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In response to the high-noise, nonlinear, and nonstationary characteristics of vibration signals from aircraft environmental
control system (ECS) turbofan rolling bearings, this paper proposes a diagnostic method for the degree of ECS turbofan bearing
faults based on the Hidden Markov Model (HMM). Experimental results demonstrate that HMM can accurately diagnose and
predict faults in ECS turbofan rolling bearings. Te HMM method enhances diagnostic accuracy, and its efectiveness and
feasibility in fault diagnosis based on diferent rolling bearing fault instances are elaborated. By employing the HMM model to
establish precise models from decomposed dynamic data, it successfully identifes faults such as the fracture of the bearing cage
under biased load conditions, although its performance in recognizing overheating faults is suboptimal.

1. Introduction

Aircraft environmental control system (ECS) turbofan
rolling bearings are susceptible to various typical faults, such
as poor lubrication, biased load, excessive dynamic load,
high rotational speed, and long-term variable working
conditions, which can result in bearing wear, overheating,
damage, and skidding [1]. Vibration signals from rolling
bearings contain abundant operational state information,
and analyzing these signals can provide various character-
istic parameters refecting the fault state of the rolling
bearings [2, 3]. Te vibration signals of ECS turbofan rolling
bearings exhibit time-varying features and periodic impulses
under diferent fault conditions [4]. High-frequency reso-
nance analysis, including envelope analysis, bicoherence
analysis, and other frequency domain analysis methods, can
identify these characteristics. Time-frequency analysis
methods, such as wavelet transform, neural networks,
Hidden Markov Model (HMM), and Kalman fltering, have
been utilized for analyzing the status of rolling bearing vi-
bration signals [5–8].

In recent years, numerous scholars have utilized various
feature representations, including the time-frequency do-
main, time domain, and frequency domain, for the purpose

of diagnosing bearing faults through intelligent methods.
Jiang et al. [9] introduced an adaptive detection method that
employs variational mode decomposition (VMD) for the
early detection of defects in bearings. However, VMD ex-
hibits modal aliasing phenomena, which have a detrimental
impact on diagnostic performance [10]. Ning et al. [11]
proposed an enhanced intelligent fault diagnosis system for
rolling bearings based on ShufenetV2-LSTM, which sig-
nifcantly improves fault recognition accuracy. Nevertheless,
the incorporation of a dropout layer results in model in-
stability and necessitates additional training costs. Mao et al.
[12] conducted research on a diagnostic approach that
combines optimal feature selection with an adaptive support
vector machine (SVM). However, this method is not ef-
fective in utilizing all features to diferentiate between
various fault states.

He and Ma [13] proposed a fault diagnosis methodology
leveraging the Fractional Fourier Transform (FRFT) in
conjunction with a Deep Belief Network (DBN). Tis ap-
proach is extensively applied to address the intricacies as-
sociated with weak faults in rolling bearings, marked by
characteristics such as small amplitudes, heightened noise
levels, nonlinearity, and inherent instability. Te method-
ology involves the transformation of the original fault signal
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into the fractional domain, where subsequent signal fltering
facilitates the extraction of distinctive fault features. Fol-
lowing this, the feature signal is fed into the DBN, with the
entire network undergoing optimization through pretrain-
ing and backpropagation algorithms, ultimately culminating
in a precise fault diagnosis. However, challenges emerge
when the model encounters scenarios where there is min-
imal disparity between signals emanating from bearing
rolling elements, the cage, and those representing normal
data waveforms, particularly in instances where the bearing
exhibits subtle faults.

Tis paper primarily addresses typical fault modes in
aircraft environmental control system (ECS) turbofan
bearings, such as spalling faults. When the characteristic
parameters in the bearing’s state evolution exhibit strong
nonlinearity rather than following linear patterns, it be-
comes necessary to perform real-time modeling of historical
and current data. Tis modeling is based on time series
models or other control and intelligent models for the
purpose of fault prediction.

After an in-depth analysis of existing literature, it be-
comes apparent that the majority of diagnostic approaches
exhibit inherent limitations. Taking the noise-injection-
enhanced intelligent mechanical fault diagnosis method
proposed by Yang et al. [14] as an illustrative example, this
method strategically employs noise injection to dynamically
adjust parameters, thereby enhancing diagnostic perfor-
mance across diverse operational conditions. Its primary
focus lies in fortifying the detectability of signals, which is
particularly advantageous in scenarios necessitating the
identifcation of weak signals. Tis heightened sensitivity
contributes to an improved discernment of subtle faults.
However, it is crucial to acknowledge that the infuence of
diferent types of noise injection on the system may vary. In
certain situations, the introduction of unforeseen in-
terference through noise injection could detrimentally im-
pact diagnostic accuracy.

In contrast, this paper introduces a predictive meth-
odology grounded in the application of the Hidden Markov
Model (HMM). Renowned for its attributes encompassing
multistate modeling, autonomous learning, probabilistic
diagnosis, and real-time capabilities, the HMMmodel stands
out as an intelligent paradigm. Its discerning sensitivity to
time-series data, adeptness in capturing state evolution, and
applicability to scenarios featuring relatively slow system
state changes make it a powerful diagnostic instrument.
Tese distinctive features position the HMM model as
a robust tool with the potential to signifcantly augment the
accuracy and efciency of aircraft bearing fault diagnosis
[15–21]. Te anticipated application of the HMM model
holds promise for elevating the precision and efectiveness of
aircraft bearing fault diagnosis.

In this study, a predictive algorithm tailored to detect
typical faults in aircraft environmental control system (ECS)
turbofan bearings has been developed through the appli-
cation of the Hidden Markov Model (HMM). Te paper
provides a methodology for calibrating and adjusting the
parameters of the fault prediction model. Furthermore, the
HMM model has been efectively applied to validate faults,

including the fracture of bearing cages under biased load
conditions and overheating faults.

2. HMM Basic Principles

Hidden Markov Models (HMMs) represent a parametric
probabilistic model employed to elucidate the statistical
attributes of stochastic processes [22].

Using a discrete frst-order HiddenMarkov Process as an
illustrative instance, the constituents of an HMM are de-
lineated as follows:

(1) N represents the number of hidden states. S denotes
the set of hidden states, i.e., S � S1, S2, · · · , SN . At
time t, the state of the model is denoted by qt, where
1≤ t≤T, and T represents the length of the obser-
vation sequence.

(2) M represents the total number of diferent obser-
vation symbols. If V is the set of all observation
symbols, then V � v1, v2, vM .

(3) A represents the state transition probability distri-
bution or the state transition matrix, where A � aij,
and aij � P[qt � Si

qt+1 � Sj], for 1≤ i, j≤N, subject
to the constraints:

0≤ aij ≤ 1,



N

j�1
aij � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

(4) B represents the observation probability matrix,
also known as the emission matrix. B � bj(k) ,
where 1≤ j≤N and 1≤ k≤M, and bj(k) �

P[σt � vk

qt � Sj], where σt is the observation
symbol at time t.

(5) Π represents the initial state distribution, Π � πi ,
where πi � P[q1 � Si], 1≤ i≤N.

HMMs can be represented in the following three-
parameter form: λ � (A, B,Π). For discrete HMMs, obser-
vations are fnite symbols from a fnite symbol set, while for
continuous HMMs, observations are described using
a probability density function. Te most commonly used
probability density model is a mixture of Gaussian proba-
bility density functions:

bj(o) � 
M

m�1
Cjmbjm(o). (2)

In the above equation, Cjm represents the number of
components in the mixture of Gaussian probability density
functions, which is distinct from the total number of ob-
servation symbols “M” in discrete HMMs. Te mixture
coefcients satisfy the following condition:


M

m�1
Cjm � 1. (3)

In the equation, bj(j) represents the single Gaussian
probability density function for the m-th component of the
j-th state.
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Te practical application of Hidden Markov Models
(HMMs) involves addressing three key problems: (1) Given
an observation sequence O � o1o2 · · · or and the model pa-
rameters λ � (A, B,Π), how to calculate P � (O|λ), which is
the probability of generating the observation sequence
according to the given model. (2) Given an observation
sequence O � o1o2 · · · or and the model parameters
λ � (A, B,Π), how to choose the optimal state sequence �

q1q2 · · · qn that best explains the observation sequence O. (3)
How to adjust the model parameters λ to maximize
P � (O|λ). Problem (3) focuses on optimizing the model
parameters using the observed sequence as the training data.
In the majority of HMM applications, training is of utmost
importance.

3. Principle of Fault Prediction Based on HMM

A predictive algorithm for common bearing faults is de-
veloped utilizing the Hidden Markov Model (HMM) [23],
which encompasses the subsequent steps (as depicted in
Figure 1) [5].

To commence, the HMM model is trained utilizing
historical data. Vibration signal historical data are extracted
for distinct bearing states, and several training sequences are
derived from these datasets. Te training sequences undergo
vector quantization through the K-means algorithm. Sub-
sequently, HMM models corresponding to various bearing
states are trained, employing the forward-backward (F-B)
algorithm. Tis process yields HMM model parameters that
accurately represent the characteristics of each bearing state.
Following this, a likelihood probability model is established.

Te present measured vibration signal is input into the
constructed HMMmodel for the purpose of ascertaining the
current bearing state. Subsequently, the maximum likeli-
hood probability of the bearing being in a specifc state is
computed. Tis likelihood probability is then used as
a feature parameter to construct a time series of feature
parameters, denoted as x(n), with a time interval of Δt.
Model identifcation and parameter calibration are per-
formed, including calculating the model order and pa-
rameters. Finally, based on the established HMM model,
future feature parameters are predicted for time instances ti

(where i� 1, 2, . . ., n) after time t0. Te predicted feature
parameters ui are compared with the given threshold values
A1 and A2. Bearing faults or failures are determined when
ui >A1 and ui >A2, respectively. Consequently, the time
intervals T1 and T2, as well as the corresponding time in-
stances t1 and t2(t1,2 � t0 + T1,2), when the bearing reaches
the fault or failure state are obtained [5].

For obtained fault prediction results, defne prediction
confdence C.

C � 1 −
Ti real − Ti

Ti real




  × 100%, (i � 1, 2). (4)

In the equation, Ti represents the predicted time for
bearing failure and malfunction occurrence, while Ti real
denotes the actual time of bearing failure and malfunction
occurrence.

4. Rolling Bearing Monitoring and
Fault Diagnosis

Vibration analysis was conducted using a test rig for the
rotor of an aircraft environmental control system (ECS)
turbocharger rolling bearing. Te test rig featured a hori-
zontally oriented rotor structure that was driven by a motor.
Te primary structural components are depicted in Figure 2.

Various types of bearing faults were preconfgured, and
accelerated life tests of rolling bearings were conducted
under multiple operating conditions to obtain vibration test
signal data. By comparing the vibration monitoring data
under diferent operating conditions, the vibration fault
characteristics were analyzed.

5. Vibration Analysis of Overheated
Rolling Bearings

Experimental tests were conducted to investigate the
overheating fault of rolling bearings, and the efectiveness of
the fault prediction algorithm in predicting overheating
faults was evaluated using the experimental data. Te vi-
bration signals of the measured overheated rolling bearings
are illustrated in Figure 3.

5.1. Training HMM Model Based on Historical Data.
After 200 seconds of testing, the temperature of the outer
surface of the bearing housing increased from room tem-
perature to approximately 110°C.Terefore, it is assumed that
the bearing was in a normal state at 30 seconds and in an
overheated fault state at 200 seconds. A 1.2-second vibration
signal was extracted starting from 30 seconds as a training
sequence for the HMM model, representing the normal state
of the bearing. Similarly, a 1.2-second vibration signal was
extracted starting from 200 seconds as a training sequence for
the HMMmodel, representing the faulty state of the bearing.

A sampling time interval of dt1 � 0.2 seconds and
a sampling duration of l1 � 0.1 seconds were set, and each
HMM model was trained using six training sequences. Te
model parameters, including the state transition matrix,
observation probability matrix, and initial state probability
vector, were obtained for both sets of HMM models.

5.2.Tresholds for Bearing Fault Feature Parameters. Te six
training sequences for the bearing fault states were introduced
into the trained HMM models, and state recognition was
performed. Te maximum likelihood probabilities for each
sequence belonging to the two categories of bearing states
were computed, and the results are presented in Table 1.

Calculation of the average value of the probability dif-
ference in Table 1 yields 11.1713. Consequently, the threshold
A2 for determining the bearing fault state is set to 12.

5.3. State Recognition Based on Current Data. Te vibration
measurement data of the bearing from 30 to 200 seconds
were utilized, with a sampling time interval of
dt1 � 0.2 seconds. Te maximum likelihood probabilities
were computed, and the results are depicted in Figure 4.
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To provide a clearer depiction of the state variations
during the temperature rise process, the average value se-
quence was processed. Firstly, the stages of bearing speed
increase and decrease were removed to eliminate the in-
fuence of rotational speed on state evolution. Next, the
absolute values of ten adjacent average values were taken,
summed, and then averaged to obtain the computed result as
a feature parameter. Finally, the process was repeated by
shifting one average value backward, and the results are
presented in Figure 5.

It can be observed that throughout the entire heating
process, the likelihood probability fuctuates between 2 and
8, indicating a certain degree of error in the HMM model’s
recognition of bearing states before and after heating.

6. Analysis of Rolling Bearing Cage
Fracture under Off-Center Load Conditions

To conduct experimental tests for bearing cage fracture
faults under biased load conditions, a meticulously

Historical data Vibration signal

HMM training

Current measurement data Current vibration signal

State recognition

Similar probability sequence x (n)

Modeling and ftting

Calculate future feature parameters

Prediction data TeFeature parameter prediction value ui

 Status determination of threshold A1 A2 A3

 The time of bearing abnormal, failure, and failurext T1 T2 T3

State judgment

Figure 1: Schematic diagram of fault prediction based on the HMM method.

Motor Flexible coupling Tachometer Test bearing

Lubricating oil tank Disc Unbalanced Bolts Steel strips

Figure 2: Te rotor supported on the rolling bearings test-platform.
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designed procedure was employed. Tis procedure in-
volved placing thin steel strips, each with a thickness of
0.25millimeters, between the bearing seat and the base. A
total of 8 strips were used, with 4 on each side, stacked
together. Te strategic placement of these steel strips in-
duced a controlled tilt in the bearing seat along the vertical
axis, resulting in a precisely regulated relative angular
displacement between the inner and outer bearing rings.
Te relationship between the thickness of the steel strips
and the width of the bearing seat is described by the fol-
lowing formula:

θ � arctan
b

l
 , (5)

where b represents the thickness of the steel strips, and l
signifes the width of the bearing seat.

As a result of this well-calculated arrangement, the steel
strips theoretically induced a tilt of 0.4 degrees in the bearing
seat, thereby theoretically imparting a 0.4-degree angular
displacement between the axes of the inner and outer
bearing rings. It is important to note that the actual angular
displacement of the inner and outer bearing ring axes was
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-0.15
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Figure 3: Vibration signals of overheating faults of the rolling bearings.

Table 1: Recognition result of temperature rising state.

Sequence 1 2 3 4 5 6
Normal status −83.5185 −92.1298 −90.8108 −84.8107 −93.3492 −84.8745
Failure status −75.6440 −78.4925 −76.6744 −76.7286 −76.3240 −78.6024
Diference 7.8745 13.6373 14.1364 8.0821 17.0252 6.2720
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Figure 4: Likelihood probability of temperature rising state.
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Figure 5: Arranging results of likelihood probability of temper-
ature rising state.
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slightly less than the theoretically calculated value due to the
infuence of bearing seat cover assembly tightness and as-
sembly clearances. During the experimental phase, the
primary data sources included vibration signals and bearing
seat acceleration data. After completing the experimental
tests, the bearings were carefully disassembled to enable
a detailed examination of surface morphology. Sub-
sequently, the empirical data collected during the experi-
ment were used to rigorously evaluate the performance of
the fault prediction algorithm in detecting bearing cage
fracture faults under biased load conditions. Te vibration
signals of rolling bearings aficted by cage fracture faults
under biased load conditions are illustrated in Figure 6.

6.1. Training HMM Models Based on Historical Data. Te
vibration signal in Figure 6 indicates that the bearing is in
two completely diferent states at 0 s and 200 s, respectively.
Terefore, 12 s of vibration signal is extracted, starting from
0 s, as the training sequence for the HMM model, repre-
senting the normal state of the bearing. Similarly, 12 s of
vibration signal is extracted, starting from 200 s, as the
training sequence for the HMM model, representing the
faulty state of the bearing.

With a sampling time interval of 0.2 s (dt1 � 0.2s), six
training sequences are obtained for each HMM model. Tis
process is repeated for both HMM models, resulting in two
sets of HMM model parameters, including the state tran-
sition matrix, observation probability matrix, and initial
state probability vector.

6.2.Treshold for Bearing Fault Feature Parameters. All 210 s
of experimental data for the bearing is fed into the two
trained HMM models for state recognition. Te maximum
likelihood probabilities for each sequence belonging to the
two classes of bearing states are calculated, and the results
are shown in Figure 7.

In order to better illustrate the changes in the state of the
rolling bearing cage fracture process under biased load
conditions, the average value sequence is processed. Te
summation and averaging of every 2 seconds (i.e., 8 prob-
ability values) are performed to obtain the computed result
as the feature parameter. Subsequently, one average value is
shifted backward, and the calculation is saved, as shown in
Figure 8 [5].

As depicted in Figure 8, the maximum likelihood
probability reaches its peak at 197.4 s, with a value of 32.61.
Te measured vibration of the bearing at this moment
(Figure 6) indicates a highly intense vibration, highlighting
clear fault features. Consequently, the threshold for de-
termining the bearing fault state, A2 is set to 32 [5].

6.3. Bearing Fault State Recognition Based on HMM.
Using the vibration measured data from the bearing within
the time range of 0 to 240 seconds, with a sampling time
interval of 0.2 s (dt1 � 0.2 s) and a sampling duration of
l1� 45 s, 200 maximum likelihood probabilities are calcu-
lated, as shown in Figure 9.

Iterative calculations are performed on the feature
parameters, and if the computed feature parameter ex-
ceeds the threshold A2 for the fault state, the prediction of
the time T2 when the bearing reaches the fault state is
obtained.

Te comparison between the calculated results of the
feature parameter predictions and the actual values is shown
in Figure 10. It can be observed that there is a good ft
between the predicted values of the feature parameters and
the actual values, indicating that the established HMM
model can accurately refect the actual variation pattern of
the feature parameters.

Te prediction results are presented in Figure 10 and
Table 2. Te actual value of the bearing failure time t2 is
196 s, while the predicted value is 190.4000 s. Te actual
value of the time T2 to bearing failure is 157.2003 s, and the
predicted value is 151.6102 s, resulting in a prediction error
of 5.5901 s and a confdence level of 96.44% [5].
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Figure 6: Vibration signals of cage fracture under partial load
condition experiment of the rolling bearings.
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Figure 7: Likelihood probability of vibration signals of cage
fracture under partial load condition [5].
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Figure 8: Averaged likelihood probability of vibration signals of cage fracture under partial load condition [5].
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Figure 9: HMM identifcation results of vibration signals of cage fracture under partial load condition.
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Figure 10: Forecast efect test of HMM identifcation results of vibration signals of cage fracture under partial load condition [5].
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7. Conclusions

In this research, a methodology founded on the Hidden
Markov Model (HMM) approach, utilizing the vibrational
responses of rolling bearings was applied to detect abnormal
vibrational signals in aircraft environmental control tur-
bofan rolling bearings. Te computed results of the pre-
dicted feature parameters were juxtaposed against the actual
values. Acknowledging the nonstationary attributes of
rolling bearing fault signals, a bearing fault diagnosis
technique predicated on the HMM model was postulated.
Tis approach leverages the HMM model to formulate
precise models from deconstructed dynamic data, thereby
facilitating the identifcation of faults such as fractured
bearing cages under biased load conditions. Nevertheless, it
was observed that the performance in identifying over-
heating faults in bearings was less than optimal.
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