te detailed steps are as follows:

(1) Vibration signals from rolling bearings are collected.
(2) Te basic parameters of SOA are then set according

to Table 1.
(3) SOA is used to optimize the VMD parameters to

obtain the optimized K and α;
(4) Optimized VMD is used to decompose the vibration

signal to obtain K IMFs.
(5) Te EKR index of each IMF is then calculated and the

IMF corresponding to the minimum EKR value is
selected as the efective component.

(6) TKEO is used to calculate the energy of the efective
component.

(7) FFT transform is then performed on the result of step
6 to obtain the TKEO spectrum.

(8) Lastly, the characteristic frequency of the TKEO
energy spectrum is extracted and compared with the
theoretical fault characteristic frequency to de-
termine the fault type of rolling bearing.

4. Simulation Analysis

To verify the efectiveness of the method proposed in this
paper, the rolling bearing inner ring fault simulation model
proposed by Randall et al. [38] was used for verifcation. Te
model takes into account the infuence of factors such as
rolling bearing structure, manufacturing tolerances, random
sliding of balls, and surface wear. Te mathematical ex-
pression of the inner ring fault simulation model is as
follows:

Ai(t) � A0 · cos 2πfr + φA(  + CA,

p(t) � exp(−Bt) · cos 2πfnt + φw( ,

x(t) �  Ai(t) · p(t − iT) + n(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

where Ai(t) is the amplitude modulation function, fr is the
rotation frequency, CA is an arbitrary coefcient, p(t) is the
impact signal caused by defects, t is the time period of
the impact signal, fn is the resonance frequency, T is the
average period of the pulse sequence, and n (t) is Gaussian
white noise.

In order to simulate the noise impact in actual acqui-
sition, −12 dB Gaussian noise was added to the simulation
signal. Te specifc parameters are shown in Table 2.

Figure 2 shows the time-domain waveform and envelope
spectrum of the simulation signal. As shown in Figure 2(c),
the periodic impact signal in the time-domain waveform is
masked by noise. As shown in the envelope spectrum in
Figure 2(d), although the fault characteristic frequency of the
simulation signal can be observed, there are many in-
terference frequencies with higher amplitudes around it,
which afects the accuracy of fault identifcation.

Te proposed method is applied to analyze the simu-
lation signal.Te SOA parameters are initialized as shown in
Table 1, and the convergence curve of the optimized SOA is
shown in Figure 3. Te minimum EKR found by SOA
corresponds to the optimal VMD parameters [K, α] of
2.8329 and [7, 597], respectively. Te simulation signal is
decomposed by using the optimal VMD parameters, and the
decomposition results are shown in Figure 4. According to
the description in Section 3, the minimum EKR value is used
as a measure of the measurement index containing the most
fault information, and the EKR calculation results are shown
in Table 3. Te IMF4 with the smallest EKR value is selected
for the envelope spectrum analysis. Figure 5 shows the time-
domain waveform and envelope spectrum of IMF4. As
shown in Figure 5(b), in the envelope spectrum of IMF4, the
rotation frequency of 35Hz and the fault characteristic
frequency and its harmonics (180Hz, 360Hz, and 540Hz)
can be accurately extracted.

To verify the efectiveness of the proposed method, the
proposed method is compared with EMD, EEMD, and
CEEMDAN methods. First, the EMD method is used for
analysis. Figure 6 shows the frst 3 IMF results after the
simulation signal is decomposed by EMD. As shown in

Table 1: Parameter initialization of the snake optimizer.

Parameters Values
Dim 2
X 30
T 50
t 0
Xmin [100, 2]
Xmax [3000, 13]
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Figure 6, the rotational frequency fr and fault characteristic
frequency fi can be extracted from the envelope spectrum of
IMF1. However, due to the infuence of noise, it is difcult to
observe the amplitude of fr and fi in the envelope spectrum
of IMF2 and IMF3. Second, the EEMD method is used and
a white noise of 0.15 and an ensemble size of 150 are added
[39]. Figure 7 shows the frst 4 IMF results after the sim-
ulation signal is decomposed by EEMD. As shown in Fig-
ure 7, due to the infuence of noise, only the rotational
frequency fr, fault characteristic frequency fi, and weak 2fi
can be extracted from the envelope spectrum of IMF1 and
IMF2. Finally, the CEEMDAN method is used for analysis,
with added white noise of 0.15 and ensemble size and
screening iteration values set to 500 and 5000 [40]. Figure 8
shows the frst 4 IMF results after the simulation signal is
decomposed by CEEMDAN. As shown in Figure 8,

rotational frequency fr, fault characteristic frequency fi, and
2fi can be extracted from the envelope spectrum of IMF1.
However, there are still many noise frequencies in the en-
velope spectrum.

Tus, the proposed method can efectively extract the
fault characteristic frequency of the simulation signal under
noise interference, and compared to the other three
methods, it has more obvious advantages.

5. Experiment Analysis

In this section, the proposed method is applied to the fault
signals of the outer and inner rings of rolling bearings, and
compared with three other fault feature extraction methods
to verify the feasibility of the method. Te rolling bearing
dataset comes from the fault data collected by the Precision
Metrology Laboratory, Mechanical Engineering Department
of Sant Longowal Institute of Engineering and Technology in
India [41, 42]. Te test rig is shown in Figure 9. Te ex-
periment prefabricated fault defects on the outer and inner
rings of rolling bearings using electrical dischargemachining
technology. Te defect widths were 0.86mm and 1.01mm,
respectively, and the defect diagrams are shown in Figure 10.
Te vibration signal of the test bearing is collected by an
accelerometer with a sampling frequency of 70KHz. Te
radial load of the bearing is 200N and the speed is

Start

Vibration signal

Fault diagnosis
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data

VMD
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Feature
extraction

Result 
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Calculate temp and Q
Eq (12)
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Eq (15)
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Figure 1: Flowchart of the proposed method.

Table 2: Parameters of the inner ring fault model.

Parameters Values
Amplitude A0 1.5
Rotational frequency fr (Hz) 35
CA 1
Damping coefcient B 800
Resonance frequency fn (Khz) 4
Fault characteristic frequency fi (Hz) 180
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2050 r/min. Te bearing type is NBC-NU205E, and the
specifcations are shown in Table 4. Te theoretical fault
characteristic frequency of the bearing is calculated by using
the following equation, and the outer ring fault characteristic
frequency is fo � 179.3Hz, and the inner ring fault char-
acteristic frequency is fi � 264.9Hz.

fr �
N

60
,

fo �
fr · Z

2
1 +

d

D
· cos α ,

fi �
fr · Z

2
1 −

d

D
· cos α , E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where fr is the shaft rotational frequency,N is the rotational
speed of the shaft, fo is the outer ring fault characteristic
frequency, Z is the number of rolling elements, d is the
rolling element diameter, D is the bearing pitch diameter, α
is the contact angle, and fi is the inner ring fault charac-
teristic frequency.

5.1. Fault Analysis of the Outer Ring of the Bearing.
Figure 11 shows the time-domain waveform and envelope
spectrum of the original bearing outer ring fault vibration
signal. From Figure 11(c), it can be observed that after
adding Gaussian white noise, the features of the high-
amplitude and periodic impact signal are masked by the
noise. From the envelope spectrum in Figure 11(d), it can be
observed that the outer ring fault frequency is not very
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Figure 2: Time-domain waveform and TKEO envelope spectrum of the simulation signal. (a) Time-domain waveform of the origin signal.
(b) TKEO envelope spectrum of the origin signal. (c) Time-domain waveform of the signal with added noise. (d) TKEO envelope spectrum
of the noise signal.
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obvious, and there is noise interference around the fault
characteristic frequency.

Te proposed method is applied to the analysis of the
abovementioned outer ring fault signal.Te SOA parameters
are set in accordance with Section 4. After SOA optimiza-
tion, the convergence curve is shown in Figure 12, and the
minimum EKR value obtained is 2.7544, corresponding to
the optimal VMD parameters [K, α] of [10, 126]. Te noisy
outer ring fault signal is decomposed by using the optimal
VMD parameters, and the decomposition results are shown
in Figure 13. Te EKR values of all IMFs are calculated, and
the results are shown in Table 5. Te IMF5 with the smallest
EKR value is selected for the envelope spectrum analysis.
Figure 14 shows the time-domain waveform and envelope

spectrum of IMF5. As shown in Figure 14(b), the fault
feature frequency fo related to the outer ring fault and its
harmonic components can be clearly observed.

To further verify the feasibility of the proposed
method, it is compared with the EMD, EEMD, and
CEEMDAN methods, where the decomposition param-
eters of EEMD and CEEMDAN are the same as those in
Section 4. Figure 15 shows the frst 4 IMF results after the
outer ring fault signal is decomposed by EMD. As can be
seen from Figure 15, under the infuence of noise, only the
outer ring fault frequency fo and its second harmonic 2fo
can be extracted from the envelope spectrum of IMF1.
Figure 16 shows the frst 4 IMF results after the outer ring
fault signal is decomposed by EEMD. As shown in Fig-
ure 16, the outer ring fault frequency fo and its third
harmonic 3fo can be extracted from the envelope spec-
trum of IMF1. Figure 17 shows the results after CEEM-
DAN decomposition. As shown in Figure 17, only the
outer ring fault frequency fo and its second harmonic 2fo
can be extracted from IMF1.

Tus, the analysis of the outer ring fault signal further
verifes the efectiveness of the proposed method. At the
same time, the comparison with the other three methods
further highlights the advantages of this method.
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Figure 4: Te result of decomposing the noise signal by VMD.

Table 3: Te EKR value of each IMF.

IMF EKR
IMF1 3.6633
IMF2 3.6773
IMF3 3.8197
IMF4 2.8329
IMF5 3.8534
IMF6 3.6750
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5.2. Fault Analysis of the Inner Ring of the Bearing.
Figure 18 shows the time-domain waveform and envelope
spectrum of the bearing inner ring fault vibration signal. In
Figure 18(c), we can observe that after adding noise, the
original periodic impact signal is weakened. As shown in the
envelope spectrum in Figure 18(d), the rotational frequency
fr and its second harmonic 2fr can be extracted.

Te proposed method is used to analyze the inner ring
fault signal. Te SOA parameters are set in accordance with
Section 4. Te convergence curve after SOA optimization is
shown in Figure 19, with the minimum EKR value being
1.9434 and the corresponding optimal parameter set [K, α]
being [12, 421]. Te VMD method with the optimal pa-
rameter set is used to decompose the noisy inner ring fault
signal, and the decomposition results are shown in Figure 20.

Te EKR values of all IMFs are calculated, and the results are
shown in Table 6. Te IMF5 with the smallest EKR value is
selected for envelope spectrum analysis. Figure 21 shows the
time-domain waveform and envelope spectrum of IMF5. As
shown in Figure 21(b), the rotational frequency fr and three
harmonic components related to the inner ring fault
characteristic frequency can be clearly identifed.

As shown in Section 5.1, the proposed method is
compared with three other methods. Figure 22 shows the
results after the inner ring fault signal is decomposed by
EMD. As shown in Figure 22, only the rotational frequency
fr and the inner ring fault characteristic frequency fi can be
observed from the envelope spectrum of IMF1. Figure 23
shows the results after the inner ring fault signal is
decomposed by EEMD. As shown in Figure 23, the
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Figure 5: IMF4 reconstructed signal. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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rotational frequency fr, inner ring fault characteristic fre-
quency fi, and its second harmonic 2fi can be extracted from
the envelope spectrum of IMF1 and IMF2. However, it is

worth noting that there are other amplitude interferences
near fi and 2fi, which may afect the accuracy of identif-
cation. Figure 24 shows the decomposition results of
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Figure 7: Te result of decomposing the noise signal by EEMD. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 10: Rolling element bearing test rig. (a) Outer ring defect. (b) Inner ring defect.

Table 4: Structural parameters of NU205E bearing.

Parameters Values
Outer diameter (mm) 52
Inner diameter (mm) 25
Pitch diameter D (mm) 38.9
Diameter of cylindrical roller d (mm) 7.5
Number of cylindrical roller Z 13
Contact angle α (°) 0
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Table 5: Te EKR value of each IMF.

IMF EKR
IMF1 3.9547
IMF2 4.0052
IMF3 4.0448
IMF4 3.9987
IMF5 2.7544
IMF6 3.9271
IMF7 3.6833
IMF8 3.8795
IMF9 3.8075
IMF10 3.6933
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Figure 14: IMF5 reconstructed signal. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 15: Te result of decomposing the noise signal by EMD. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 16: Te result of decomposing the noise signal by EEMD. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 17: Te result of decomposing the noise signal by CEEMDAN. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 18: Time-domain waveform and TKEO envelope spectrum of inner ring defect. (a) Time-domain waveform of the origin signal.
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Figure 20: Te result of decomposing the outer ring noise signal by VMD.
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Table 6: Te EKR value of each IMF.

IMF EKR
IMF1 3.7158
IMF2 3.8513
IMF3 3.8517
IMF4 3.8260
IMF5 1.9434
IMF6 4.2623
IMF7 3.7740
IMF8 3.6369
IMF9 3.8396
IMF10 3.8728
IMF11 3.8302
IMF12 2.8748
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Figure 21: IMF5 reconstructed signal. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 22: Te result of decomposing the noise signal by EMD. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 23: Te result of decomposing the noise signal by EEMD. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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Figure 24: Te result of decomposing the noise signal by CEEMDAN. (a) Time-domain waveform. (b) TKEO envelope spectrum.
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CEEMDAN. As shown in Figure 24, the results of
CEEMDAN are similar to those of EEMD. On the contrary,
CEEMDAN performs better in terms of noise resistance.

Tus, the analysis of the inner ring fault signal further
verifes the feasibility of the proposed method. At the same
time, the comparison with the other three methods further
confrms the superiority of this method.

6. Conclusions

Tis paper proposes a fault feature extraction method based
on SOA-VMD to address the problem of weak bearing fault
features and difculty in selecting VMD parameters under
noise interference.Te feasibility of the method is verifed by
the simulation signals and experimental signals of rolling
bearings, and it is compared with EMD, EEMD, and
CEEMDAN methods. Te results show that the proposed
method has advantages in vibration analysis and fault fea-
ture extraction. Te main conclusions are as follows:

(1) Te EKR index is introduced as the ftness function
of SOA, and the SOA is used to address the difcult
problem of VMD parameter selection.

(2) Compared with EMD, EEMD, and CEEMDAN
methods, the proposed method has more advantages
in bearing fault feature extraction.
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