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A comprehensive 2D numerical model was conscientiously developed to investigate the vortex-induced vibration phenomena in
a cylindrical structure with rounded corners. Te Navier-Stokes equation was adeptly solved under the specifc condition of
a Reynolds number (Re) of 150. Te investigation reveals intricate details of the phenomena. Te study aimed to systematically
analyze the interaction between drag and lift force coefcients, cylinder vibration amplitude, and the patterns of vortex shedding
modes under various conditions. Tis study systematically altered the radius of the cylinder’s rounded corners to evaluate their
efects on both structural and hydrodynamic responses. Tis variation was crucial in comprehending how slight alterations in the
cylinder’s geometry impact signifcant changes in the fow dynamics and correlated vibration behavior. Te model’s numerical
results revealed the signifcant impact of the curved edge ratio on both the hydrodynamic forces acting on the cylinder and its
vibration response. Te variation in edge curvature resulted in changes in drag and lift coefcients, leading to a signifcant impact
on the amplitude of vibration. Tis elucidates the crucial role of geometric design in controlling and optimizing the structural
behavior of cylindrical structures under fuid fow conditions.

1. Introduction

As water fows through a circular cylinder, a fuid dynamic
phenomenon occurs where alternating vortices, called
shedding vortices, form in a rhythmic pattern behind the
cylinder. Tese vortices are not just a characteristic of fuid
fow but have substantial implications on the cylinder itself
as they exert periodic lift forces in the cross-fow direction.
Tis interaction between fuid fow and cylinder results in
vortex-induced vibration (VIV), which refers to a particular
oscillatory movement the cylinder experiences from these
forces. Te phenomenon of “lock-in” represents a crucial
aspect of this event, as it arises when the frequency of vortex
shedding converges with or becomes closely aligned to the
natural frequency of the cylinder. Natural frequency is an

inherent property of any object, defning the frequency at
which it tends to vibrate when disturbed. Resonance occurs
during lock-in, causing a signifcant amplifcation of the
cylinder’s vibrations. Tis amplifed vibration is of signif-
cant interest in various felds, ranging from engineering to
environmental studies, as it signifcantly afects the struc-
tural integrity and behavior of cylindrical objects in fuid
fows, such as pipelines, cables, and marine structures. It is
essential to comprehend and predict VIV and lock-in
conditions for designing structures that can withstand or
evade these potentially destructive vibrations.

In the past few decades, the problem of vortex-induced
vibration has attracted much attention from scholars all
over the word. Feng [1] studied the frequency of the ex-
citation force, the dimensionless amplitude, and the phase
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diference between the cylindrical vibration displacement
and the lift coefcient with respect to the reduced velocity
in a wind tunnel for a D-shaped cylinder with mass ratio
m∗ � 248 and damping ratio ξ = 0.00103, and only cross-
fow fow motion was allowed to occur. Khalak and Wil-
liamson [2] named the two branches of the displacement
response found by Feng [1] as the initial branch and the
lower branch, respectively. For the lower m∗ξ case, three
branches of the displacement response are found, namely,
the initial branch, the upper branch, and the lower branch.
In addition, the initial branch of the displacement response
corresponds to the 2S vortex shedding mode and the lower
branch to the 2P mode. Morse and Williamson [3] iden-
tifed a new vortex-shedding mode “2P0” through visual-
isation techniques. Lee and Lee [4] used numerical
simulations to determine the Reynolds number Re = 200,
diferent damping parameters Sg Sg � 8π2S2t aM∗, where
St � fsD/U∞ is the Strouhal number and M∗ � m/ρD2 is
the mass ratio), and the mass ratio of the cylinder when
both inline and cross-fow motions are allowed to occur.
Prasanth and Mittal [5] investigated numerically the vortex
vibration of a cylinder with a mass ratio M∗ of 10.0 at low
Reynolds number (60 <Re < 200) by means of a fnite el-
ement method and found that the response of the cross-
fow displacement can reach 0.6D. Te response of the
cross-fow displacement also has two branches, the initial
branch and the lower branch, and the initial branch cor-
responds to the vortex shedding mode of 2S and the lower
branch corresponds to the vortex shedding mode of
C. Tere have also been many fruitful studies on cylindrical
vortex excitation vibration problems [6–14].

To summarize, many scholars have studied the fow-
induced vibration problems of cylindrical or square cylinder.
However, rounded corners are commonly applied to square
cylinders in engineering applications, such as tension leg
platforms in ofshore engineering. Tere have been fewer
studies on the fow-induced vibration of square cylinder
with rounded corners. Tis study aims to investigate the
efect of rounded corner on fow-induced vibration.

Due to the current lack of computational power in
numerical analysis of 3D fuid-solid interaction turbulence,
the Navier-Stokes equations of 2D incompressible viscous
fuid are being solved using the upwind fnite element nu-
merical method. In addition, the arbitrary Lagrange–Euler
(ALE) dynamic mesh method is being employed. To study
the vortex-induced vibration of a cylinder, a computational
program and numerical model have been developed.
Re� 150 is taken as the representative for studying the
vortex-induced vibration of a cylinder with rounded
corners.

2. Numerical Model

2.1. Governing Equations. Te governing equations for the
motion of two-dimensional incompressible viscous New-
tonian fuids are continuity equation and Navier-Stokes
equations, which can be expressed in the following di-
mensionless form:
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where xi denote the Cartesian coordinates (i� 1 and 2 in the
two-dimensional case, corresponding to the x and y di-
rections, respectively), ui is the velocity in xi direction, p is
the pressure, Re�UD/υ is the Reynolds number, U is the
uniform incoming fow velocity, D is the diameter of the
circular cylinder, υ is the kinematic viscosity coefcient of
the fuid, and cj is the convective velocity, which can be
expressed as follows:

cj � uj − u
m
j , (2)

where um
j denotes the motion velocity of the grid in j di-

rection under the ALE reference coordinate system.
When the fow feld and pressure feld are obtained, the

fuid force on the circular cylinder can be obtained by surface
integration of the pressure and viscous shear force on the
surface of the circular cylinder. Ten, the nondimensional
drag force coefcient CD and the lift coefcient CL can be
written as
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where θ is the angle between the line between the point on
the circular cylinder and the center of the circular cylinder
and the forward direction of the x axis.

Te average value of the drag force coefcient can be
expressed as

C
M
D � 

t2
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CD(t)dt

∆T
, (4)

where ΔT � t2 − t1 is the time length of the drag force
stabilization section.

Te root mean square value of the drag force coefcient
CRMS

D can be expressed as
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Te maximum lift coefcient is

C
A
L � C

MAX
L − C

M
L . (6)

2.2. Equation ofMotion for the Cylinder. Te vortex-induced
vibration problem of a cylinder can usually be treated to
a mass-damp-spring vibration system. Under the constraints
of fuid force, damping force, and spring, a dimensional
equation of motion for the circular cylinder can be
expressed as
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m €Xi + c _Xi + kXi � 0.5ρDU
2
Ci, (7)

where, Xi, _Xi, and €Xi are the displacement, velocity, and
acceleration in the direction of x, respectively. m, C, and k
are the mass, structural damping, and spring stifness of the
circular cylinder, ρ is the density of the fuid, and Ci denotes
the fuid force coefcient in the direction i. We further use
the dimensionless relation €xi � €XiD/U2, _xi � _Xi/U,
xi � Xi/D, and fn � FnD/U; Fn is the natural vibration
frequency of the system and the structural dynamics relation
k/m � (2πFn)2, c/m � 4πξFn. And, considering the defni-
tions of the damping ratio and mass ratio (ξ � c/4πmFn and
m∗ � 4m/πρD2), the dimensionless cylinder vibration
equation can be obtained as follows:
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2
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When the displacement of the cylinder is determined,
the grid is updated by the diferential mesh transformation
method.Ten, the new grid coordinates and grid velocity are
obtained, which are used to solve the fow feld at the next
time step.

2.3. Computing Model and Boundary Conditions. Te cal-
culation model of this paper is shown in Figure 1. Te center
of the cylinder is located at the origin of coordinates (0.0,
0.0). In order to eliminate the infuence of truncation
boundary, the length of the calculation domain in this paper
is 55D in the up-fow direction and 50D in the cross-fow
direction. Te dimensionless velocities u� 1.0 and v � 0.0
are specifed at the entrance. Symmetric boundary condi-
tions u are used on the side walls zu/zy� 0, v � 0. Te
velocity boundary condition at the exit is zui/
zt + czui/zxi � 0, where c is the local average fow velocity;
u � dx/ dt and v � dy/ dt are applied on the cylinder surface.
In the calculation, the relative pressure p� 0 is specifed at
the outlet and zp/zn� 0 is used at the other boundaries,
where n is the external normal unit vector indicating the
fuid domain. At the initial time, the velocity and pressure
distributions in the fow feld are set to zero, that is, the initial
conditions satisfy the continuum equation.

In the simulation, the cylinder is allowed vibration only
in y direction.Temass ratio is set to be 2.0 and the damping
factor is 0.007. Te Reynolds number is set to be 150 in
this study.

Te mesh confguration surrounding the cylinder is
illustrated in Figure 2. Tis fgure clearly demonstrates that
the mesh density is signifcantly higher in the vicinity of the
cylinder. Tis dense meshing is critical for capturing the
intricate fow dynamics efects near the cylinder’s surface
with higher precision. As one moves away from the cyl-
inder, the mesh becomes progressively sparser. Tis gra-
dation in mesh density is strategically designed to optimize
computational resources. By reducing the number of mesh
elements in regions of lesser interest, where fow or thermal

gradients are expected to be less intense, and computa-
tional time can be signifcantly reduced. Tis approach
strikes a balance between computational efciency and the
accuracy of the simulation results. Furthermore, a note-
worthy aspect observed from the fgure is the retention of
high-quality mesh even after the cylinder undergoes mo-
tion. Tis indicates the robustness of the mesh design,
ensuring that it can adapt to changes in the physical
confguration without losing its integrity. Such a feature is
crucial in dynamic simulations where the geometry of
interest is subject to movement or deformation. Te mesh’s
ability to maintain its quality under such conditions is
indicative of advanced meshing algorithms and thoughtful
design, ensuring that the accuracy of the computational
model is not compromised over the course of the
simulation.

Te numerical model used in this study is consistent with
the numerical model used by Liu et al. [10–12], and the
validation of the correctness of themodel can be found in the
paper by Liu et al. [10–12], which will not be discussed here.

3. Results and Discussion

3.1. Forces on the Cylinder. Te drag force coefcients of
a cylinder over time are analyzed for various reduced ve-
locities, represented by the equation Vr�U/f D, where U
denotes the inlet velocity, f is the natural frequency of the
cylinder, and D is the cylinder’s diameter, at R� 0.25, as
illustrated in Figure 3. Te graph reveals a consistent pattern
in how the drag force coefcient changes with time. For
lower reduced velocities, specifcally at (Vr� 2.0), as well as
higher reduced velocities, such as Vr� 6.0, the drag force
coefcient displays relatively small fuctuations in ampli-
tude. Contrastingly, at intermediate reduced velocities,
particularly at Vr� 4.0 and Vr� 5.0, there is a noticeable
increase in the vibration amplitude of the drag force co-
efcient. Interestingly, at a reduced velocity of Vr� 4.0, the
behavior of the drag force coefcient diverges from the
typical sinusoidal pattern observed at other velocities. Tis
deviation from sinusoidal variation implies a complex in-
teraction between the cylinder and the fuid fow at this
specifc reduced velocity, possibly indicating the onset of
vortex-induced vibrations or other nonlinear dynamic
phenomena.
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Figure 1: Sketch defnition of the computational domain.
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Figure 4 depicts an in-depth analysis of the variation in
the average drag force coefcient value concerning reduced
velocity. Tis study is vital in comprehending the fuid
dynamics surrounding objects of varying shapes and sizes.
Te chart displays a uniform pattern of variation across
diferent R/D ratios, proving the universality of this behavior
in fuid dynamics. Te data can be segmented into three
distinct regions based on the reduced velocity values. Te

frst region, which corresponds to small reduced velocities,
exhibits a minimal average value of the drag force coefcient.

As we move towards the middle region, we observe
a signifcant rise in the average drag force coefcient value.
Tis region holds great signifcance for engineering appli-
cations as it portrays high drag force on the cylinder, having
a substantial impact on the stability and performance of
diverse structures.
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Figure 2: Meshes around the cylinder. (a) Initial meshes. (b) Meshes after motion.
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Figure 3: Drag force coefcients of the cylinder with time for diferent reduced velocities with R/D� 0.25. (a) Vr� 2.0. (b) Vr� 4.0.
(c) Vr� 5.0. (d) Vr� 6.0.
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On the contrary, the third region having large reduced
velocities manifests a decline in the average drag force co-
efcient value, converging towards its initial lower levels.

Furthermore, the data presented in Figure 3 provide
further evidence of this trend. Te consistency between
Figures 3 and 4 strengthens the validity of these observations
and emphasizes their signifcance in hydrodynamics design.

Figure 5 depicts the lift coefcient time history lines for
varying reduced velocity conditions, measured at a di-
mensionless cylinder radius to the diameter ratio (R/D) of
0.25. Te graphical representation illustrates the dynamic
behavior of the lift coefcient as it varies with time under
diferent fow velocities, showcasing distinct patterns.

When analyzing the curves, an observable trend can be
noted in the lift coefcient response when linked with
diferent reduced velocities. It is worth mentioning that the
cases with reduced velocities of 2.0 and 5.0 show a more
predictable and coherent lift coefcient fuctuation pattern,
with a clear and regular sinusoidal wave pattern.Tis pattern
indicates a rhythmic and stable oscillation of the aero-
dynamic forces on the cylinder. Te sinusoidal pattern of
these fuctuations indicates that hydrodynamic forces op-
erating on the cylinder in these fow conditions are stable,
which may lead to a consistent response.

On the other hand, an investigation into the lift co-
efcient’s time history at reduced velocities of 4.0 and 6.0
reveals a more erratic behavior pattern.Te sinusoidal waves
that suggest periodic force are substituted with intricate,
nonperiodic variations. Tis diference is especially no-
ticeable when focusing on the reduced velocity of 4.0, where
the curves exhibit the most signifcant vibration amplitude
in the lift coefcient. Tis signifcant amplitude indicates
that the cylinder undergoes a pronounced fuctuation in
hydrodynamic forces.

Te root mean square (RMS) value of the lift coefcient
varies with changes in the reduced velocity rate, as shown
in Figure 6. Tis fgure illustrates how the lift coefcient
RMS value fuctuates with changes in the reduced velocity
and reveals a consistent pattern across various diameter
ratios (R/D). Te graph in Figure 7 shows that across all the
examined diameter ratios, there is an initial increase in the
RMS value of the lift coefcient as the reduced velocity
rises, with this trend observable uniformly for diferent R/D

ratios. Te increase continues steadily until it reaches
a peak at a reduced velocity (Vr) of around 4.0. Tis peak
denotes the maximum attainable value of lift coefcient
RMS under the existing conditions. After the stated peak,
there is an abrupt and drastic decrease in the RMS value of
the lift coefcient. Tis reduction marks a considerable
alternation in the hydrodynamic conduct of the object at
this specifc velocity. Te sudden decline is potentially
caused by diverse vortex shedding, which will be explicated
in the upcoming sections. After the initial drop, the RMS
value of the lift coefcient reaches a stable point and ex-
periences little variation as the reduced velocity increases.
Tis suggests that beyond a certain point, further increases
in the reduced velocity have a diminishing impact on the
RMS value of the lift coefcient.

3.2. Motion of the Cylinder. Figure 7 provides a compre-
hensive analysis of the time-dependent behavior of cylin-
drical vibration displacement. It shows that when the
reduced velocity (Vr) is 2.0, the cylinder displays a regular
vibration pattern. Remarkably, the amplitude of these vi-
brations consistently remains low, with a peak value less
than 0.02. It implies that at lower velocities, the system
retains a stable and minimal vibrational state. As the de-
creased velocity increases to 4.0, a noticeable alteration in the
vibrational pattern happens. Te loudness of the vibration
displays a recurring conduct, fuctuating between amplifying
and diminishing over time. Tis is important because it
denotes a shift in the dynamic reaction of the cylinder as the
velocity varies. Te maximum amplitude observed at this
velocity signifcantly increases, reaching approximately 0.6.
Further increasing the reduced velocity to 5.0 leads to an-
other shift in the system’s vibrational characteristics. It
returns to a pattern of vibration similar to that observed at
the lower velocity of 2.0. Nevertheless, the maximum am-
plitude of vibration at this stage is notably lower than what is
observed at Vr� 4.0. At a reduced velocity of 6.0, the trend
persists with a further decrease in vibration amplitude.

Te relationship between reduced velocity and vibration
amplitude, as discussed, illustrates a crucial aspect of cy-
lindrical structure dynamics. Figure 8 provides a detailed
analysis of how the root mean square (RMS) value of cy-
lindrical vibration displacement changes with reduced ve-
locity, indicating this relationship. Tis fgure is crucial in
comprehending the dynamics at play. Te fgure reveals
a consistent pattern in RMS value variation across varying
diameter ratios (R/D) in cylindrical structures. Tis con-
sistency implies a universal principle governing their vi-
bration behavior, independent of their diameter ratios.
Importantly, the diameter ratio (R/D) plays a crucial role in
structural design as it impacts the stability of the structure.
In addition, the data suggest that at both lower and higher
levels of reduced velocity, the displacement RMS values are
relatively smaller. Te graphic clearly illustrates a direct
correlation between the ratio of diameter (R/D) and the
highest RMS value of displacement. As the diameter ratio
increases, the maximum displacement RMS value steadily
increases as well.
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3.3.VortexSheddingModeof theCylinder. Te analysis of the
forces and vibrations of a cylinder at diferent reduced
velocities highlights a complex interplay between fuid dy-
namics and the cylinder’s structural response. Tis com-
plexity is caused by the various patterns of wake vortex
shedding, illustrated in Figure 9. Te vortex distribution
around the cylinder when the cylinder is at the maximum
position for diferent reduced speeds is given in Figure 9.

At lower reduced velocities, like Vr� 2.0, and higher
ones, such as Vr� 6.0, the wake vortices shed from the
cylinder alternate. Tis phenomenon exemplifes the von
Kármán vortex street, a recognized pattern in fuid dynamics

where vortices are consistently shed from opposing sides of
a bluf body.Te uniformity of this shedding pattern at these
speeds afects the forces applied to the cylinder and its
consequential vibrational reaction.

However, a signifcant deviation is observed at a de-
creased velocity of Vr� 4.0.Tis discrepancy is characterized
by the considerably shorter length of the wake vortices. Tis
reduction in the vortex size signifes a more turbulent and
energetic wake, leading to an increase in the forces exerting
on the cylinder. Specifcally, the higher pressure diferential
created by the shorter vortices leads to more pronounced
vibrational displacements.
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Figure 5: Lift force coefcients of the cylinder with time for diferent reduced velocities with R/D� 0.25. (a) Vr� 2.0. (b) Vr� 4.0.
(c) Vr� 5.0. (d) Vr� 6.0.
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Figure 7: Motion of the cylinder with time for diferent reduced velocities with R/D� 0.25. (a) Vr� 2.0. (b) Vr� 4.0. (c) Vr� 5.0.
(d) Vr� 6.0.
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In addition, when the velocity is increased, the wake
vortices no longer align in a single row as observed at lower
velocities. Instead, they exhibit a dual-row arrangement,
suggesting a change in fow dynamics surrounding the
cylinder, possibly due to modifcations in the behavior of the
boundary layer or fow separation points on the surface of
the cylinder.

At Vr� 5.0, another distinct pattern emerges. Close to
the cylinder, vortices arrange themselves linearly, suggesting
a fow regime concurrent with lower velocities. However, as
distance from the cylinder increases, vortices form in two
rows, indicating intricate interplay between the cylinder’s
boundary layer and the wake region. Te dual pattern at
Vr� 5.0 proposes a transitional phase in the fow dynamics,
where the features of both lower and higher reduced ve-
locities manifest.

4. Conclusion

In this comprehensive study, a two-dimensional numerical
model was implemented to investigate vortex-induced vi-
brations (VIVs) in a cylinder, with specifc focus on vari-
ations in rounded corner geometries. Te Navier-Stokes
equations were solved within a defned parameter of Rey-
nolds number (Re) set at 150 to simulate realistic fuid
dynamics scenarios. Te study systematically investigated
the efects of altering the cylinder’s diameter ratio (R/D) and
reduced velocity on a range of critical factors. Tese factors
encompassed the forces borne by the cylinder, the resulting
oscillation amplitude, and the characteristic modes of vortex
shedding, all of which play pivotal roles in comprehending
the structure’s dynamic response when immersed in fuid
fow conditions. From the simulation and discussion, the
following conclusions can be obtained in the present study
scope.

(1) Te trends of forces on the cylinder and displace-
ments with the reduced velocity are the same for
diferent diameter ratios (R/D).

(2) Large diameter ratios (R/D) lead to greater YRMS, but
the mean drag force and RMS value of lift force are
not much diference.

(3) At the same diameter ratio (R/D), diferent vortex-
shedding modes result in diferent cylindrical forces
and vibrational displacements at diferent reduced
velocities.
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