
Research Article
The Modeling Method for Vibration Characteristics Analysis of
Composite-Laminated Rotationally Stiffened Plate

Hong Zhang ,1,2,3 Yiqun Ding ,2 Lin He,1,3 Changgeng Shuai,1,3 and Chao Jiang1,3

1Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033, China
2College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3National Key Laboratory on Ship Vibration & Noise, Wuhan 430033, China

Correspondence should be addressed to Hong Zhang; zhanghongyuxin@outlook.com

Received 19 September 2023; Revised 20 March 2024; Accepted 23 March 2024; Published 16 April 2024

Academic Editor: Duc-Duy Ho

Copyright © 2024 Hong Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te composite-laminated rotationally stifened plate is widely applied in aviation, aerospace, ship, machinery, and other felds. For
structural design and optimization, to investigate the vibration characteristics is important. In this paper, a modeling method of
composite-laminated rotationally plate is established. Te frst-order shear deformation theory (FSDT) and the modifed Fourier
series are applied to construct the admissible displacement function of the stifened plate-coupled systems. On this basis, the
energy function of composite-laminated rotationally stifened plate is established. Combined with the artifcial virtual spring
technology, the proposed theory could be used to analyze the vibration characteristics of composite-stifened plate-coupled
systems with various classical boundary conditions or arbitrary elastic boundary conditions. Te Rayleigh–Ritz method is used to
solve the energy function. Tus, the vibration characteristics of the composite-laminated rotationally stifened plate are obtained
and analyzed.Te correctness of the theoretical analysis model was verifed throughmodal experiments. On this basis, the efect of
some important parameters on the vibration characteristics of stifened plate structures is studied, such as the number, thickness,
and width of the laminated stifener, varying structural parameters, and diferent boundary conditions.Tis study can provide the
theoretical basis for the vibration and noise reduction of such structures.

1. Introduction

Te composite-laminated rotationally stifened plate are basic
structural element in aviation, aerospace, ship, machinery,
and other felds, which makes it widely used in vehicle body,
ship hull, and housing construction. Due to the special
working environment, the plate structure is often subjected to
complex dynamic loads, which causes mechanical vibration.
In consequence, the vibration of composite-laminated rota-
tionally stifened plate is inevitably generated in engineering
practice. To reveal the vibration characteristics and reduce
vibration and noise, it is necessary to intensively investigate
the vibration characteristics of composite-laminated rota-
tionally stifened plate. In recent years, rotary composite plate
structures have been widely used in felds such as aerospace,
shipbuilding, and ocean and have become an important di-
rection for lightweight development. However, due to factors

such as impurities in the environment and the imperfectness
of the process during the preparation process of composite
materials, defects such as pores, impurities, and fber curls will
inevitably occur, which will afect the strength and stifness of
the structure. Terefore, reinforcing stifeners are installed at
appropriate positions of the plate structure through me-
chanical connections or adhesive bonding to efectively im-
prove the overall strength and rigidity of the structure. Te
addition of reinforcing stifeners results in discontinuous
changes in material, mass, and damping parameters at the
coupling interface between the plate and the reinforcing
stifeners. Tis leads to complex changes in waveform con-
version and energy loss of vibration waves at the coupling
interface between the plate and the reinforcing stifeners.
Terefore, it is of great signifcance to conduct theoretical
modeling and vibration characteristics research on the
composite-laminated rotationally stifened plate.
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Toshihiro et al. [1] studied the free vibration of an annular
plate with radial stifeners arranged at equal angle intervals on
two surfaces of the plate using the Ritz method. Te spline
function was used as the allowable function for plate de-
fection to calculate the natural frequency and mode of vi-
bration of the plate, and the infuence of stifeners on them
was analyzed. Jafari et al. [2] conducted free vibration analysis
of annular plates with nonuniform eccentric stifeners and
nonuniform spacing distribution stifeners. Te stifeners
were treated as discrete elements using the Ritz method, and
the efects of nonuniform eccentric distribution and non-
uniform spacing distribution on natural frequencies were
analyzed. Qin et al. [3] modeled circular stifened plates as
a composite structure composed of circular plates and stif-
eners and proposed a meshless method for bending and free
vibration analysis of circular stifened plates based on the frst-
order shear deformation theory. Golmakani et al. [4, 5], based
on the frst-order shear deformation theory, adopted the
nonlinear von Karman plate theory, combined it with the
fnite element method, and studied the elastic large defection
mechanical behaviour of axisymmetric composite-stifened
circular and annular-laminated plates under transverse uni-
form load. Te reinforcing stifener is an orthotropic material
with a circular shape. Te efects of plate thickness, stifener
depth, thickness, and boundary conditions such as fxed
support and simply supported on the nonlinear bending
performance of reinforced circular and annular laminated
plates were given. Ou et al. [6] used the weak form quadrature
elementmethod to analyze the nonlinear dynamic response of
cylindrical composite stifened laminated plates with dome
shapes. Te Newmark numerical integration method and the
Newton Raphson iterative method are used to solve the
nonlinear control equations. Examples including isotropic-
and composite-laminated plates were provided to verify the
efectiveness and accuracy of the formulas. Te efects of
geometric parameters, ply order, fxed, and simply supported
boundary conditions on structural vibration were studied.

Peng et al. [7] proposed the meshless Galerkin method for
geometrically nonlinear analysis of arbitrary polygon and
circular stifened plates based on the frst-order shear de-
formation theory. Due to the absence of a grid in the model,
reinforcing stifeners can be placed anywhere on the slab, and
changing the position of the reinforcing stifeners does not
require remeshing of the slab. Tis method explores the de-
fection calculation results of polygonal and circular stifened
plates under diferent boundary conditions, load forms, and
reinforcement arrangement forms and proves the efectiveness
of the calculation method through comparison with fnite
element software. Bhimaraddi et al. [8], based on the classical
plate theory, used the method of combining the annular sector
plate element and the curved beam element to carry out the
fnite element analysis of the orthogonal stifened annular
sector plate and verifed the efectiveness of this method.
Nagesh et al. [9] provided a detailed description of the
noncoupled damagemodel based on the numerical model and
used fnite element analysis to evaluate the large deformation
and ductile fracture failure of laterally stifened circular plates
with fxed boundary conditions under uniform pulse loads.
Calin Itu et al. [10] proposed a method to improve the stifness

of composite circular plates by installing radial stifeners and
studied the infuence of diferent materials, thicknesses, and
arrangement of stifeners on the stifness of composite circular
plates under general boundary conditions using the fnite
element method. Turvey et al. [11] studied the elastic-plastic
large defection response of a single radial stifened circular
plate by establishing an Ilyushin full-section yield model for
plates and an improved Von Mises yield model for stifeners,
combined with the fnite diference mesh method. Te efects
of the depth of stifener, boundary conditions for simple and
fxed supports, and thickness of the plate on the elastic-plastic
large defection parameters are given.

In summary, although domestic and international scholars
have conducted extensive research on the vibration charac-
teristics of rotationally stifened plate and shell structures,
there are relatively a few research objects focused on composite
materials, especially if the reinforcing stifeners are also made
of composite materials. We will only discuss a specifc metal
plate structural form, and when it comes to other structural
forms, we will also need to carry out tedious modeling work.
Moreover, the boundary conditions are relatively single, and
there is relatively little research on complex elastic boundaries.
Terefore, establishing a unifed analysis model for the vi-
bration characteristics of composite-stifened plate and shell
structures with complex boundaries is of great signifcance.

In this article, a unifed analysis model for the vibration
characteristics of the composite-laminated rotationally stifened
plate structure is established through the frst-order shear de-
formation theory (FSDT) and the modifed Fourier series
method [12–14]; specifcally, we establish a unifed analysis
model of composite-laminated rotationally stifened plate
structure under elastic boundary conditions. Te structure is
coupled with stifened plate and stifened beam. Combined with
the modifed Fourier series method and Rayleigh–Ritz method,
the vibration characteristic of the model can be solved. After
comparison and verifcationwith the fnite elementmethod and
experiment, the efect of some important parameters on the
vibration characteristics of composite-laminated rotationally
stifened plate structure is studied, such as the number,
thickness, and width of the stifener, varying material param-
eters, and diferent boundary conditions.

2. Establishment of a Unified Analysis Model of
Composite-Laminated Rotationally Stiffened
Plate Structure

2.1. Model Description. Te vibration analysis model of the
composite-laminated rotationally stifened plate is com-
posed of the composite-laminated rotationally stifened plate
coupled with n laminated curved beams. Te rotary plate
structure includes annular sector plate, circular sector plate,
annular plate, and circular plate. Te specifc model de-
scription is shown in Figure 1. Te coordinates of the
laminated plate are located in the coordinate system (o- z, θ,
r) as shown in the fgure. Te coordinates of the nth lam-
inated curved beam are located in the coordinate system
(on − zn, θn, xn) as shown in the fgure. Te inner radius and
outer radius of the composite-laminated rotationally
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stifened plate in the stifened plates are R1 andR2, where
Rp � R2 − R1 and the thickness is hp. Te curvature radius of
the laminated curved beam is Rbn, width is bn, and thickness
is hn. Te rotation angle of the entire stifened plate is ϑ.
According to the diferent values of geometric parameters,
there are the following models:(1) when 0<R1 <R2, ϑ� 360°,
the structure is an annular stifened composite plate; (2)
when 0<R1 <R2, 0< ϑ< 360°, the structure is an annular
fan-shaped stifened composite plate; (3) when R1 � 0,
ϑ� 360°, the structure is a circular stifened composite plate;
and (4) when R1 � 0, 0< ϑ< 360°, the structure is fan-shaped
stifened composite plate.

As shown in Figure 2(a), at the edge of the composite-
laminated rotationally stifened plate, general boundary
conditions are defned by introducing three groups of linear
springs ku, kv, kw and two groups of torsion springs Kr, Kθ
along the u, v, w directions, respectively [15–17], continuous
distribution of spring groups along the boundary. ku

θ0, k
v
θ0, k

w
θ0,

Kr
θ0, and Kθ

θ0 represent fve sets of boundary springs at the
boundary θ� 0°. Te same can be said for the boundary of the
θ� ϑ, r� 0, and r � Rp spring and can be represented by this
method. For sector-stifened composite plates, the stifness of
the boundary spring at the boundary r� 0 is set to 0; for
annular stifened composite plates, the stifness of the
boundary spring at the boundary θ� 0° and θ� 360° is set to 0;
and for circular stifened composite plate, the stifness of the
boundary spring at the boundary r� 0, θ� 0°and θ� 360° is set
to 0. When rotating angle ϑ� 360°, laminated plates (the nth
laminated beam) in the composite-laminated rotationally
stifened plate will produce the coupling boundary as shown
in Figure 2(b) (Figure 2(c)) at the two edges of θ� 0° and
θ� 360°. Tree sets of linear coupled springs kp

uc, kp
vc, kp

wc (k
bn
uc,

kbn
vc , and kbn

wc) and two sets of torsional springs Kp
rc, K

p
θc (K

bn
xc ,

and K
bn

θc) are uniformly arranged on the coupling boundary to
realize the coupling of the composite-laminated rota-
tionally stifened plate. Figure 2(d) shows the uniformly
arranged coupling springs between the laminated plate and
laminated curved beam in composite-laminated rotation-
ally stifened plate, including three sets of linear coupling
springs, i.e., kcp

uc, kcp
vc , and kcp

wc and two sets of torsional
springs, i.e., Kcp

xc and Kcp
yc .

2.2. Construction of Admissible Displacement Functions.
According to the frst-order shear deformation theory
(FSDT), the displacement components Up, Vp, Wp and
Ubn, Vbn, Wbn at any point on the laminated plate and
laminated curved beam of the composite-laminated rota-
tionally stifened plate structure can be expressed as follows:

Up(r, θ, z, t) � up(r, θ, t) + zϕrp(r, θ, t),

Vp(r, θ, z, t) � vp(r, θ, t) + zϕθp(r, θ, t),

Wp(r, θ, z, t) � wp(r, θ, t).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Ubn θn, z, t( 􏼁 � ubn θn, t( 􏼁 + zϕxbn θn, t( 􏼁,

Vbn θn, z, t( 􏼁 � vbn θn, t( 􏼁 + zϕθbn θn, t( 􏼁,

Wbn θn, z, t( 􏼁 � wbn θn, t( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(2)

where up, vp, and wp represent the displacement of the
middle plane in the r, θ, and z directions of the composite-
laminated rotationally stifened plate, ϕrp andϕθp indicate its
lateral rotation in θ and r direction; ubn, vbn, and wbn indicate
the displacement of the middle plane of the nth laminated
curved beam in xn, θn and zn directions, and ϕxbn and ϕθbn

indicate its lateral rotation in θn and xn direction. t repre-
sents a time variable.

Based on the improved Fourier series method, the ad-
missible displacement functions of laminated plates in
composite-laminated rotationally stifened plates are
established. Te admissible displacement functions estab-
lished in this method can ignore the infuence of the
boundary conditions, and the auxiliary polynomial is in-
troduced to eliminate the discontinuity and jump phe-
nomenon of the displacement function at the boundary. Te
specifc expression is

up(r, θ, t) � e
−jωt ΦM

u (r, θ) + 􏽘
2

Nq�1
ΦNq

u (r, θ)⎛⎜⎝ ⎞⎟⎠Amn,

vp(r, θ, t) � e
−jωt ΦM

v (r, θ) + 􏽘
2

Nq�1
ΦNq

v (r, θ)⎛⎜⎝ ⎞⎟⎠Bmn,

wp(r, θ, t) � e
−jωt ΦM

w (r, θ) + 􏽘
2

Nq�1
ΦNq

w (r, θ)⎛⎜⎝ ⎞⎟⎠Cmn,

ϕrp(r, θ, t) � e
−jωt ΦM

ϕr
(r, θ) + 􏽘

2

Nq�1
ΦNq

ϕr
(r, θ)⎛⎜⎝ ⎞⎟⎠Dmn,

ϕθp(r, θ, t) � e
−jωt ΦM

ϕθ
(r, θ) + 􏽘

2

Nq�1
ΦNq

ϕθ
(r, θ)⎛⎜⎝ ⎞⎟⎠Emn.

(3)

By using the same theoretical method, the admissible
displacement functions of the laminated curved beam in
composite-laminated rotationally stifened plate can also be
established as follows:

ubn θn, t( 􏼁 � e
−jωt ΨΩun

θn( 􏼁 + 􏽘
2

Θq�1
ΨΘq

un
θn( 􏼁⎛⎜⎝ ⎞⎟⎠Al

vbn θn, t( 􏼁 � e
−jωt ΨΩvn

θn( 􏼁 + 􏽘
2

Θq�1
ΨΘq

vn
θn( 􏼁⎛⎜⎝ ⎞⎟⎠Bl

wbn θn, t( 􏼁 � e
−jωt ΨΩwn

θn( 􏼁 + 􏽘
2

Θq�1
ΨΘq

wn
θn( 􏼁⎛⎜⎝ ⎞⎟⎠Cl

ϕxbn θn, t( 􏼁 � e
−jωt ΨΩϕrn

θn( 􏼁 + 􏽘
2

Θq�1
ΨΘq

ϕrn
θn( 􏼁⎛⎜⎝ ⎞⎟⎠Dl

ϕθbn θn, t( 􏼁 � e
−jωt ΨΩϕθn

θn( 􏼁 + 􏽘
2

Θq�1
ΨΘq

ϕθn
θn( 􏼁⎛⎜⎝ ⎞⎟⎠El.

(4)

Te displacement supplement polynomial of composite-
laminated plate can be expressed as ΦM andΦNq

(Nq � 1, 2).Te displacement supplement polynomial of the
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nth laminated curved beam can be expressed asΨΩn andΨΘq
n

(Θq � 1, 2). Professor Li [18, 19] proposed the modifed
Fourier series method, which expressed the displacement
function of beam or plate structure in the form of traditional
Fourier series plus the auxiliary function. It must be noted
here that the main function of the auxiliary function is to
enable the traditional Fourier series and the corresponding
derivatives to avoid the occurrence of nonexistent or

jumping phenomena at the boundary position. At present,
the commonly used auxiliary function forms are Legendre
polynomial, series polynomial, and complete series. Te
auxiliary function used in this paper is the complete series
method. Where Amn,Bmn,Cmn,Dmn andEmnrepresent the
unknown two-dimensional Fourier coefcient vectors of the
admissible displacement functions of the laminated plate,
these parameters can be expressed as follows:

r
r

r
r

z (xn) z (xn)

z (xn)z (xn)
z (xn)z (xn)

θ (θn)

θ (θn)

θ (θn)

θ (θn)

θ (θn)

θ (θn)

r
R1 R2

Rp

Rp

hp hp

o

o

R1 = 0

zn
zn

zn

zn

zn

zn

on

on

o

on

o
on

o

on

o

on

Rbn Rbn

r

hn
hn

bn bn

0 <
 ϑ 

< 36
0° ϑ = 360°

0 <
 ϑ <

 36
0° ϑ = 360°

Figure 1: Unifed model of composite ring fan-shaped, annular, fan-shaped, and circular stifened plates.

r

z

o

Kr

Kθ

ku

kv

kw

θ

(a)

z

r
o

θ

kuc
p kvc

p kwc
p Krc

p Kθc
p

(b)

zn

xn

on

θn

kuc
bn kvc

bn kwc
bn Kxc

bn Kθc
bn

(c)

r

z (xn)

θ (θn)

o

zn

on kuc
cp

kvc
cp

kwc
cp

Kyc
cp

Kxc
cp

(d)

Figure 2: Boundary spring and coupling spring of composite-laminated rotationally stifened plate. (a) Laminated plate boundary spring.
(b) Laminated plate coupling spring. (c) Laminated curved beam coupling spring. (d) Coupling springs of plates and beams.
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ΦM
u � ΦM

w � ΦM
v � ΦM

ϕr
� ΦM

ϕθ
�

cos λα0r cos λβ0θ, · · ·, cos λαmr cos λβnθ, · · ·,

cos λα0r cos λb
Nθ, · · · cos λαMr cos λβNθ,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

ΦN1
u � ΦN1

v � ΦN1
w � ΦN1

ϕr
� ΦN1

ϕθ
�

sin λα−2r( 􏼁 cos λβ0θ􏼐 􏼑, · · ·, sin λα−2r( 􏼁 cos λβnθ􏼐 􏼑, · · ·,

sin λα−2r( 􏼁 cos λβNθ􏼐 􏼑, · · ·, sin λα−1r( 􏼁 cos λβNθ􏼐 􏼑.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

ΦN2
u � ΦN2

v � ΦN2
w � ΦN2

ϕr
� ΦN2

ϕθ
�

cos λα0r( 􏼁 sin λβ−2θ􏼐 􏼑, cos λα0r( 􏼁 sin λβ−1θ􏼐 􏼑, · · ·,

cos λαmr( 􏼁 sin λβ−2θ􏼐 􏼑, · · ·, cos λαMr( 􏼁 sin λβ−1θ􏼐 􏼑.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(5)

Amn �
A1

0,0, · · ·, A1
0,n, · · ·, A1

m,n, · · ·, A1
M,N, A2

−2,0, · · ·, A2
−2,n, · · ·,

A2
−2,N, · · ·, A2

−1,N, A3
0,−2, A3

0,−1, · · ·, A3
m,−2, · · ·, A3

M,−1.
􏼨 􏼩

T

,

Bmn �
B1
0,0, · · ·, B1

0,n, · · ·, B1
m,n, · · ·, B1

M,N, B2
−2,0, · · ·, B2

−2,n, · · ·,

B2
−2,N, · · ·, B2

−1,N, B3
0,−2, B3

0,−1, · · ·, B3
m,−2, · · ·, B3

M,−1.
􏼨 􏼩

T

,

Cmn �
C1
0,0, · · ·, C1

0,n, · · ·, C1
m,n, · · ·, C1

M,N, C2
−2,0, · · ·, C2

−2,n, · · ·,

C2
−2,N, · · ·, C2

−1,N, C3
0,−2, C3

0,−1, · · ·, C3
m,−2, · · ·, C3

M,−1.
􏼨 􏼩

T

,

Dmn �
D1

0,0, · · ·, D1
0,n, · · ·, D1

m,n, · · ·, D1
M,N, D2

−2,0, · · ·, D2
−2,n, · · ·,

D2
−2,N, · · ·, D2

−1,N, D3
0,−2, D3

0,−1, · · ·, D3
m,−2, · · ·, D3

M,−1.
􏼨 􏼩

T

,

Emn �
E1
0,0, · · ·, E1

0,n, · · ·, E1
m,n, · · ·, E1

M,N, E2
−2,0, · · ·, E2

−2,n, · · ·,

E2
−2,N, · · ·, E2

−1,N, E3
0,−2, E3

0,−1, · · ·, E3
m,−2, · · ·, E3

M,−1.
􏼨 􏼩

T

,

(6)

where Al,Bl,Cl,Dl, andEl represent the unknown one-
dimensional Fourier coefcient vector of the admissible
displacement functions of the laminated curved beam, which
can be expressed as follows:

ΨΩun
� ΨΩvn

� ΨΩwn
� ΨΩϕxn

� ΨΩϕθn
� cos λαn

0 θn, · · ·, cos λαn

l θn, · · · cos λαn

L θn􏽮 􏽯,

ΨΘ1un
� ΨΘ1vn

� ΨΘ1wn
� ΨΘ1ϕxn

� ΨΘ1ϕθn
�
αn

2π
sin

πθn

2αn

􏼠 􏼡 +
αn

2π
sin

3πθn

2αn

􏼠 􏼡,

ΨΘ2un
� ΨΘ2vn

� ΨΘ2wn
� ΨΘ2ϕxn

� ΨΘ2ϕθn
� −

αn

2π
cos

πθn

2αn

􏼠 􏼡 +
αn

2π
cos

3πθn

2αn

􏼠 􏼡,

(7)

Al � A0, A1, · · ·, Al, · · ·, AL, a1, a2􏼈 􏼉
T
,

Bl � B0, B1, · · ·, Bl, · · ·, AL, b1, b2􏼈 􏼉
T
,

Cl � C0, C1, · · ·, Cl, · · ·, CL, c1, c2􏼈 􏼉
T
,

Dl � D0, D1, · · ·, Dl, · · ·, DL, d1, d2􏼈 􏼉
T
,

El � E0, E1, · · ·, El, · · ·, EL, e1, e2􏼈 􏼉
T
,

(8)

where λαm � mπ/α, λβn � nπ/β, and λαn

l � lπ/αn.
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2.3. Stress-Strain and Displacement Relations. According to
the relevant knowledge of elastic mechanics, the normal strain
and shear strain at any point on the composite-laminated
plate and laminated curved beams can be defned by strain
and curvature change of the middle surface as follows:

εp
r � εp0

r + zχp
r ,

εp

θ � εp0
θ + zχp

θ ,

⎧⎨

⎩

c
p

rθ � c
p0
rθ + zχp

rθ,

c
p
rz � c

p0
rz ,

c
p

θz � c
p0
θz ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

εbnθ � εbn0θ + zχbnθ

c
bn
θx � c

bn0
θx + zχbnθx,

c
bn
θz � c

bn0
θz ,

c
bn
xz � c

bn0
xz ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

in which εp0
r , εp0

θ , c
p0
rθ , c

p0
rz , and c

p0
θz

represent the strain
component on the middle plane of laminated plates, χp

r , χ
p

θ ,
and χp

rθ represent the component of curvature change on the
middle plane of laminated plates, εbn0θ , cbn0

θx , cbn0
θz , and cbn0

xz

represent the strain component on the middle plane of the
nth laminated curved beam, and χbnθ and χbnθx represent the
component of curvature change on the middle plane of
a laminated curved beam. Te specifc expression is
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(12)

According to Hooke’s law, the corresponding stress-
strain relationship of laminated plate and laminated
curved beam at the k-th layer can be obtained as follows:
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where Qk
ij (i, j� 1, 2, . . ., 6) is the relevant stifness coefcient,

which can be obtained from the following equation:
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TT
.

(15)

In (15), T is the transformation matrix, which is defned
as follows, where θk is the included angle between the main
direction and the r direction (the laminated curved beam is
the xn direction), that is, the angle-ply.

T �

cos2 θk sin2 θk 0 0 −2 sin θk cos θk,

sin2 θk cos2 θk 0 0 2 sin θk cos θk

0 0 cos θk sin θk 0
0 0 − sin θk cos θk 0

sin θk cos θk − sin θk cos θk 0 0 cos2 θk − sin2 θk.
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,

(16)

in which Qk
ij (i, j� 1, 2, . . ., 6) represents the material co-

efcient of the k layer of the laminated plate (laminated
curved beam), which value can be obtained according to the
engineering constant of the k layer of the laminated plate
(laminated curved beam) as follows:
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Q
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k
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(17)
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where E1 andE2 are Young’s modulus; G12, G13, andG23 are
shear modulus. Te relationship between Poisson’s ratio
μ12 and μ21 is as follows: μ12E2 � μ21E1.

Te forces and moments experienced by laminated plate
and laminated curved beam are obtained by integrating the
stresses on the plane. From one layer of laminated plate and
laminated curved beam to the other layer, by integrating the
thickness, we can obtain
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in which Np
r , N

p
θ , and N

p
rθ represent the resultant force in

the plane of the laminated plate, Mp
r , M

p
θ , and M

p
rθ rep-

resent bending and torsional moments in the plane of the
laminated plate, and Q

p
θ and Qp

r are the resultant force of
the horizontal shear force of the laminated plate. Nbn

θ and
Nbn

θx represent the resultant force in the plane of the
laminated curved beam, Mbn

θ and Mbn
θx represent the

bending and torsional moments in the plane of the
laminated curved beam, and Qbn

x and Qbn
θ are the resultant

force of the horizontal shear force in the plane of the
laminated curved beam. κs is the shear correction co-
efcient [20], and NL represents the number of layers of
laminated plates or laminated curved beams. Zk is the
thickness coordinate value of the bottom surface of the k

layer, and Zk+1 is the thickness coordinate value of the
upper surface.

2.4. Energy Functions and the Solving Process. According to
the principle of energy, the energy function of the rotational
stifened composite plate can be listed, and the unknown
coefcient can be solved by the Rayleigh–Ritz method. Te
Lagrange equation of the stifened plate can be expressed as
follows:

LP � TP − UP − UP−coupling − USP − WP&Bn
+ WF, (23)

LBn
� TBn

− UBn
− UBn−coupling − WP&Bn

, (24)
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where TP and TBn
represent the total kinetic energy of the

laminated plate and the nth laminated curved beam of the
rotational stifened plate, UP and UBn

are the total potential
energy of the laminated plate and the nth laminated curved
beam, UP−coupling and UBn−coupling represent the coupled
potential of laminated plate and nth laminated beam when
ϑ� 360°, USP represents the potential energy of boundary
spring of the laminated plate, WP&Bn

is the coupled potential

generated when the laminated plate and the nth laminated
curved beam are coupled, and WF represents the work done
by simple harmonic point force F on rotational stifened
composite plate.

Te total kinetic energy of laminated composite plates
TP and the total kinetic energy of the nth laminated beam
TBn

can be written as follows:
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in which ρk
p is the material density of the k layer of the

laminated plate, and ρk
bn represents the material density of

the k layer of the laminated curved beam.

Te specifc expression of the total potential energy of
laminated composite plates UP and the total potential energy
of nth laminated curved beam UBn

are as follows:
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UP � Ustretch + Us−b + Ubend �
1
2

􏽚
Rp

0
􏽚
ϑ

0

N
p
r ε

p0
r + N

p
r ε

p0
r + N

p

rθc
p0
rθ + M

p
r χ

p
r

+ M
p

θ χ
p

θ + M
p

rθχ
p

rθ + Q
p
r c

p0
rz + Q

p

θc
p0
θz .

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
rdrdθ (29)

Ustretch �
1
2

􏽚
Rp

0
􏽚
ϑ

0

A11
zup

zr
􏼠 􏼡

2

+ 2A12
zvp

rzθ
+

up

r
􏼠 􏼡

zup

zr
􏼠 􏼡

+ 2A16
zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

zup

zr
􏼠 􏼡 + A22

zvp

rzθ
+

up

r
􏼠 􏼡

2

+ 2A26
zvp

rzθ
+

up

r
􏼠 􏼡

zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

+ A66
zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

2

+ κsA44
zwp

rzθ
+ ϕθp􏼠 􏼡

2

+ 2κsA45
zwp

zr
+ ϕrp􏼠 􏼡

zwp

rzθ
+ ϕθp􏼠 􏼡 + κsA55

zwp

zr
+ ϕrp􏼠 􏼡

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r + R1( 􏼁drdθ, (30)

Us−b � 􏽚
Rp

0
􏽚
ϑ

0

B11
zup

zr
􏼠 􏼡

zϕrp

zr
􏼠 􏼡 + B12

zϕθp

rzθ
+
ϕrp

r
􏼠 􏼡

zup

zr
􏼠 􏼡

+ B16
zϕθp

zr
+

zϕrp

rzθ
−
ϕθp

r
􏼠 􏼡

zup

zr
􏼠 􏼡 + B12

zϕrp

zr
􏼠 􏼡

zvp

rzθ
+

up

r
􏼠 􏼡

+ B22
zvp

rzθ
+

up

r
􏼠 􏼡

zϕθp

rzθ
+
ϕrp

r
􏼠 􏼡 + B16

zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

zϕrp

zr
􏼠 􏼡

+ B26
zvp

rzθ
+

up

r
􏼠 􏼡

zϕθp

zr
+

zϕrp

rzθ
−
ϕθp

r
􏼠 􏼡

+ B26
zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

zϕθp

rzθ
+
ϕrp

r
􏼠 􏼡

+ B66
zvp

zr
+

zup

rzθ
−

vp

r
􏼠 􏼡

zϕθp

zr
+

zϕrp

rzθ
−
ϕθp

r
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r + R1( 􏼁drdθ (31)

Ubend �
1
2

􏽚
Rp

0
􏽚
ϑ

0

D11
zϕrp

zr
􏼠 􏼡

2

+ 2D12
zϕrp

zr
􏼠 􏼡

zϕθp

rzθ
+
ϕrp
r

􏼠 􏼡

+ 2D16
zϕrp

zr
􏼠 􏼡

zϕθp

zr
+

zϕrp

rzθ
−
ϕθp

r
􏼠 􏼡 + D22

zϕθp

rzθ
+
ϕrp
r

􏼠 􏼡

2

+ 2D26
zϕθp

rzθ
+
ϕrp

r
􏼠 􏼡

zϕθp

zr
+

zϕrp

rzθ
−
ϕθp

r
􏼠 􏼡

+ D66
zϕθp

zr
+

zϕrp
rzθ

−
ϕθp

r
􏼠 􏼡

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r + R1( 􏼁drdθ (32)
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UBn �
1
2

􏽚
ϑ

0

A22
zvbn

Rbnzθ
+

wbn

Rbn
􏼠 􏼡

2

+ 2A26
zubn

Rbnzθ
􏼠 􏼡

zvbn
Rbnzθ

+
wbn

Rbn
􏼠 􏼡 + A66

zubn

Rbnzθ
􏼠 􏼡

2

+ κsA44 ϕxbn( 􏼁
2

+ 2κsA45
zwbn

Rbnzθ
−

vbn

Rbn
+ ϕbn􏼠 􏼡 ϕxbn( 􏼁

+ κsA55
zwbn

Rbnzθ
−

vbn
Rbn

+ ϕθbn􏼠 􏼡

2

+ 2B22
zϕθbn
Rbnzθ

􏼠 􏼡
zvbn

Rbnzθ
+

wbn

Rbn
􏼠 􏼡

+ 2B26
zϕxbn
Rbnzθ

􏼠 􏼡
zvbn

Rbnzθ
+

wbn

Rbn
􏼠 􏼡 + 2B26

zϕθbn
Rbnzθ

􏼠 􏼡
zubn

Rbnzθ
􏼠 􏼡

+ 2B66
zϕxbn
Rbnzθ

􏼠 􏼡
zubn

Rbnzθ
􏼠 􏼡 + D22

zϕθbn

Rbnzθ
􏼠 􏼡

2

+ D66
zϕxbn

Rbnzθ
􏼠 􏼡

2

+ 2D26
zϕxbn
Rbnzθ

􏼠 􏼡
zϕθbn
Rbnzθ

􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Rbndθn, (33)

In the equation, the total potential energy of the
composite-laminated rotationally stifened plate UP includes
tensile potential energy Ustretch, bowing potential energy
Ubend, tensile and bowing potential energy coupling Us−b,
and the expressions are also been given.

As the boundary conditions of the laminated plate in the
composite-laminated rotationally stifened plate model
established in this paper are determined by the boundary
spring set, the potential energy of the boundary spring USP

will be generated, and its specifc expression is as follows:

USP � U
θ
SP + U

s
SP, (34)

U
θ
SP �

1
2

􏽚
ϑ

0
􏽚

hp/2

−hp/2

k
u
r0u

2
p + k

v
r0v

2
p + k

w
r0w

2
p + K

r
r0ϕ

2
rp + K

θ
r0ϕ

2
θp􏽨 􏽩

r�0

+ k
u
rRp

u
2
p + k

v
rRp

v
2
p + k

w
rRp

w
2
p + K

r
rRp

ϕ2rp + K
θ
rRp

ϕ2θp􏼔 􏼕
r�Rp

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
r + R1( 􏼁dzdθ, (35)

U
s
SP �

1
2

􏽚
Rp

0
􏽚

hp/2

−hp/2

k
u
θ0u

2
p + k

v
θ0v

2
p + k

w
θ0w

2
p + K

r
θ0ϕ

2
rp + K

θ
θ0ϕ

2
θp􏽨 􏽩θ�0

+ k
u
θϑu

2
p + k

v
θϑv

2
p + k

w
θϑw

2
p + K

r
θϑϕ

2
rp + K

θ
θϑϕ

2
θp􏽨 􏽩θ�ϑ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dzdr. (36)

For composite-laminated rotationally stifened plate, the
analysis of the coupled potential UP−coupling and UBn−coupling
of the laminated plate and the laminated beam will be
diferent due to the diferent sizes of the rotation angle ϑ;
when 0< ϑ< 360°, since the left and right sides of the
stifened plate rotation are not coupled, there is no coupled
potential of the laminated plate and laminated beam, and

when ϑ� 360°, the left and right sides of the stifened plate
rotation are coupled, producing coupled potential at
this time.

When ϑ� 360°, the coupled potential of the laminated
plate in the stifened plate UP−coupling and the coupled po-
tential of the nth laminated curved beam in the stifened
plate UBn−coupling can be written as follows:
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UP−coupling �
1
2

􏽚
Rp

0
􏽚

hp/2

−hp/2

k
p
uc up|θ�360∘ −up|θ�0􏼐 􏼑

2
+ k

p
vc vp|θ�360∘ −vp|θ�0􏼐 􏼑

2

+ k
p
wc wp|θ�360∘ −wp|θ�0􏼐 􏼑

2
+ K

p
rc ϕrp|θ�360∘ −ϕrp|θ�0􏼐 􏼑

2

+ K
p
θc ϕθp|θ�360∘ −ϕθp|θ�0􏼐 􏼑

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dzdr, (37)

UBn−coupling �
1
2

􏽚
ϑ

0
􏽚

hn/2

−hn/2

k
bn
uc ubn|θn�360∘ −ubn|θn�0􏼐 􏼑

2
+ k

bn
vc vbn|θn�360∘ −vbn|θn�0􏼐 􏼑

2

+ k
bn
wc wbn|θn�360∘ −wbn|θn�0􏼐 􏼑

2
+ K

bn
xc ϕxbn|θn�360∘ −ϕxbn|θn�0􏼐 􏼑

2

+ K
bn
θc ϕθbn|θn�360∘ −ϕθbn|θn�0􏼐 􏼑

2

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dzn. (38)

Te coupled potential generated by the coupling of the
laminated plate and the nth laminated curved beam WP&Bn

can be expressed as follows:

WP&Bn
�
1
2

􏽚
ϑ

0

k
cp
uc up|r�Rb

− wbn􏼐 􏼑
2

+ k
cp
vc vp|r�Rb

− vbn􏼐 􏼑
2

+ k
cp
wc wp|r�Rb

− ubn􏼐 􏼑
2

+ K
cp
xc ϕrp|r�Rb

− ϕxbn􏼐 􏼑
2

+ K
cp
yc ϕθp|r�Rb

− ϕθbn􏼐 􏼑
2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
dθ. (39)

Te specifc expression of the work WF done by the
simple harmonic point force F on the laminated plate of
stifened composite plate is as follows:

WF � B
S

fuup + fvvp + fwwp + fϕr
ϕrp + fϕθϕθp􏽮 􏽯rdrdθ,

(40)

fi � Fδ r − r0( 􏼁δ θ − θ0( 􏼁, (41)

where fi (i � uj, vj, wj, ϕr, ϕθ) is a function of external load
distribution, and the location of simple harmonic point force
F is (r0, θ0).

After obtaining the energy equation of the composite-
laminated rotationally stifened plate, each energy equation
is substituted into the Lagrange equation (21) and (22).
According to the Rayleigh–Ritz method [21], calculating the
partial derivative of the two-dimensional and one-
dimensional unknown Fourier coefcients in the
Lagrange equation and making the result equal to zero, we
can get

zLP

zPmn
�

zTP

zPmn
−

zUP

zPmn
−

zUP−coupling

zPmn
−

zUSP

zPmn
−

zWP&Bn

zPmn
+

zWF

zPmn
� 0, (42)

zLBn

zQl

�
zTBn

zQl

−
zUBn

zQl

−
zUBn−coupling

zQl

−
zWP&Bn

zQl

� 0, (43)

Pmn � Amn Bmn Cmn Dmn Emn􏼂 􏼃
T
, (44)

Ql � Al Bl Cl Dl El􏼂 􏼃
T
, (45)

in which Pmn is the unknown two-dimensional Fourier
coefcient matrix of the laminated plate, and Ql is the
unknown one-dimensional Fourier coefcient matrix of the
laminated curved beam.
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Convert equations (40)–(43) into the matrix form as
follows:

KP − ω2MP􏼐 􏼑Pmn + CBn&PQl � F, (46)

KBn
− ω2MBn

􏼐 􏼑Ql + ω2CP&Bn
Pmn � 0, (47)

where KP and KBn
, respectively, represent the stifness

matrix of the laminated plate and the nth laminated curved
beam in the composite laminated rotationally stifened plate;
MP and MBn

are the mass matrix of the laminated plate and
the nth laminated curved beam; CBn&P represents the cou-
plingmatrix between the nth laminated curved beam and the
laminated plate of the stifened plate, and CP&Bn

� CBn&P
T.

When F is 0, the equations for solving the natural fre-
quencies and modes of composite laminated rotationally
stifened plates can be obtained by combining equations (44)
and (45). At this time, direct calculation belongs to the non-
linear solution, so it needs to be converted into linear equations
to be solved. Te results after conversion are as follows:

R − ω2S􏼐 􏼑G � 0, (48)

R �
KP CBn&P

0 KBn

􏼠 􏼡, (49)

S �
MP 0

−CP&Bn
MBn

􏼠 􏼡, (50)

G �
Pmn

Ql

􏼠 􏼡. (51)

Finally obtained characteristic solution ω is the natural
frequency of the composite-laminated rotationally stifened
plate, and the eigenvector G is its corresponding mode. By
substituting the simple harmonic point force into equations
(46)–(48), the steady-state response of the stifened plate can
be obtained.

3. Numerical Results and Discussion

According to the unifed analysis model of composite-
laminated rotationally stifened plates established in Sec-
tion 2.2, this section has carried out numerical discussion
and result analysis on the selected part of the calculation to
further study the vibration characteristics of stifened an-
nular sector plates, circular sector plates, annular plates, and
circular plates under diferent dimensions and material
parameters, mainly including the following two parts: (1)
convergence and correctness verifcation and (2) the in-
fuence of related parameters on the vibration characteristics
of composite-laminated rotationally stifened plates under
free vibration. Due to the lack of research on composite-
laminated rotationally stifened plates, few literature pa-
rameters can be found for comparison, so the results of the
calculation of this section are compared with the results of
the experiment and fnite element simulation results.

Table 1 shows the material parameters used for lami-
nated plates and laminated curved beams in this section.Te
dimensionless natural frequency parameter is defned as
Ω � ω/hp

����
ρ/E1

􏽰
. Te four boundary conditions of free,

simply supported, fxed supported, and elastic in this section
are simplifed and described as F, S, C, and E, respectively.
According to the diference of stifened annular sector plate,
circular sector plate, annular plate, and circular plate, there
are four ways of expression: (1) stifened annular sector plate
structure: FSCE indicates θ� 0, θ� ϑ, r� 0, and r � Rp are
free, simply supported, fxed supported, and elastic
boundaries, respectively; (2) stifened circular sector plate
structure: FSC indicates θ � 0, θ� ϑ, and r � Rp are free,
simply supported, and fxed supported boundary, re-
spectively; (3) stifened annular plate structure: FS indicates
r� 0 and r � Rp are free and simply supported boundary,
respectively; and (4) stifened circular plate structure: S
indicates r � Rp is a simply supported boundary.

3.1. Model Validation. Tis section will verify the conver-
gence and correctness of the model of composite-laminated
rotationally stifened plate established in Section 2.2, in-
cluding the convergence of natural frequency cutof value
and spring stifness value. As mentioned in the previous
chapters, the admissible displacement function of stifened
plates in this paper is expressed as improved Fourier series
expansion. Terefore, in the process of solving the energy
equation including the admissible displacement function,
the calculation results may not converge, so it is necessary to
verify the convergence of the established analysis model. At
the same time, the number of expanded items in the ex-
pansion also needs to be analyzed. Teoretically, the more
terms the expansion term has, the higher the accuracy of the
solution of the equation will be. However, the number of
expansion terms can meet the requirement of solving ac-
curacy. Further increasing the number of expansion terms
will not signifcantly improve the solving accuracy but re-
duce the solving efciency. Terefore, it is necessary to
confrm the cutof value of the admissible displacement
function of the stifened plate. Te cutof value of the
laminated plate is Mp, Np, and the cutof value of the
laminated curved beam is Mb.

Table 2 shows the frst eight natural frequencies of
stifened plates under diferent cutof values of laminated
plates and laminated curved beams obtained by this method
and compares them with the fnite element simulation re-
sults. Te stifened plate model is a unifed model, which can
theoretically calculate the natural frequency of any size of
rotational stifened composite plate; in this example, the
geometric parameters of composite-laminated rotationally
stifened plates have been determined as follows: R2 � 2m,
b1 � 0.06m, and h1 � 0.04m. Te material of the laminated
plate is graphite fber resin, and the angle-ply is [0°/90°]. Te
number of laminated plated curved beams is 1, located at
Rp/2, and the material is steel. It is not difcult to see from
Table 2 that when Mp × Np is 18×18 and Mb is 50, the
natural frequencies of each order basically converged. Te
size and coordinate system used in the fnite element model
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are the same as that of the model established in this paper,
the mesh size is 0.02 of the global size, and the element shape
of the sound cavity is AC3D20:20 node acoustic quadric
hexahedron element. Te shape of the composite structural
element is C3D20R: twenty-node hexahedron element. By
referring to the results of fnite element simulation, the
maximum error between the natural frequencies of each
order and the results of fnite element simulation is 6.38%.
Terefore, the cutof value is determined as
Mp × Np � 18×18 and Mb � 50 in the numerical calculation
later in this paper.

It is not difcult to see from Table 2 that the cutof value
of the laminated curved beam has little infuence on the
convergence of the analytical model. Terefore, Figure 3
only shows the change curve of some order natural fre-
quency parameter Ω of the composite-laminated rotation-
ally stifened plate under diferent cutof values of the
laminated plate (where Mp � Np). As shown in Figure 3, the
natural frequency parameter Ω of the four stifened plate
structures tends to be stable with the increase of the cutof
value, which more intuitively refects the convergence of the
present analysis model.

To have a more intuitive understanding of the modes
obtained by this method, Figure 4 shows the modal shapes
diagram of four types of composite-laminated rotationally
stifened plate structures obtained by this method and the
fnite element method (FEM). Te material parameters and
dimension parameters of the four stifened plate structures
are the same as those in Table 2. It can be found that the
modal diagrams obtained by the present method are
completely corresponding to the results of the fnite element
method.

In this chapter, artifcial virtual spring technology is used
to simulate the boundary conditions and coupling condi-
tions of the model.Te change of the boundary and coupling
conditions of the composite-laminated rotationally stifened
plate is realized by changing the boundary and coupling
spring stifness value. For boundary or coupling conditions
that require rigid fxation, the spring stifness value should
be set to a larger value. However, due to the limitation of the
algorithm, the spring stifness value cannot be infnite in
actual calculation. Terefore, to facilitate the follow-up re-
search, it is necessary to select a reasonable spring stifness
value to simulate the rigidly fxed boundary or coupling
conditions and verify its convergence. Since the stifener in
the composite-laminated rotationally stifened plate does
not need to set the boundary conditions, the efect of
boundary spring stifness value can be analyzed only for the
structure of the rotationally composite plate. Te specifc
scope includes linear spring k(ku, kv, kw), torsion spring

K(Kr, Kθ), intraplate coupling spring kc (kp
uc, kp

vc, kp
wc,

kp
rc, k

p

θc), and plate-beam coupling spring kcp (kcp
uc, kcp

vc , kcp
wc,

kcp
xc , kcp

xc , kcp
yc).

Taking the annular sector plate as an example, the in-
fuence of the boundary spring stifness value is analyzed.
Te change curve of the frst four frequency parameters
under diferent boundary spring stifness values is shown in
Figure 5. Te material parameters and size parameters of the
plate structure are the same as those in Table 2. It is not
difcult to see from Figure 5(a) that the stifness value k of
the linear boundary spring is in the range of 10−4–101, and
the values of the frst four frequency parameters are stable
and close to 0. It can be considered that the boundary
condition of the annular sector plate can be regarded as
a free boundary at this time. When the linear spring stifness
value k is analyzed, the torsion spring stifness value K is
automatically set to zero. With the increase of the linear
spring stifness, the frequency parameters of the annular
sector plate also continue to increase and tend to be stable in
the range of 1010–1016. At this time, the boundary condition
of the annular sector plate can be regarded as a simply
supported boundary. In Figure 5(b), the linear boundary
spring stifness value is always kept at 1016. With the increase
of the torsion spring stifness value, the frequency parameter
of the annular sector plate also continues to increase and
tends to be stable in the range of 107–1016. At this time, the
boundary condition of the annular sector plate can be
regarded as a fxed support boundary. According to the
abovementioned conclusions, the value of boundary spring
stifness under diferent boundary conditions is shown in
Table 3, the classical boundary conditions of free, simply
supported, clamped supported are simplifed as F, S, C re-
spectively. Te spring stifness value can be given arbitrarily
under the elastic boundary condition. Tis paper gives an
example which is marked with E. In the numerical calcu-
lation in this chapter, the spring stifness values of various
boundary conditions are based on those in Table 3. Te
numerical calculation of the spring stifness values of various
boundary conditions in this paper is based on Table 3.

Te study of the coupling condition of the interior of the
plate is similar to the boundary conditions. Taking the
annular plate as an example, Figure 6 shows the frequency
parameter change curve of the order of the annular plate
with diferent coupling spring stifness values of the interior
of the plate under the two boundary conditions.Tematerial
parameters and dimension parameters of the annular plate
are the same as those in Table 2. It can be seen from Figure 6
that when the stifness value kc of the coupling spring in the
plate is less than 104, the frequency parameters of the
corresponding part of the order remain stable and less than

Table 1: Material parameters used in the numerical calculations in this section for laminated plates and laminated curved beams.

Material ρ (kg/m3)
Material property parameters

E1 (Pa) E2 (Pa) G23 (Pa) G12 (Pa) G13 (Pa) μ12
Graphite fber resin 1600 1.85×1011 1.09×1010 7.3×109 7.3×109 7.3×109 0.28
Glass epoxy resin 1810 3.9×1010 8.4×109 4.2×1010 4.2×1010 4.2×1010 0.26
Q235 steel 7800 2.16×1011 2.16×1011 8.31× 1010 8.31× 1010 8.31× 1010 0.3
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the frequency parameters when the stifness value kc is
larger; therefore, it can be considered that the coupling
spring within this range has limited infuence on the fre-
quency parameters of the annular plate structure. With the
increase of the stifness value kc of the coupling spring in the
plate, the frequency parameter of the annular plate also
increases. When the stifness value kc increases to 108, the
frequency parameters of the annular plate also tend to be
stable. From the abovementioned phenomena, it can be seen
that when the stifness value of the coupling spring in the
plate reaches 108, the rigid coupling of the coupling
boundary of the rotary composite plate can be realized. To
ensure the correctness of the calculation results, the stifness

value kc of the coupled spring in the plate was set as 1016 in
the subsequent example.

To study the coupling conditions of plate and beam, it is
necessary to take the rotational stifened composite plate as
an example. Tis example selects the composite-stifened
annular sector plate with the same material parameters and
size parameters as those in Table 2. Figure 7 shows the
frequency parameter change curve of the partial order of the
stifness value of the coupling spring of diferent plates and
beams under two boundary conditions. It is not difcult to
see that the efect of the plate-beam coupling spring stifness
value kcp on the frequency parameter Ω is similar to the
interior of a plate coupling spring stifness value kc. When

Table 2: Convergence analysis of the frequency parameter Ω for composite-laminated rotationally stifened plates.

Mp × Np Mb

Order modal
1 2 3 4 5 6 7 8

Stifened annular sector plate: R1 � 0.5m, hp � 0.01m, Rb1 � 1.25m, ϑ� 90°, CCCC

6× 6 25 2.537 5.040 5.705 6.562 6.989 8.047 8.378 11.636
50 2.537 5.040 6.005 6.862 6.989 8.046 8.377 11.636

10×10 25 2.535 4.914 5.459 5.939 6.474 7.499 7.746 9.147
50 2.535 4.914 5.459 5.939 6.474 7.499 7.746 9.147

14×14 25 2.534 4.866 5.376 5.744 6.377 7.387 7.592 8.994
50 2.534 4.866 5.376 5.744 6.377 7.387 7.592 8.994

18×18 25 2.533 4.837 5.332 5.654 6.331 7.343 7.521 8.943
50 2.533 4.837 5.332 5.654 6.331 7.343 7.521 8.943

FEM 2.559 5.098 5.268 5.579 6.304 7.547 7.646 9.194
Stifened circular sector plate: R1 � 0m, hp � 0.01m, Rb1 � 1m, ϑ� 90°, CCC

6× 6 25 2.532 3.895 4.153 5.308 6.929 7.277 8.648 11.522
50 2.532 3.895 4.153 5.308 6.929 7.277 8.648 11.521

10×10 25 2.406 3.699 3.964 4.725 6.303 6.723 8.392 9.064
50 2.406 3.699 3.964 4.725 6.303 6.723 8.392 9.064

14×14 25 2.335 3.642 3.947 4.657 6.214 6.575 8.253 8.692
50 2.335 3.642 3.947 4.657 6.214 6.575 8.253 8.692

18×18 25 2.288 3.617 3.937 4.632 6.189 6.511 8.219 8.549
50 2.288 3.617 3.937 4.632 6.189 6.511 8.219 8.549

FEM 2.332 3.634 3.835 4.789 6.190 6.371 8.145 8.397
Stifened annular plate: R1 � 0.5m, hp � 0.04m, Rb1 � 1.25m, ϑ� 360°, CC

6× 6 25 0.963 1.161 1.161 1.285 1.286 1.601 1.601 2.178
50 0.963 1.161 1.161 1.285 1.286 1.601 1.601 2.178

10×10 25 0.959 1.158 1.158 1.280 1.280 1.565 1.568 2.178
50 0.959 1.158 1.158 1.280 1.280 1.565 1.568 2.178

14×14 25 0.959 1.157 1.157 1.278 1.278 1.562 1.562 2.177
50 0.959 1.157 1.157 1.278 1.278 1.562 1.562 2.177

18×18 25 0.959 1.157 1.157 1.277 1.277 1.560 1.560 2.176
50 0.959 1.157 1.157 1.277 1.277 1.560 1.560 2.176

FEM 0.988 1.029 1.029 1.155 1.252 1.576 1.577 2.160
Stifened circular plate: R1 � 0m, hp � 0.1m, Rb1 � 1m, ϑ� 360°, C

6× 6 25 0.325 0.633 0.633 0.971 0.972 1.217 1.413 1.416
50 0.325 0.633 0.633 0.971 0.972 1.217 1.404 1.405

10×10 25 0.324 0.632 0.632 0.969 0.969 1.217 1.381 1.383
50 0.324 0.632 0.632 0.969 0.969 1.217 1.381 1.383

14×14 25 0.324 0.632 0.632 0.969 0.969 1.217 1.381 1.381
50 0.324 0.632 0.632 0.969 0.969 1.217 1.381 1.381

18×18 25 0.324 0.632 0.632 0.969 0.969 1.216 1.381 1.381
50 0.324 0.632 0.632 0.969 0.969 1.216 1.381 1.381

FEM 0.308 0.609 0.610 0.955 1.035 1.150 1.455 1.468
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the stifness value kcp is less than 104, the plate-beam
coupling spring hardly plays the role of coupling between
plates and beams in this range and has limited infuence on
the frequency parameter Ω. When the stifness value kcp
increases to 1010, the rigid coupling of the coupling
boundary between the rotary composite plate and the
laminated beam can be realized.

In this section, the frequency response function method
is used to carry out the structural modal test of a stifened
circular plate with a fxed support boundary, and the test
results are compared with the results of this method to verify

the accuracy of the model of the stifened composite plate of
revolution established by this method. Te test instruments
include the LC02 force hammer, 3A105 force sensor,
DH5857-1 charge adjuster, 1A116E acceleration sensor, and
DH5922D dynamic signal test and analysis system. Te
single point pickup method is adopted when collecting data.
Te position of the sensor remains unchanged, and a force
hammer is used to knock the intersection point of the grid
drawn before. After hitting all the test points set, the peak
position of the frequency response curve drawn is de-
termined in the test software according to the collected data,
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Figure 3: Variation curve of natural frequency parameter Ω of the composite-laminated rotationally stifened plate under diferent cutof
values. (a) Stifened annular sector plate. (b) Stifened circular sector plate. (c) Stifened annular plate. (d) Stifened circular plate.
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which is the natural frequency of the test stifened plate. By
calculating the mode in the test software, the relevant mode
can be obtained.

Figure 8 shows the stifened circular plate under the fxed
support boundary condition. Trity-two Φ16 bolts arranged
uniformly along the circumference are tightly connected
with the upper and lower splints to form the fxed support
boundary condition.Te structural dimension parameters of
the stifened plate used in the stifened circular plate test are

R1 � 0m, R2 � 0.265m, hp � 0.005m, Rb1 � 0.088m,
Rb2 � 0.177m, b1 � b2 � 0.02m, h1 � h2 � 0.01m, and ϑ� 360°.
Te material of the stifened circular plate includes Q235
steel and carbon fber composite material, the material
parameter of the Q235 steel is E� 216GPa, μ� 0.3, and
ρp � 7800 kg/m3. Te material parameters of carbon
fber composite material are E1 � E2 � 77.8 GPa,
G1 � G2 �G3 � 77.8GPa, μ� 0.26, and ρp � 7800 kg/m3; and
the layer angle is [0°/90°/0°/90°/0°].

First order
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Second order Third order Fourth order

First order
Stiffened circular sector plate:

Present method

Second order Third order Fourth order

Stiffened annular sector plate:
Present method

First order
FEM

Second order Third order Fourth order
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Stiffened annular plate:
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First order
FEM

Second order Third order Fourth order

First order
Stiffened circular plate:

Present method
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First order
FEM

Second order Third order Fourth order

First order Second order Third order Fourth order

Figure 4: Modal shape diagram of the composite-laminated rotationally stifened plate structure.
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Figure 5: Variation curve of frequency parameter Ω of composite annular sector plate under diferent values of boundary spring stifness.
(a) Value of linear spring stifness. (b) Value of torsion spring stifness.

Table 3: Value of boundary spring stifness under diferent boundary conditions.

Boundary condition
Value of boundary spring stifness

ku kv kw Kr Kθ

C 1016 1016 1016 1016 1016

S 1016 1016 1016 0 0
F 0 0 0 0 0
E 106 106 106 0 0
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Figure 6: Variation curve of frequency parameter Ω of the composite annular plate under diferent values of coupling spring stifness.
(a) Boundary condition CC. (b) Boundary condition SS.
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Figure 9 shows the layout of the stifened circular plate
structure and test equipment during the real test. Before
the test, the stifened circular plate structure was divided
into units. Te specifc division method was as follows: 4
equal divisions were conducted in the r direction and 12
equal divisions in the θ direction. Tere were 49 mea-
suring points in total, and the acceleration sensor was
located at 22 measuring points. Figure 10 shows the
natural frequencies and modal shapes of the partial orders
of stifened circular plates of Q235 steel and carbon fber
composite material obtained from the test and the method
in this paper. From the contents of Figure 10, when
stifened circular plates are made of Q235 steel, it is not
difcult to fnd that the maximum error between the test
results and the calculation results of this method is 7.56%,
and when stifened circular plates are made of carbon fber
composite material, it is not difcult to fnd that the

maximum error between the test results and the calcu-
lation results of this method is 3.18% while the experi-
mental results correspond with the modal shapes obtained
by this method, Te deviation of the abovementioned
experimental results is within the acceptable range, which
fully proves the correctness of the analysis model. Te
experimental error is caused by many reasons. First of all,
the fxed boundary conditions of the plate cannot be fully
simulated by the way of clamping the foundation frame
and the battens. Ten, the material parameters used in the
numerical calculation of the plate deviate from the actual
material parameters of the work piece, and the work piece
cannot be completely ideal isotropic material. In addition,
the accuracy deviation of the force sensor and acceleration
sensor and the human error of the experimenter in the
process of hammering will cause the error of
experimental data.

First order
Second order
Third order
Fourth order

-2 0 2 4 6 8 10 12 14 16-4
Value of plate-beam couping spring stiffness (lgkcp)

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 Ω

(a)

First order
Second order
Third order
Fourth order

-2 0 2 4 6 8 10 12 14 16-4
Value of plate-beam couping spring stiffness (lgkcp)

0

1

2

3

4

5

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 Ω
(b)

Figure 7: Variation curve of frequency parameters Ω of composite-stifened annular sector plate under diferent values of plate-beam
coupling spring stifness. (a) Boundary condition CCCC. (b) Boundary condition SSSS.
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Figure 8: Stifened circular sector plate under the fxed boundary condition. (a) Q235 steel. (b) Carbon fber composite material.
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3.2. FreeVibrationAnalysis. After verifying the convergence
and correctness of the unifed analysis model of composite-
laminated rotationally stifened plates, this section will
analyze the free vibration of composite-laminated rota-
tionally stifened plates according to the model of
composite-laminated rotationally stifened plates and study
the infuence of various relevant parameters on the vibration
characteristics of stifened plates.

In the theoretical modeling in the previous section, it
has been mentioned that the composite-laminated rota-
tionally stifened plate is composed of the rotary composite
plate structure and the rotary composite-laminated curved
beam in the theoretical modeling in the previous section.
Te infuence of the parameters of the rotationally com-
posite plate structure on the vibration characteristics of the
stifened plate structure is analyzed here. Te frequency
parameters of composite-laminated rotationally stifened
plates with diferent plate structure parameters are ob-
tained by the method in this paper. Taking the stifened
circular sector plate as an example, the calculation results
are shown in Table 4. Te stifened plate in this example
has two laminated curved beams as stifeners, of which
stifener 1 is at Rp/2 and stifener 2 is at Rp/3. Te material
of the laminated plate and laminated curved beam is glass
epoxy resin, and the layer angle is the same. Te fxed
geometric parameters in the calculation example are
R1 � 0m, R2 � 1.5m, hp � 0.02m, Rb1 � 0.75m, Rb2 � 0.5m,
b1 � b2 � 0.08m, and h1 � h2 � 0.05m. It can be seen from
Table 4 that the boundary conditions, angle-ply, and ro-
tation angle all have an impact on the frequency parameter
Ω of composite-laminated rotationally stifened plates.

To further analyze the infuence of boundary and pa-
rameter conditions on the vibration characteristics of
composite-laminated rotationally stifened plates, the
parametric study of relevant conditions is also carried out in
the form of curves. Take the stifened circular sector plate in
Table 4 as an example, Figure 11 shows the changing curve of
the frst four frequency parameters Ω with rotation angle ϑ
under diferent boundary conditions ϑ, which refects the
infuence of boundary conditions and rotation angle ϑ on the
frequency parameter Ω. Te angle-ply of the stifened

composite circular sector plate selected in the calculation
example is [90°/0°/90°]. It can be seen from Figure 11 that the
frequency parameter Ω of stifened composite circular
sector-stifened plate decreases with the increase of rotation
angle ϑ, and the larger the rotation angle ϑ is, the smaller the
decreasing slope of the frequency parameterΩwill be. At the
same time, according to Figure 11, the rule of frequency
parameter Ω of the same modal order under diferent
boundary conditions can be obtained as follows:
CCC>CCF> SSF>EEF. Since the spring stifness value of
the fxed support boundary (C)> the spring stifness value of
the simply supported boundary (S)> the spring stifness
value of the elastic boundary (E)> the spring stifness value
of the free boundary (F), it can be deduced that the natural
frequency of the coupling system increases with the increase
of the spring stifness value.

Te infuence of the parameter conditions of
composite-laminated curved beams on the vibration
characteristics of composite-laminated rotationally stif-
ened plates also needs to be studied. Table 5 takes the
stifened annular sector and annular plate as examples and
gives the frequency parameter Ω of the frst eight orders
for two kinds of composite-laminated rotationally stif-
ened plates with diferent numbers and sizes of stifeners.
Te maximum number of stifeners n is 3, where stifener 1
is at Rp/2, stifener 2 is at Rp/3, and stifener 3 is at 2Rp/3.
Te geometric parameters of the two kinds of composite-
laminated rotationally stifened plates in the calculation
example are R1 � 1m, R2 � 2.2 m, Rb1 � 1.6 m, Rb2 � 1.4 m,
Rb3 � 1.8 m, and hp � 0.035m. Te plate structure is set as
glass fber resin, the stifener material is set as graphite
fber resin, and the angle-ply is set as [−45°/0°/45°]. It can
be seen from Table 5 that compared with the plate
structure without stifeners, when the number of stifeners
n is 1, the frequency parameter Ω of most orders of
stifened annular sector plates and stifened annular plates
tends to increase, and the degree of increase is related to
the size parameter of stifeners, while the frequency pa-
rameterΩwill decrease with the increase of the number of
stifeners n. It can be seen from Table 5 that compared
with the plate structure without stifeners, the frequency

Figure 9: Layout plan of stifened circular sector plate structure and test equipment.
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parameter Ω of most orders of stifened annular sector
plates and stifened annular plates tends to increase when
the number of stifeners n is 1, and the degree of increase is
related to the size parameter of stifeners, while the fre-
quency parameter Ω will decrease with the increase of the
number of stifeners n.

Figure 12 shows the modal shapes corresponding to the
frst two frequency parameters of the stifened annular sector
plate under diferent numbers of stifeners, which more
intuitively refects the infuence of stifeners on the structure
of the rotational plate. Te size and material parameters of
the stifened annular sector plate are the same as those in

Q235 steel
Test results

f3 = 406.76 Hz
Calculation results of present method f5 = 767.72 Hz f7 = 936.57 Hz

f3 = 404.55 Hz
Carbon fber composite material

Test results

f5 = 754.46 Hz f7 = 1007.36 Hz

f2 = 89.18 Hz
Calculation results of present method

f7 = 520.35 Hz f9 = 850.75 Hz

f2 = 86.09 Hz f7 = 529.32 Hz f9 = 878.56 Hz

Figure 10: Natural frequencies and modal shapes of stifened circular plate obtained by test and this method.
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Table 4: Frequency parameter Ω of stifened composite circular sector plate under diferent boundary and parameter conditions.

Boundary condition Angle-ply ϑ
Modal order

1 2 3 4 5 6 7 8

SSF

[0°/90°]
90° 5.797 8.852 13.234 17.199 18.315 19.821 21.831 22.419
180° 5.363 6.351 7.923 9.725 9.888 12.097 12.612 14.491
270° 5.092 5.781 6.572 6.915 7.630 8.873 9.255 10.250

[90°/0°/90°]
90° 4.619 8.080 12.924 13.823 18.832 18.898 19.251 19.916
180° 4.161 5.294 7.066 9.224 9.469 11.680 12.183 13.681
270° 4.023 4.628 5.557 6.580 6.744 8.113 8.668 9.628

CCF

[0°/90°]
90° 8.207 11.190 15.607 18.583 20.855 22.816 23.771 26.580
180° 7.634 8.732 10.026 10.209 12.106 12.698 14.291 16.709
270° 6.260 8.199 8.282 8.935 9.300 9.919 11.098 12.436

[90°/0°/90°]
90° 6.536 10.139 15.326 16.746 19.513 21.686 22.733 23.480
180° 6.032 7.157 8.927 9.660 11.140 12.303 13.704 16.560
270° 5.633 6.505 6.961 7.392 8.574 8.695 9.955 11.511

CCC

[0°/90°]
90° 9.601 13.684 18.862 23.991 24.864 30.352 31.681 37.238
180° 8.234 9.531 11.272 13.558 15.804 18.717 21.293 22.849
270° 7.912 8.573 9.471 10.608 11.907 12.856 13.393 14.946

[90°/0°/90°]
90° 8.337 13.307 19.553 19.834 27.063 27.566 34.966 36.190
180° 6.549 8.111 10.226 12.775 15.615 16.757 18.889 19.482
270° 6.196 6.957 8.042 9.393 10.911 12.562 12.661 14.496

E2E2F

[0°/90°]
90° 1.041 3.963 4.724 5.332 6.067 7.035 7.982 9.027
180° 0.785 3.826 4.030 4.472 5.062 5.310 5.813 6.732
270° 0.669 3.788 3.855 4.088 4.385 4.757 5.200 5.300

[90°/0°/90°]
90° 1.026 3.563 4.147 4.610 6.208 7.162 7.765 8.587
180° 0.771 3.393 3.730 4.112 4.316 5.048 5.982 6.920
270° 0.653 3.344 3.493 3.818 4.102 4.212 4.680 5.235
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Figure 11: Continued.
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Table 5; the width and thickness of the stifener are
b1 � b2 � b3 � 0.1m, h1 � h2 � h3 � 0.08m. It can be seen from
Figure 12 that the vibration modal diagram at the location of
the stifener is signifcantly curved, which indicates that the
laminated plate and laminated curved beam structure in the
model of composite laminated rotationally stifened plate are
coupled.

Taking the stifened composite circular plate as an ex-
ample, the variation curve of the frequency parameter Ω
with the thickness hn of the laminated curved beam under
the same thickness-to-width ratio is shown in Figure 13. Te
number of stifeners n is 2, stifener 1 is at Rp/3, and stifener
2 is at 2Rp/3. Te constant geometric parameters of stifened
circular plate in the calculation example are:\ R1 � 0m,
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Figure 11: Te change curve of frequency parameter Ω varies with rotation angle ϑ of stifened composite circular sector plate under
diferent boundary conditions. (a) First order. (b) Second order. (c) Tird order. (d) Fourth order.

Table 5: Frequency parameter Ω of stifened composite annular sector plate and stifened composite annular plate with diferent numbers
and sizes of stifeners.

Number of stifeners n Modal order
1 2 3 4 5 6 7 8

b1 � b2 � b3 � 0.1m, h1 � h2 � h3 � 0.08m
Stifened annular sector plate; ϑ� 180°, CCCC

n� 0 5.124 5.129 5.240 5.569 6.217 7.245 8.601 10.287
n� 1 3.489 6.704 9.949 13.155 13.443 15.967 16.248 18.928
n� 2 3.618 6.943 7.080 9.327 10.269 10.968 12.201 13.530
n� 3 3.541 5.758 6.706 8.076 8.263 9.706 9.845 9.997

Stifened annular plate: ϑ� 360°, CC
n� 0 5.101 5.101 5.124 5.124 5.135 5.138 5.138 5.339
n� 1 1.094 3.467 3.467 6.659 6.659 9.880 9.880 12.432
n� 2 1.118 3.603 3.603 6.155 6.913 6.913 7.073 7.073
n� 3 1.201 3.528 3.528 4.644 5.749 5.749 6.680 6.680

b1 � b2 � b3 � 0.05m, h1 � h2 � h3 � 0.04m
Stifened annular sector plate: ϑ�180°, CCCC

n� 0 5.124 5.129 5.240 5.569 6.217 7.245 8.601 10.287
n� 1 2.806 4.961 7.239 9.548 11.857 14.154 16.403 18.061
n� 2 2.898 5.166 7.543 8.189 9.262 9.941 10.820 12.318
n� 3 2.900 5.067 6.209 7.343 7.519 9.317 9.629 10.076

Stifened annular plate: ϑ� 360°, CC
n� 0 5.101 5.101 5.124 5.124 5.135 5.138 5.138 5.339
n� 1 1.513 2.778 2.778 4.895 4.895 7.137 7.137 9.405
n� 2 1.511 2.871 2.871 5.104 5.104 7.451 7.451 7.800
n� 3 1.616 2.876 2.876 5.011 5.011 5.709 6.197 6.197
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n = 0
Second order

Stifened annular sector plate:
 First order

n = 1 n = 2 n = 3

n = 0 n = 1 n = 2 n = 3

Figure 12: Te frst two order modal shapes of stifened annular sector plate with diferent numbers of stifeners.
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Figure 13: Continued.
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R2 � 1.8m, Rb1 � 0.6m, Rb2 � 1.2m, hp � 0.02m, b1 � b2, and
h1 � h2. Te boundary condition is S, the plate structure and
stifener material are set as glass fber resin, and the angle-ply
is set as [0°/60°]. According to the analysis in Figure 13, the
frequency parameter Ω of the same order increases with the
increase of the thickness of the laminated curved beam hn

under the same thickness-to-width ratio.Te variation curve
of the frequency parameter Ω with the thickness hn of the
laminated curved beam under the diferent thickness-to-
width ratio is shown in Figure 14. Te geometric and ma-
terial parameters in Figure 14 are the same as those in

Figure 13, Te mode is the fourth order. It can be seen from
Figure 14, the frequency parameter Ω increases with the
increase of the thickness-to-width ratio; it means that as the
width of the laminated curved beam increases, the frequency
parameter Ω increases. To sum up, the thickness and width
of the laminated curved beam are positively correlated with
the frequency parameter Ω of the composite-laminated
rotationally stifened plate.

Continuing with the discussion on the efect of material
parameters of the stifeners on the natural frequencies of
composite-laminated rotationally stifened plates, the efect of
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Figure 13: Variation curve of frequency parameter Ω with the thickness of laminated curved beam for composite stifened circular plate
under the same thickness to width ratio. (a) bn/hn � 0.5, (b) bn/hn � 1, (c) bn/hn � 2, and (d) bn/hn � 3.
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Figure 14: Variation curve of frequency parameter Ω with the thickness of laminated curved beam for composite stifened circular plate
under the diferent thickness to width ratio.
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the layer angle of the stifeners on the frequencies is in-
vestigated. Figure 15 illustrates the efect of varying layer angle
of the stifeners under diferent boundary conditions and two
diferent layer schemes on the natural frequencies of
composite-laminated rotationally stifened plates. In this
particular case, the geometric parameters of the composite-
laminated rotationally stifened plate are as follows: R0 �1m,
R1 � 2m, b1 � 0.06m, and h1 � 0.04m, with a rotation angle of
90°. Te materials of the laminated plate and the laminated
beam (stifener) are glass epoxy resin with the following
material parameters: E1 �185GPa, E2 � 10.9GPa, G1 �

G2 � G3 � 7.3GPa, μ� 0.28, and ρp � 1600 kg/m3.Te number
of laminated beams is 1, located atRp/2. From Figure 15, it can
be observed that under both layer schemes, for the SSSF and
CCCF boundary conditions, the variation in the layer angle of
the stifener exhibits a similar trend in afecting the natural
frequencies of the composite laminated rotationally stifened
plates. Within the range of 0–90°, the natural frequencies
generally increase with an increase in the layer angle before
decreasing. However, for the EEEF boundary condition, under
the [0/α°/0] layer scheme, except for the second order, the
other natural frequencies remain relatively constant within the

0–90° range. Under the [0/α°/0/α°] layer scheme, except for the
second order, the overall trend of the other natural frequencies
within the 0–90° range is a decrease with an increase in the
layer angle. Tis discrepancy is mainly due to the diferent
infuences of the boundary conditions on the stifness of the
structure.

Next, the efect of the anisotropy of the stifener on the
frequencies of composite-laminated rotationally stifened
plate is investigated. Figure 16 illustrates the efect of varying
anisotropy of the stifener on the natural frequencies of
composite-laminated rotationally stifened plates under
diferent boundary conditions. Te anisotropy of the
composite material is defned as E1/E2. In this example, the
geometric parameters of the composite-laminated rota-
tionally stifened plate are R0 � 1m, R1 � 3m, b1 � 0.06m,
and h1 � 0.04m, with a rotation angle of 180°. Te material
for both the laminated plate and the laminated beam
(stifener) is glass epoxy resin, with material parameters
remaining unchanged except for E1, which varies as a pa-
rameter, consistent with Figure 15.Te number of laminated
beams is 1, located at Rp/4, and the layer scheme of the
stifener is [0/90°/0/90°]. From Figure 16, it can be observed
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Figure 15: Variation curve of frequency parameterΩ with the layer angle of the stifeners under diferent boundary conditions. (a) [0/α°/0]
EEEF. (b) [0/α°/0] SSSF. (c) [0/α°/0] CCCF. (d) [0/α°/0/α°] EEEF. (e) [0/α°/0/α°] SSSF. (f ) [0/α°/0/α°] CCCF.
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that under diferent boundary conditions, within the range
of 0–100, the natural frequencies of the composite-laminated
rotationally stifened plate increase with an increase in the
anisotropy of the stifener material.

Te stifened plate model established in this paper can
not only analyze the stifened composite plate structure but
also study the vibration characteristics of isotropic stifened
plate structure by changing the material parameter settings.
Table 6 shows the frst 8-order frequency parameterΩ of the
rotationally isotropic stifened plate under diferent
boundary conditions and compares it with the results of the
fnite element method. Te number of stifeners n is 1, and

the stifener is located at Rp/2. Te invariant geometric
parameters of the rotationally stifened plate in the calcu-
lation example are R2 � 1.6m, hp � 0.03m, b1 � 0.06m, and
h1 � 0.04m. Te plate structure and stifener material are set
as isotropic material steel. As shown in Table 6, the results
obtained by this method and the fnite element method are
relatively close, and the error is less than 5%.

In the process of free vibration analysis, it can be found
that compared with the fnite element method, the present
method does not need to establish a new model when
calculating examples with diferent material and size pa-
rameters but only needs to change the relevant parameters in
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Figure 16: Variation curve of frequency parameter Ω with the anisotropy of the stifener under diferent boundary conditions. (a) EFEF.
(b) SFSF. (c) CFCF.

Table 6: Te frst eight-order frequency parameter Ω of rotationally isotropic stifened plates under diferent boundary conditions.

Boundary condition Method
Modal order

1 2 3 4 5 6 7 8
Stifened annular sector plate: R1 � 0.4m, Rb1 � 1m, ϑ� 120°

CFCF Present method 0.802 1.373 2.750 4.299 4.935 5.893 7.603 10.383
FEM 0.759 1.421 2.961 4.194 5.067 6.118 7.614 10.098

CCCC Present method 5.772 9.749 14.273 14.829 17.379 19.576 23.227 24.210
FEM 5.659 9.996 13.391 15.117 17.383 19.761 23.439 25.070

Stifened circular sector plate: R1 � 0m, Rb1 � 0.8m, ϑ� 120°

CFC Present method 2.532 5.613 7.666 9.431 11.538 12.499 14.468 16.949
FEM 2.720 5.396 7.747 9.472 11.828 13.129 14.106 17.020

CCC Present method 5.456 9.206 11.850 12.558 16.391 17.845 18.342 20.828
FEM 5.343 9.129 11.096 12.711 16.457 17.843 18.249 21.000

Stifened annular plate: R1 � 0.4m, Rb1 � 1m, ϑ� 360°

CF Present method 0.735 0.735 0.915 0.926 0.926 1.747 1.748 3.194
FEM 0.744 0.744 0.906 0.931 0.931 1.883 1.883 3.078

CC Present method 4.280 4.655 4.655 5.404 5.404 7.572 7.583 10.479
FEM 4.397 4.618 4.619 5.589 5.589 7.688 7.689 10.744

Stifened circular plate: R1 � 0m, Rb1 � 0.8m, ϑ� 360°

F Present method 0.802 0.802 1.307 1.599 1.605 2.635 2.635 2.762
FEM 0.780 0.780 1.443 1.678 1.679 2.633 2.633 2.756

C Present method 1.404 2.514 2.515 4.387 4.387 4.780 7.008 7.018
FEM 1.430 2.661 2.661 4.644 4.645 4.857 7.252 7.253
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the program, which saves more time. At the same time, the
present method can directly parameterize the infuencing
factors and analyze the infuencing mechanism of the rel-
evant parameters by changing the relevant schemes.

4. Conclusions

Based on the improved Fourier series method and the
Rayleigh–Ritz method, a unifed analytical model for the
vibration characteristics of composite-laminated rotation-
ally stifened plates is established in this paper. First, the
admissible displacement function of laminated plates and
laminated curved beams are established by two-dimensional
and one-dimensional improved Fourier series methods;
second, the energy function of laminated plate and lami-
nated curved beam in stifened plate is established, and the
potential energy coupling between laminated plate and
laminated curved beam is introduced to obtain the total
energy function of composite-laminated rotationally stif-
ened plate structure; fnally, the total energy function
equation is solved according to the Rayleigh–Ritz method.
Te free vibration and structural model test of composite-
laminated rotationally stifened plates are studied, and the
following important conclusions are obtained:

(1) When the cutof value of admissible displacement
function of laminated plate and laminated curved
beam is Mp × Np � 18×18, Mb � 50, the natural
frequencies of the unifed analysis model for the
vibration characteristics of composite-laminated
rotationally stifened plate structure constructed by
this method basically converge, and the error be-
tween the natural frequencies of each order and the
fnite element simulation is 6.38%, and the spring
stifness value also converge at 1010.

(2) Te error between the test results and the calculation
results of this method in the model correctness
verifcation is 7.56%, and the modal shapes obtained
by the two methods are very close, which verifes the
correctness of the unifed analysis model of
composite-laminated rotationally stifened plate
structure established in this section.

(3) Under the condition of free vibration, the natural
frequency of composite-laminated rotationally
stifened plates decreases with the increase of ro-
tation angle, increases with the increase of
boundary spring stifness, decreases with the in-
crease of the number of stifeners, and increases
with the increase of the thickness and width of
laminated curved beams.
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