
Research Article
Efficient Dynamic Performance Prediction of Railway Bridges
Situated on Small-Radius Reverse Curves

Yumin Song ,1,2 Bin Hu,1 and Xiaoliang Meng1

1School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
2State Key Laboratory of Bridge Engineering Structural Dynamics and Key Laboratory of Bridge Earthquake Resistance
Technology, Ministry of Communications, Chongqing 400067, China

Correspondence should be addressed to Yumin Song; song-yumin@qq.com

Received 20 November 2023; Revised 20 February 2024; Accepted 9 March 2024; Published 9 April 2024

Academic Editor: Nicolo Zampieri

Copyright © 2024 Yumin Song et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bridges situated on small-radius reverse curves play a pivotal role within some railway networks, exerting infuence over project-
wide design progress. Typically, assessing the safety of bridge design parameters necessitates laborious vehicle-bridge dynamic
coupling vibration numerical analysis or model experiments. To streamline the design process and enhance efciency during the
preliminary design phase, we propose an efcient method to assess the dynamic performance of bridges on small-radius reverse
curves. Tis approach enables direct prediction of bridge dynamic performance based on design parameters, eliminating the need
for numerical simulations and model experiments. We frst develop a vehicle-bridge coupling vibration program grounded in
train-curve bridge coupling vibration theory, validated using on-site measured data. Subsequently, through numerical simulation
experiments, we evaluate 80 simply supported beam bridges on small-radius reverse curves under various operating conditions,
generating ample dynamic response data for bridge pier tops and girders.Tese data are then compared with regulatory thresholds
to assign dynamic performance labels. After identifying essential design parameters as data features using Fisher scores, we
proceed to input these features into a support vector machine (SVM). Trough supervised training with dynamic performance
labels, this process empowers the SVMmodel to predict the dynamic performance of the bridge. Our results demonstrate that this
method circumvents the need for detailed vehicle-bridge interaction analysis, yielding an impressive 86.9% accuracy in predicting
dynamic performance and signifcantly boosting computational efciency. Besides, the top fve design parameters that signif-
icantly infuence the prediction of bridge dynamic performance are obtained. Tis novel approach has the potential to expedite
design assessments and enhance safety in railway bridge construction.

1. Introduction

Bridges situated on small-radius reverse curves hold a piv-
otal role in railway networks, shaping project design
progress. Traditionally, ensuring the safety of these bridge
design parameters involves time-consuming vehicle-bridge
dynamic coupling vibration numerical analysis and model
experiments.

Over the past decades, the dynamic interaction between
moving vehicles and bridges has been extensively studied.
Researchers have employed various numerical models and
analysis methods to address vehicle-bridge interaction.
Tese studies contribute to structural dynamics and en-
compass theoretical, numerical simulation, and real-world

experimental aspects [1–5].Tese investigations often utilize
diferent vehicle models, such as moving force models,
moving mass models, quarter-vehicle models, and full-
vehicle models [6–15]. Tese models describe vehicle mo-
tion and response through theoretical deduction or fnite
element modeling. Simultaneously, numerical simulation of
bridge structures usually employs fnite element modeling to
account for their intricate structural attributes. Te vehicle-
bridge interaction (VBI) system, a core concept in this feld,
describes the dynamic interaction between vehicles and
bridges [16, 17]. Tis system models vehicle and bridge
subsystems while considering wheel-rail contact in-
teractions. Te VBI system models, through theoretical
analysis or numerical simulation, have demonstrated
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accurate simulations of vehicle and bridge dynamic re-
sponses. However, in some cases, considering the full-
vehicle model and spatial dynamic interaction can entail
high computational costs, particularly when extensive
simulations or real-time online evaluations are required
[2, 18, 19].

Recently, machine learning methods have emerged as
promising computational algorithms in civil structural dy-
namics. Machine learning models demonstrate the ability to
tackle complex structural dynamic challenges by leveraging
vast structural data and vibrational information, providing
efcient and accurate predictions. Notably, literature [20, 21]
employed fully connected neural networks for dynamic
analysis of buildings under seismic excitations, reducing
computational workload. Another study [22] predicted wind
pressure time histories for tall buildings using machine
learning, addressing the dynamic efects of wind loads. In
addition, references [23, 24] estimated aerodynamic forces
and responses for long-span bridges, exploring deep
learning algorithms for dynamic response prediction of
wind-sensitive structures. In the realm of predicting vehicle-
bridge interaction, reference [25] developed an artifcial
neural network as a proxy model for VBI systems in railway
transportation, aiming to predict the time history of bridge
responses caused by vehicles. Furthermore, reference [26]
employed a nonlinear autoregressive exogenous input
neural network model to predict bridge accelerations sub-
jected to quarter-vehicle model loads in the vertical plane.
Beyond time history estimation, machine learning methods
have been employed to predict statistical variables. Refer-
ence [27] achieved maximum response prediction of
building structures under artifcial seismic efects using
structural parameters and multilayer perceptrons. Reference
[28] predicted the average strain response of bridges by
selecting total vehicle weight, truck length, vehicle speed,
and truck axle spacing as neural network inputs. However, to
the author’s knowledge, no literature has been found that
utilizes a machine learning approach to directly predict the
dynamic performance of bridges on small-radius curves
subjected to vehicle-induced vibrations and assess the im-
portance of selected design parameters for the dynamic
performance prediction.

Te objective of this paper is to propose an efcient
method for predicting the dynamic performance of bridges
on small-radius reverse curves, bypassing the cumbersome
steps of numerical simulation or model experiments, and
enhancing bridge design efciency. Te main process of the
methodology proposed in this article is described in Figure 1.
First, we establish a vehicle-bridge coupling vibration pro-
gram based on train-curve bridge coupling vibration theory
and validate it using on-site measured data. Subsequently,
we conduct numerical simulation experiments on 80 simply
supported beam bridges located on small-radius reverse
curves under various operating conditions, generating
ample dynamic response data for bridge pier tops and
girders. Tis data is then compared with regulatory
thresholds to assign dynamic performance labels. By
selecting critical bridge design parameters as data features,
we input them into a support vector machine (SVM) and

train the model under the supervision of dynamic perfor-
mance labels, empowering the SVMmodel with the ability to
predict the dynamic performance of bridge piers and girders.
In conclusion, our proposed approach ofers a novel and
efcient method to predict the dynamic performance of
bridges on small-radius reverse curves, alleviating the need
for exhaustive numerical simulations or model experiments.
Tis methodology holds the potential to accelerate design
assessments and enhance safety in railway bridge
construction.

2. Vehicle-Curve Bridge Coupling
Vibration Model

2.1.ModelConstruction. Te interaction system between the
vehicle and the bridge is comprised of two subsystems: the
vehicle subsystem and the bridge subsystem. Tese two
subsystems are connected through wheel-rail interactions,
with irregularities in the given track serving as an additional
excitation for the system. Te two subsystems utilize
a common coordinate system where the x-axis aligns with
the direction of train travel, the y-axis points upward, and
the z-axis is defned according to the right-hand rule. Tis
study employs the modal superposition method [29] to solve
the coupled vehicle-bridge vibration equation. Te imple-
mentation encompasses both program development and the
incorporation of modal analysis results obtained from the
commercial software ANSYS. Subsequent sections provide
an introduction to the spatial relationships of the vehicle and
curved bridge in modal coordinates, as well as an expla-
nation of the coupled vibration equations.

2.1.1. Train-Curved Bridge Spatial Relationship Processing.
Utilizing the method of moving coordinates and employing
coordinate transformations, the precise position of a train as
it traverses a curved bridge at a specifc moment can be
ascertained. Te mobile coordinate system is tailored for
each wheelset and moves uniformly along the centerline of
the track. Te origin of this coordinate system is situated at
the intersection point of the wheel axle and the track cen-
terline. According to the right-hand rule, the positive di-
rection of the x-axis aligns with the tangent to the curve, the
positive direction of the y-axis points vertically upwards
from the track plane, and the positive direction of the z-axis
corresponds to the curve’s normal direction.Tis is depicted
in the coordinate systems denoted as oixiyizi and ojxjyjzj,
as illustrated in Figure 2.

Assuming the train is moving at a constant velocity,
denoted as v, and at time t, the train has covered a distance of
Si along the track. By considering the characteristics of the
track curvature, the pertinent parameters at point Si (rep-
resenting the train’s position at time t) can be determined:

(1) Te overall coordinates of the curve represented as
(XOi, YOi, ZOi);

(2) Parameters at point Si including the angle αi between
the curve’s tangent and theOX axis, curvature ρi, and
cant angle ci;
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(3) Te employed moving coordinate systems, oixiyizi

and ojxjyjzj.

Assuming the wheelset’s center plane projection at time t
coincides with the centroid line of the bridge at node Bi, the
transformation expression of the kth mode shape vector φ
from the global coordinate system OXYZ to the moving
coordinate system oixiyizi can be formulated as follows:

φi,B � λφ �
Λ 0

0 Λ
 φ. (1)

In the provided equation, φi,B denotes the displacement
vector of the bridge’s centroid mode shape in the moving
coordinate system. Te matrix λ represents the coordinate

transformation matrix, attainable through a sequence of two
coordinate rotations.

Te formulation for Λ is given by

Λ �

cos αi 0 sin αi

− sin αi sin ci cos ci cos αi sin ci

− sin αi sin ci − sin ci cos αi cos ci

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

After the coordinate transformation, the mode shape
vector φi,B centered around the bridge’s centroid requires
additional contemplation of the rigid arm constraint
equations. When transitioning to the point along the track
with a distance Si where the train is situated, the vector φi

undergoes a transformation characterized by the following
relationship:
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Figure 1: Main process of the methodology.
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Figure 2: Moving coordinate of vehicle-curved bridge system. (a) Plan. (b) Front view.
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φi,B.

(3)

In the equation, xi,B, yi,B, and zi,B denote the positional
coordinates of the bridge centroid node Bi in the moving
coordinate system.

If at time t the plane projection of the wheelset center
does not coincide with the bridge centroid node Bi, a so-
lution can be achieved by utilizing a third-order cubic spline
interpolation between the overlapping points.Tis approach
allows for the determination of the bridge’s mode shape
displacement at any given point along the track’s centerline.

2.1.2. Train-Curved Bridge Coupling Vibration Equation.
Using the modal superposition technique [30], the dynamic
diferential equations of the coupled vehicle-bridge vibration
system are established. Tis methodology involves segre-
gating the vibration system into distinct vehicle and bridge
subsystems. Te resultant set of diferential equations
governing the overall system’s motion is articulated as
follows:

€qv  + 2 ξv  ωv  _qv  + ω2
v  qv  � fv qv , _qv , €qv , qb , _qb , €qb   ,

€qb  + 2 ξb  ωb  _qb  + ω2
b  qb  � fb qv , _qv , €qv , qb , _qb , €qb   ,

⎧⎪⎨

⎪⎩
(4)

where subscripts v and b, respectively, pertain to the vehicle
and the bridge.

Te dynamic interaction between the train and the
bridge is realized by means of the coupling forces exerted at
the contact interface between the two subsystems. Tese
coupling forces serve as the mechanism for coupling and
simultaneously act as internal excitations within the vi-
bration system. Conversely, generalized forces represent
external excitations applied to the vibration system.

(1) Solving Wheel-Rail Contact Force. Te contact forces at
the wheel-rail interface for both the vehicle and bridge
subsystems represent critical boundary conditions. Under
spatial vibration conditions, these contact forces consist of
the vertical force Fyj and the lateral force Fzj acting at the
wheel-rail interface. Exploiting the assumptions of tight
wheel-rail contact and neglecting yaw angles (assuming that
the wheelset is always in radial position), the association
between each contact force and the respective normal force
Nj and tangential force Tzj in the coordinate system
established at the contact point is formulated as follows:

Fy1 � N1 cos δ1 + θws(  − Tz1 sin δ1 + θws( ,

Fz1 � N1 sin δ1 + θws(  + Tz1 cos δ1 + θws( ,

Fy2 � N2 cos δ1 − θws(  + Tz2 sin δ1 − θws( ,

Fz2 � −N2 sin δ1 − θws(  + Tz2 cos δ1 − θws( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where θws represents the roll angle of wheelset.

(2) Calculation of Wheel-Rail Creep Force. Based on Kalker’s
theory of creep forces, the relationship between creep force,
creep coefcient, and creepage rate is defned as follows [11]:

Txj � −f11jξ1j,

Tzj � −f22jξ2j + f23jξ3j,

Mj � −f23jξ2j − f33jξ3j,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where Txj, Tzj, and Mj represent the longitudinal creep
force, lateral creep force, and rotational creep torque at the
wheel-rail interface, respectively. f11j, f22j, f23j, f33j are the
creep coefcients. ξ1j, ξ2j, and ξ3j denote the longitudinal
creepage rate, lateral creepage rate, and spin creepage rate of
the wheel-rail contact, respectively, when the train is in
straight-line motion.

Te wheel-rail creepage rate for wheelsets traversing
curved tracks can be revised as follows:

ξ1j
′ � ξ1j +(−1)

j
−b + rj sin δj  cos δj  cos ψws(   · ρi,

ξ2j
′ � ξ2j,

ξ3j
′ � ξ3j +(−1)

j cos δj  · ρi,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where ξ1j
′ , ξ2j
′ , and ξ3j

′ denote the longitudinal, lateral, and
spin creepage rates of the wheel-rail contact when the
wheelset traverses a curve with curvature ρi. rj stands for the
actual rolling radius of the wheelset. δj represents the
wheelset contact angle. ψws represents the wheelset
yaw angle.

Te infuence of curvature on the creep coefcient is
minimal, and for the sake of simplicity, it is often treated as if
in a straight-line scenario. Tis treatment only considers the
efect of the lateral ofset of the wheelset from the track
centerline when the wheelset traverses a curve.
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As a result, when a vehicle undergoes uniform curved
motion, the creep force at the wheel-rail interface can be
expressed as follows:

Txj � −f11jξ1j
′ ,

Tzj � −f22jξ2j
′ + f23jξ3j

′ ,

Mj � −f23jξ2j
′ − f33jξ3j

′ .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

(3) Generalized Forces. In theory, when a train is in curved
motion, the primary suspension force and secondary sus-
pension force of the train body should be transformed into
the moving coordinate system through coordinate trans-
formations. For this study, assuming a minimum curve
radius of 400m, it can be inferred that the deviation angle
between the train body coordinate system and the wheelset
coordinate system is extremely small. Terefore, the cal-
culation of primary and secondary suspension forces can be
directly performed as if the train is moving in a straight line.

Centrifugal force and canting force are generalized
forces that must be considered during curved train motion.
Assuming the wheelset i is at a curvature of ρi and a cant
angle of ci, the centrifugal force and canting force experi-
enced by the wheelset in themoving coordinate system are as
follows:

Cwi � −mwiρiv
2
,

Hwi � mwig sin ci,

Vwi � mwig 1 − cos ci( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where Cwi represents the centrifugal force along the oiz

direction. Hwi signifes the force along the oiz direction
induced by canting. Vwi denotes the force along the oiy

direction induced by canting. mwi refers to the mass of the
wheelset i.

Approximating by considering the average curvature
and cant angle for each of the four wheelsets in a train
section, the centrifugal force and canting force experienced
by each train section are calculated as follows:

Cf,c � −mf,c

1
4



4

i�1
ρi

⎛⎝ ⎞⎠v
2
,

Hf,c � mf,cg sin
1
4



4

i�1
ci

⎛⎝ ⎞⎠,

Vf,c � mf,cg 1 − cos
1
4



4

i�1
ci

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where subscripts f and c, respectively, indicate the bogie and
carbody.

2.2. Model Verifcation

2.2.1. Field Experiment. Due to geographical constraints,
a cluster of railway bridges is situated along an “S”-shaped
curve with relatively small radii. Figure 3 illustrates the plan
layout of the railway route situated in East China, depicting
curve radii of 400m, 500m, and 500m. Transition curves of
lengths 50m, 40m, and 60m are respectively used between
three sections of circular arc curves. Te visual represen-
tation of the railway line and bridges can be found in
Figure 4. Te bridge types encompass: (1) 80 prestressed
concrete simply supported beam bridges: Spans include
16m, 20m, 24m, and 32m. (2) Reinforced concrete con-
tinuous rigid frame bridges: Span confgurations of
18.3 + 24.0 + 18.3m and 17.3 + 30 + 30 + 19.3m. Tis study
exclusively focuses on the investigation of the 80 simply
supported beam bridges.

We selected several representative bridges on the railway
line and installed velocity and displacement sensors at the
mid-span and the top of the bridge piers. Te sensors were
set to a sampling frequency of 50Hz. Te layout of the
sensors is illustrated in Figures 5 and 6. Te predominant
train types on this route are C62 freight trains [31]. Te
dynamic responses of the bridges as the trains passed the
sensor locations were recorded.

After completing the testing phase, we performed
postprocessing and concise analysis of the test signals,
primarily focused on determining the resonant frequencies
of the main beam and bridge piers. Figure 7 displays the
displacement curve of a specifc pier within 10 seconds after
a train passes, along with its frequency spectrum repre-
sentation. Te displacement curve is measured by the dis-
placement gauge at the top of the pier. Te frequency
spectrum is obtained through Fourier transform. Te
spectrum analysis reveals a frst transverse vibration fre-
quency of 3.6Hz for the pier. Following this method, the
resonant frequencies of both main beams and bridge piers
for all tested bridges were determined.

2.2.2. Numerical Simulation. In general, employing solid
elements for bridge modeling provides a fner analysis of
vehicle-bridge coupling vibrations. However, given the ex-
tensive number of bridges in this case study and the focus on
dynamic responses at bridge midspans and pier tops, a beam
element approach was adopted for bridge modeling. Te use
of beam elements ofers a substantial reduction in com-
putational costs while still meeting research requirements.
Figure 8 depicts the beam element fnite element models for
all bridges located on the S-shaped curve, along with the
frst-order vertical bending mode and frst-order transverse
bending mode for the 32m bridge. With the bridge models
in place, we proceeded to conduct vehicle-bridge coupling
vibration analysis, following the principles outlined in
Section 2.1. Given the limited data on track irregularities, the
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US six-level spectrum from the Federal Railroad Adminis-
tration is utilized to simulate irregularities in the lateral,
rotational, and vertical directions. We chose the level 5 ir-
regularity as the track irregularity used in simulation by
survey and trail. Tis enabled us to obtain dynamic response
results for the bridge fnite element models corresponding to
the feld test measurement points.

2.2.3. Results Comparison. We utilized displacement and
velocity signals obtained from feld measurements to cal-
culate the natural frequencies of the main beam and the
modal displacement ratios between the pier top and bottom.
Tese results were then compared with the outcomes of
a numerical simulation using a fnite element model of the
bridge. Table 1 presents a comparison between the numerical

Bridge design starting point Bridge design end point

L1JD3

α - 68° 14' 48''

R - 400

l - 50

T - 296.231

L - 526.451

L1JD4
α - 87° 32' 19''
R - 500
l - 40
T - 499.097
L - 803.92

L1JD5α - 41° 39' 43''R - 500l - 60
T - 220.351L - 423.568

N

(a)

(b)

Figure 3: Plan layout of the railway line.

(a) (b)

Figure 4: Railway line and bridge appearance. (a) Railway line. (b) Bridge.

Displacement gauge (transverse)

Vibration sensor (Vertical) Vibration sensor (vertical)Vibration sensor (transverse)

Steel bracket

Figure 5: Arrangement of mid-span test points.
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Displacement gauge (transverse)

Steel bracket

Displacement gauge (transverse)

Vibration sensor (transverse)

Figure 6: Arrangement of pier test points.
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simulation and measured results for two bridges with spans
of 20m and 24m. It is evident from the table that the frst-
order lateral natural frequencies of the main beam and the
modal displacement results of the piers obtained from feld
measurements and numerical simulations are in close
agreement. Tis agreement confrms the accuracy of the
established fnite element model of the bridges.

Additionally, a comparative analysis was conducted
between the measured and simulated displacement time-
history curves of the identical bridge during the train’s
passage. However, achieving complete consistency between
the vehicle parameters of the simulated train and those of the
actual operational train poses signifcant challenges. Tis is
due to the operational freight trains, whose load weights are
typically unknown and whose speeds may not be constant.
Moreover, real measured data often contains noise in-
terference, making it difcult to perfectly align the measured
and simulated results.

Taking into consideration that freight trains often
operate empty, a simulation model of the C62 freight train
(comprising a DF4 locomotive and 20 empty C62 cars) is
established. After investigating the approximate speed of the
freight train passing through this curved bridge (at 35 km/h),
the lateral displacement response at the midspan of a 24m
simply supported beam bridge is computed. Tis simulated
data is then compared with the displacement response
obtained from the same bridge point during the actual
passage of the train, as shown in Figures 9 and 10. It is
apparent that the two responses in the time and frequency
domains are largely consistent, afrming the efectiveness of
the numerical simulation model.

3. Efficient Performance Prediction Method

3.1. Performance Evaluation Metric. In order to assess the
dynamic performance of bridges on small-radius reverse
curves, a performance evaluation criterion must be devised.
Critical indicators afecting bridge safety encompass the
lateral displacement, lateral acceleration, and vertical

acceleration at the midspan of the main beam and the top of
bridge piers. Evaluation of whether these parameters meet
safety requirements involves adherence to the railway bridge
inspection specifcation of China [32], with specifc
threshold values or recommendations as follows:

(1) For situations where the train speed is less than
80 km/h, the recommended maximum lateral dis-
placement at the midspan of a concrete bridge is
defned by

Amax ≤
L

7B2
, (11)

where L represents the calculated span of the bridge,
and B2 denotes either the transverse center-to-center
distance of multi-girder systems or the spacing be-
tween supports.
For bridge piers with pile foundations, the suggested
maximum lateral displacement can be expressed as
follows:

Amax ≤
(H + ∆h)

2

100B2
+ 0.2, (12)

where the corrected height ∆h accounts for soil
characteristics.

(2) Te lateral acceleration of bridges is limited to
1.4m/s2.

(3) Te vertical acceleration of bridges is restricted to
3.5m/s2.

Tese standards, derived from the railway bridge in-
spection specifcation, guide the assessment of lateral dis-
placement, lateral acceleration, and vertical acceleration in
order to ensure the safety of bridges situated on small-radius
reverse curves. Compliance with the specifcation is pivotal
in enhancing the dynamic performance and safety of such
structures.

(c)

Figure 8: Bridge fnite element models and typical displacement modes. (a) Finite element models of all bridges. (b) First-order vertical
bending mode. (c) First-order lateral bending mode.

8 Shock and Vibration



Ta
bl

e
1:

C
om

pa
ri
so
n
of

m
od

al
re
su
lts

be
tw
ee
n
nu

m
er
ic
al

sim
ul
at
io
n
an
d
fe
ld

m
ea
su
re
m
en
ts
.

Sp
an

(m
)

N
at
ur
al

fr
eq
ue
nc
y
(H

z)
M
od

al
di
sp
la
ce
m
en
tr

at
io

be
tw
ee
n
pi
er

to
p
an
d

bo
tto

m
Fi
rs
t-
or
de
r
ve
rt
ic
al

be
nd

in
g
of

m
ai
n
be
am

Fi
rs
t-
or
de
r
la
te
ra
lb

en
di
ng

of
m
ai
n
be
am

Si
m
ul
at
io
n

M
ea
su
re
m
en
t

Er
ro
r
(%

)
Si
m
ul
at
io
n

M
ea
su
re
m
en
t

Er
ro
r
(%

)
Si
m
ul
at
io
n

M
ea
su
re
m
en
t

Er
ro
r
(%

)
20

6.
16

6.
24

1.
3

12
.0
6

12
.1
5

0.
7

2.
63

2.
42

8.
0

24
5.
12

5.
36

4.
7

8.
45

8.
67

2.
6

2.
84

2.
56

9.
9

Shock and Vibration 9



Tis paper introduces a comprehensive method for
evaluating bridge dynamic performance based on the
aforementioned threshold values. Tis approach integrates
with labels used in classifcation tasks in machine learning,
facilitating the direct prediction of the dynamic performance
level of bridges through design parameters. Figure 11 il-
lustrates the process of grading bridge dynamic performance
using this comprehensive evaluation method. Initially,
displacement and acceleration metrics for evaluating bridge
dynamic performance are computed based on numerical
simulation models, totaling four distinct metrics. Te sim-
ulated values for these four metrics are calculated in relation
to the limits or recommended values specifed in regulations,
measuring the surplus capacity of bridge dynamic perfor-
mance. A higher proportion signifes a smaller surplus ca-
pacity in the bridge’s dynamic performance. If the
proportion exceeds 100%, it indicates a need for enhance-
ment in the bridge’s dynamic performance. Subsequently,
the maximum value among these four proportions is

selected, compared against the ratio intervals corresponding
to the dynamic performance levels proposed in this study.
Based on this comparison, the bridge is assigned its re-
spective dynamic performance level. It is worth noting that
these dynamic performance levels correspond to the labels
used in the subsequent classifcation tasks.

3.2. Feature Selection. In order to directly predict the dy-
namic performance of bridges on small-radius reverse
curves, it is crucial to select the most relevant and signifcant
parameters from the multitude of variables. Feature selec-
tion serves to reduce computational costs, mitigate over-
ftting risks, and enhance the interpretability of
computational outcomes. Tis study opts for design pa-
rameters closely linked to or directly correlated with dy-
namic responses as features. Te selected parameters
encompass (1) train speed, (2) bridge span, (3) pier height,
(4) radius of the curve where the main beam is located,
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Figure 9: Time domain lateral displacement response at bridge midspan. (a) Numerical simulation. (b) Field measurement.
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Figure 10: Frequency domain lateral displacement response at bridge midspan. (a) Numerical simulation. (b) Field measurement.

10 Shock and Vibration



(5)–(7) frst to third-order vertical natural frequency of the
main beam, (8)–(10) First to third-order lateral natural
frequency of the main beam, (11)–(13) frst to third-order
torsional natural frequency of the main beam, (14)–(16) frst
to third-order longitudinal natural frequency of the pier,
(17)–(19) frst to third-order lateral natural frequency of the
pier, and (20)–(22) frst to third-order torsional natural
frequency of the pier.

To eliminate redundant features and undertake di-
mensionality reduction, principal component analysis
(PCA) [33] is oftentimes employed. PCA is a classic sta-
tistical method that transforms correlated variables into a set
of unrelated composite variables, or principal components.
Tese new variables, obtained as linear combinations of the
original variables, efectively reduce data dimensions. While
PCA is capable of projecting high-dimensional data into
a lower-dimensional space, preserving as much original data
information as possible while reducing redundancy, it falls
short in discerning the importance of original features (i.e.,
their contribution to machine learning model performance)
due to the nature of feature mapping. To address this
limitation, we turn to the Fisher Score method [34, 35] to
quantify the distinctiveness between features, thereby fur-
ther exploring which design parameters within the original
set hold greater relevance for predicting bridge dynamic
performance.

Te Fisher score is a powerful technique used for re-
ducing the dimensions of features in a dataset. Its primary
objective is to identify a subset of features that, within a data
space formed by these selected features, maximizes the
distances between data points belonging to diferent classes
while minimizing the distances between data points within

the same class. Specifcally, given a training dataset X ∈ Rm×n

associated with c distinct classes, the Fisher score of the ith
feature is calculated using the following equations [34, 35]:

FS fi(  �
Sb fi( 


c
k�1 S

(k)
t fi( 

,

Sb fi(  � 
c

k�1
nk μ(k)

i − μi 
2
,

S
(k)
t fi(  � 

nk

j�1
x

(k)
ij − μ(k)

i 
2
,

(13)

where Sb(fi) represents the between-class scatter of the ith
feature, nk stands for the number of samples in the kth class,
μ(k)

i denotes the mean of the ith feature within the kth class,
μi signifes the mean of the ith feature in the dataset X,
S

(k)
t (fi) represents the within-class scatter matrix of the ith
feature related to the kth class, and x

(k)
ij denotes the value of

the ith feature for the jth sample in the kth class.
Higher Fisher scores indicate larger feature disparities

between the classes, thus highlighting signifcant contribu-
tions for the dynamic performance prediction tasks in this
study. In addition, reducing feature dimensions by selecting
a small number of features associated with high Fisher
Scores can enhance the training efciency of classifcation
models and mitigate the risk of overftting.

3.3. Support Vector Machine. Support vector machine
(SVM) [36] stands as a classical classifcation algorithm with
the core objective of identifying the optimal classifcation
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Figure 11: Determination of bridge dynamic performance level.
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hyperplane when the sample data is linearly separable, as
illustrated in Figure 12. Te samples in proximity to the
optimal hyperplane are termed support vectors, while the
dashed lines parallel to the hyperplane and passing through
these sample points represent the margin boundaries. SVM
centers its focus on these support vector points, seeking to
maximize the margin between the boundary lines through
the identifcation of an optimal hyperplane.

Let x ∈ Rn represent the feature vector data, and
y ∈ −1, 1{ } denote the class labels. Te discriminant func-
tion (hyperplane) can be expressed as f(x) � ωx + b, where
ω represents the weight vector normal to the hyperplane,
and b is the bias term. At f(x) � 0, the sample x lies on the
classifcation hyperplane; when f(x) > 0, x is classifed under
y � 1; and when f(x) < 0, x falls within y � −1.Terefore, if
y(ωx + b)> 0 holds for all samples x, it implies correct
classifcation for all samples.

Generally, the two margin boundaries on which the
support vectors reside are defned as ωx + b � ±1. Conse-
quently, the distance from a support vector to the classif-
cation hyperplane becomes 1/‖ω‖, while the classifcation
margin equates to 2/‖ω‖. To maximize the classifcation
margin of 2/‖ω‖, and to facilitate optimization, this is often
reformulated to minimize (1/2)‖ω‖2. Tus, the SVM algo-
rithm’s objective function for discovering the optimal hy-
perplane is obtained as follows:

min
1
2
‖ω‖

2
,

s.t., yi ωxi + b( > 0, i � 1, 2, · · · , n.

(14)

Te standard approach for solving the objective function
employs the Lagrange dual method. Initially, the objective
function is transformed into Lagrange form:

L(ω, b, α) �
1
2
‖ω‖

2
− 

n

i�1
αi yi ωxi + b(  − 1( , (15)

where αi ≥ 0 represents Lagrange multipliers.
Taking derivatives of function L with respect to ω and b,

and setting them to zero, yields the following equation:
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Tus, function L can be deduced as follows:

L(ω, b, α) � 
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T
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Ultimately, the optimization problem is formulated as
follows:

max
α
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αiαjyiyjx

T
i xj,

s.t., αi ≥ 0(i � 1, 2, · · · , n), 
n

i�1
αiyi � 0.

(18)

Trough this, the algorithm can compute α that maxi-
mizes the objective function, thereby obtaining corre-
sponding ω and b values, establishing the optimal
classifcation hyperplane.

Te aforementioned outlines the SVM algorithm’s
implementation for linearly separable datasets. However, in
practical applications, many problems are not linearly
separable. For such nonlinearly separable scenarios, a non-
linear mapping function is often employed to map the
dataset into a higher-dimensional space, rendering it linearly
separable in that space. Tis approach facilitates the con-
struction of an SVM classifer to seek the optimal hyper-
plane. “It is noteworthy that this study utilizes the radial
basis function kernel function in SVM to address non-
linearly separable scenarios efectively.”

Te original SVM method, initially designed for bi-
nary classifcation, has been adapted in this study using
the one-vs-rest strategy for multiclass classifcation. Tis
approach involves training individual binary classifers for
each class, designating the specifc class as the positive
class, and grouping the remaining classes as the negative
class. During the prediction phase, these classifers assign
decision scores, and the class associated with the classifer
yielding the highest score is selected as the ultimate
predicted class. Tis strategic adoption efciently trans-
forms the multiclass problem into a sequence of binary
decisions.

4. Results

Tis study utilizes a C62 freight train comprising 21 cars,
inclusive of a DF4 locomotive, 10 loaded C62 cars, and 10
empty C62 cars. Te speed conditions vary from 40 km/h to
80 km/h, increasing in increments of 10 km/h. Te dynamic
responses of the train passing through 80 simply supported
beam bridges on small-radius curves are computed. Tus,
the resulting dataset comprises 400 data samples. For each
sample, the lateral displacement, lateral acceleration, and
vertical acceleration at the midspan of the girder and the
lateral displacement at the top of the pier are compared with
the corresponding code limits or recommended values. Te
performance evaluation values, representing the proportions
of simulation values to standard values, as discussed in
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Section 3.1, are derived. Figure 13 displays the maximum
evaluation values for all bridges under the fve train speed
conditions.

Observing Figure 13 reveals that, with the exception of
certain bridges under the 70 km/h and 80 km/h train speeds,
where the evaluation values surpass 100%, all other bridges
meet the specifed limit requirements. Considering that the
actual operating speeds of freight trains on this curve line
typically do not exceed 60 km/h, the dynamic performance
of all bridges meets the regulatory requirements. Further
analysis of the dynamic performance computation results
indicates that the majority of bridges exhibiting high eval-
uation values do so because the lateral displacement of the
pier top increases with higher train speeds, often exceeding
the recommended values stipulated in design codes. As
a result, when designing curved bridges, enhancing the
lateral and torsional stifness of piers becomes crucial.

Te 400 data samples are labeled from 0 to 10 according
to the outcomes depicted in Figure 13 and in accordance
with the dynamic performance levels proposed in Section
3.1. However, in this study, only 5 labels correspond to the
data samples. Te distribution of these labels is depicted in
Figure 14. Tis fgure highlights that label 8 constitutes the
majority among all the labels, while label 6 holds the smallest
proportion.

In this study, the predictive outcomes of bridge dynamic
performance are evaluated across six distinct tasks based on
diferent speed divisions, as outlined in Table 2. With the
exception of the fnal task, which encompasses all speed
conditions in both training and test sets with independent
data, tasks 1–5 involve distinct speed conditions. Tasks 1–5
specifcally evaluate the model’s efcacy in handling diverse
and unfamiliar vehicle speeds. Evidently, the frst fve tasks
establish the sample ratio of 4 :1 for the training and test sets
based on the division of speed conditions. Tis same sample
allocation ratio is maintained in the fnal task, where the
training and test sets follow a 4 :1 ratio, randomly selected

from the entire dataset. Tese tasks primarily assess the
predictive models’ ability to generalize bridge dynamic
performance from known to unknown train speeds, as well
as the model’s performance when trained and applied using
data from identical train speeds. During the training phase,
a 5-fold cross-validation technique is utilized to determine
the optimal hyperparameters for the support vector machine
(SVM). In the application phase, the SVM with optimal
hyperparameters is employed on the test data to predict
dynamic performance outcomes.

Figure 15 showcases the importance of various design
parameters obtained through Fisher Score computation
across the six tasks. Te feature numbers correspond to the
design parameter numbers in Section 3.2, ensuring con-
sistency. Te signifcance of diferent features remain con-
sistent across various tasks, as illustrated by the average
values depicted in Figure 15 across the six tasks. Notably, the
top fve contributing features to the predictive model’s
performance are features numbered 1, 17, 18, 8, and 4. Tey
correspond to Train speed, First-order lateral natural fre-
quency of the pier, Second-order lateral natural frequency of
the pier, First-order lateral natural frequency of the main
beam, and Radius of the curve where the main beam is
located, respectively.Tis fnding emphasizes the paramount
importance of aligning these fve crucial design parameters
during the bridge design phase. In other words, if the
predicted outcomes for bridge dynamic performance do not
meet the regulatory requirements, adjusting these fve design
parameters should be considered the primary course of
action.

Figure 16 illustrates the results of dynamic performance
prediction utilizing features sorted by the Fisher Score. Te
fgure clearly indicates that as the count of features increases,
the predictive accuracy for all six tasks steadily enhances.
Upon reaching eight features, the predictive accuracy has
essentially reached the level of accuracy achieved using all
features.Tis validates the efectiveness of the Fisher score in

Optimal hyperplane

Maximum margin

Class 1
Class 2
Support vector (Class 1)
Support vector (Class 2)

Figure 12: Support vector machine.
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prioritizing feature importance for the predictive model and
demonstrates its potential to reduce feature dimensions,
thereby enhancing the training efciency of the SVMmodel.

Te highest predictive accuracy for bridge dynamic
performance is 76.3% for Task 1, 79.2% for Task 2, 80.6% for
Task 3, 81.1% for Task 4, and 75.0% for Task 5. For Task 6, the
highest predictive accuracy reaches 86.9%, surpassing the
results of Tasks 1 to 5. Tis disparity can be attributed to the

fact that Tasks 1 and 2 involve training SVMmodels on data
with known vehicle speeds and then applying them to data
with unknown vehicle speeds. Te bridge dynamic response
data difer between the diferent vehicle speeds, leading to
relatively poorer model test outcomes. In contrast, Task 6
encompasses training and testing sets that include data with
all vehicle speeds, resulting in improved predictive outcomes
compared to Tasks 1 to 5.
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Figure 13: Maximum evaluation values for all bridges under fve train speed conditions. (a) 40 km/h. (b) 50 km/h. (c) 60 km/h. (d) 70 km/h.
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Te comparative results of these six tasks underscore
the importance of comprehensively incorporating all op-
erational conditions within the training set. Furthermore,
the 86.9% predictive accuracy achieved in Task 6 highlights
the efectiveness of the proposed method and its signifcant
potential for application in the design of bridges on small-
radius curves. Tis method involves training a bridge
dynamic performance prediction model based on

established numerical simulation models. It directly pro-
vides predicted values for the dynamic performance level of
similar bridges, facilitating the optimization of design
parameters in the initial design phase. In addition, it allows
for a rough but rapid safety assessment of already con-
structed bridges, saving signifcant costs and time required
to establish vehicle-bridge coupled vibration analysis
models.
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Figure 14: Distribution of data sample labels.

Table 2: Bridge dynamic performance prediction tasks.

Task Training dataset (km/h) Test dataset (km/h)
1 40, 50, 60, 70 80
2 40, 50, 60, 80 70
3 40, 50, 70, 80 60
4 40, 60, 70, 80 50
5 50, 60, 70, 80 40
6 40–80 40–80
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5. Conclusion

Tis paper proposes an efcient method to predict the
dynamic performance of bridges on small-radius reverse
curves. By establishing a vehicle-bridge coupling vibration
program based on train-curve bridge coupling vibration
theory and conducting numerical simulation experiments,
we generate ample a dynamic response data of bridges and
label them with dynamic performance level. Te bridge
design parameters related to these dynamic response data
are fed into a SVM to train a model that can directly predict
the bridge’s dynamic performance.

Te outcomes reveal the highest predictive accuracy for
bridge dynamic performance to be 86.9%, demonstrating the
efectiveness of our proposed methodology and its potential
utility in the design of bridges on small-radius curves. Te
relationship between feature number and Fisher score is also
explored. Notably, the top fve design parameters that sig-
nifcantly afect bridge dynamic performance prediction are
train speed, frst-order lateral natural frequency of the pier,
second-order lateral natural frequency of the pier, frst-order
lateral natural frequency of the main beam, and radius of the
curve where the main beam is located. Tese fndings un-
derscore the critical role of harmonizing these parameters
during the bridge design process. When predicted bridge
dynamic performance falls short of safety standards, pri-
oritizing adjustments to parameters directly related to these
fve parameters is recommended.

Te results from our study underscore the potential of
our approach for facilitating the design and evaluation of
bridges, particularly those located on small-radius curves. As
the railway industry continues to evolve, our research
contributes valuable insights into the fast optimization of
bridge designs, ultimately ensuring safer and more efcient
railway systems.
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