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Te impact-rubbing dynamic characteristics of the power turbine rotor with the hollow shaft and ofset discs for aircraft engine are
investigated, and the impact-rubbing analytical method for the complex rotor based on MDOP Timoshenko beam theory is
proposed in this paper. Compared with the traditional approach, the novel method can obtain more data to satisfy the need of
engineering.Te Lagrange equation is adopted to derive the equations of motion for the rotor system, and the Newmark-βmethod
is applied to solve the equations.Te diagrams such as the bifurcation, axis trajectory, spectrum, and Poincaré map are obtained to
research on the efect of the rotating speed, gap, and eccentricity on the vibration response.Te fnite element analysis was carried
out to validate the correctness of the theoretical modeling method. Te research results indicate that the power turbine rotor with
the hollow shaft on operation shows the various nonlinear dynamic behaviors including the multiperiod, quasi-period, jumping
phenomenon, and chaotic motions; there exists an optimal gap between the rotor and the stator from the perspective of the
efciency and the dynamics; the optimal gap should make system avoid the resulting chaos or the quasi-period motion for the
stability and safety of the machinery.

1. Introduction

Impact-rubbing fault is an ordinary fault in rotation ma-
chinery. It is usually an indirect fault caused by mis-
alignment, mass imbalance, or other factors.Te fault is very
harmful to a rotor system, and it not only afects the safe and
stable operation of the system but also leads to more serious
accidents such as the blade and the shaft fracture. Terefore,
it is crucial to investigate the impact-rubbing mechanism of
a rotor system. Te gap between the stator and the rotor is
closely related to the efciency of the turboshaft engine. Too
large gaps will make the working efciency of the rotor
system decrease, while too small gaps increase the risk of the
impact-rubbing because of the vibration. Terefore, in order
to pursue the higher efciency and the lower risk of rubbing,
researchers have been exploring an optimal gap value be-
tween the rotors and the stators for the complex working
conditions. Te infuences of the clearance, rotational speed,
rub-impact stifness, and imbalance on the system dynamics
have become a hot spot in the feld of the rotor dynamics.

Many researchers have carried out lots of work on the
impact-rubbing dynamics of the rotor system. Zhao et al. [1]
developed a drop impact-rubbing equation for a bearing
system considering four failure models to simulate the in-
fuence rules of the related parameters on the impact-
rubbing behaviors of the falling rotor system. Xiang et al.
[2] built a dynamic model of the ofset rotor system with two
discs under consideration of the impact-rubbing and the
nonlinear oil flm load and investigated the coupled dy-
namics of the system, and the research is meaningful for the
stability of the rotor system. Von Groll and Ewins [3] ob-
tained the dynamic responses of a nonlinear system based on
the harmonic balance method. Sun et al. [4] calculated the
accurate responses of the steady-state vibration in accor-
dance with MHB-AFT and studied the stability of the
impact-rubbing of a dual rotor system. Tai et al. [5] explored
the stabilities of a single-point impact-rubbing rotor system
according to Hill’s approach; the research proves that the
smaller gap can improve the stability of the system. Mokhtar
et al. [6] investigated the dynamics of the interaction
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between the rotor and the stator by applying the Lagrange
multiplier approach and obtained the characteristic fre-
quency component of rubbing. Saeed et al. also investigated
the nonlinear dynamics of the rub-impact between the stator
and the rotor [7, 8], complicated bearing system [9–11], and
self-excited system [12]. Lu et al. [13] studied the dynamic
characteristics of a rotor-bearing system with misalignment
and impact-rubbing. Pan et al. [14] developed the compli-
cated rotor system model consisting of the rolling bearings,
casing, work condition load, rotor imbalance, and squeeze
flm damper in order to study the efect of the impact-
rubbing stifness, oil flm gap, and bearing gap on the vi-
bration responses of the rotor system. Te nonlinear dy-
namic algorithm [15] and the bifurcation characteristics of
a multipole magnetic bearing system [16] were focused on by
investigators nowadays. Prabith and Krishna [17] de-
termined the efect of the stifness, friction coefcient, and
gap between the stator and the rotor on the stabilities for an
impact-rubbing rotor system. Zhang et al. [18] studied the
random dynamics of a Jefcott rotor with parametric un-
certainty and impact-rubbing. Fu et al. [19] investigated the
nonlinear vibration response of a dual rotor system with the
indeterminacy factors. Pan et al. [20] constructed a novel
forecasting model of the rotor-bearing system where exists
the impact-rubbing between the blade and the stator. Fan
et al. [21] presented a novel method of resolving invariable
set in the high dimension to study impact-rubbing between
the rotor and the stator. Xu et al. [22] studied the dynamic
behaviors of a spindle-bearing-housing-belt system with rub
by theory and FEM. Ma et al. [23, 24] investigated the
impact-rubbing between a rotor and the diferent shape
stators based on the point-point contact theory, and they
also studied the fxed point impact-rubbing faults of the
rotor with two discs based on the FEA and experiments.
Wang et al. [25] explored the sudden imbalance impact-
rubbing of a rotor with blade abscission by the theory and
experiments. Song et al. [26] researched on the nonlinear
dynamics of aircraft engines, especially focused on the
impact-rubbing between the blades and the stators by the
theory and experiments. Lu et al. [27] developed a kinetic
model by using a fnite element method based on a dual-
rotor experimental platform. Jin et al. studied the nonlinear
vibration characteristics of the dual-rotor system through
the fnite element method [28] and the experimental method
[29, 30] and have made much progress.

Researchers have conducted much work on the model
building and analyses of the impact-rubbing dynamics for
the rotor and made a lot of achievements. Nevertheless, the
impact-rubbing dynamics of the rotor with the hollow shaft
and two ofset discs are often studied by building the model
of the less degree of freedom (DOF), and more data from the
modeling of multiple degrees of freedom (MDOF) are
strongly demanded. Te vibration analysis method and
technique based on multiple degrees of freedom (MDOF)
proposed in the paper can be applied to fault diagnosis,

vibration analysis, structure design and optimization, and
vibration measurement. Hence, it is necessary to build the
MDOF model of the impact-rubbing for the complex rotor.
In this paper, the power turbine rotor from the dual rotor
system of the aircraft engine is taken as the object of study,
seen in Figure 1. Te model of the hollow shaft with the two
ofset discs is developed to be equivalent to the power
turbine rotor based on theMDOF Timoshenko beam theory.
Te efects of the rotational speed, stifness, and eccentricity
on the vibration response of the system are investigated. Te
research has an important reference value for the vibration
analysis and structural design of the same type of rotating
machinery.

2. Dynamic Modeling of Power Turbine Rotor

Te power turbine rotor includes one hollow shaft and two
discs. Te shaft is supported by the bearings’ both ends, and
it will be modeled as the beam element model; the un-
balanced mass of the disc and the bending-torsion coupling
efect of the rotor are taken into account in this model. Te
motion of the disc can be decomposed into the translation in
a certain direction and the rotation around the rotation axis.
Terefore, the coordinate system OXYZ is at rest, OX1Y1Z1
is set up by rotating a certain angle around the X axis,
OX2Y2Z2 is built by rotating a certain angle around the Y1
axis, and OX3Y3Z3 is formed by rotating a certain angle
around the Z2 axis, as shown in Figure 2.

Te relation between the stationary coordinate system
and the rotating coordinate system can be expressed as
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According to the relation between the two coordinate
systems, the sum of the translational kinetic energy and the
rotational kinetic energy for the unbiased disc can be written
as

Tw �
1
2
mw _x

2
+ _y

2
  +

1
2
Jd ωX3

2
+ ωY3

2
  +

1
2
JpωZ3

2
, (2)

where Jd and Jp are the moment of inertia of the disc
diameter and the polar moment of inertia of the
disc, respectively, and mw is the mass of the disc. Equation
(2) is substituted into the Lagrange equation, and equa-
tion (3) is obtained by ignoring the second order and
above terms:

d

dt

zTw

z _uw

  −
zTw

zuw

� Mw€uw +ΩGw _uw, (3)

where uw � [x y θx θy θz] is the node vector of the non-
eccentric disc and Mw and Gw are the mass matrix and the
gyro matrix of the disc element, respectively:
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(4)

Figure 3 shows the disc model considering eccentricity.
OXYZ is the stationary coordinate system. OX3Y3Z3 is the
rotating coordinate system. mc is the eccentric mass. α is the

initial phase angle. e is the eccentricity, and the kinetic
energy caused by the eccentric mass can be written as
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1
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T _Rc, (5)

where Rc is the vector of the eccentricity in the stationary
coordinate system. It can be expressed as
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where eX3 and eY3 are the OX3 and OY3 components of the
eccentricity e in the rotational coordinate system OX3Y3Z3,
respectively. Te Lagrange equation is
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Figure 2: Schematic chart of transformation for the coordinate system.
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Figure 1: Sectional view of the dual rotor system for aircraft engines.
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where uc � [x y θx θy θz] is the eccentric element node
vector and Fuc

is the generalized force vector of the eccentric
mass. According to equation (7), one obtains
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where Mc, Cc, and Kc are the mass matrix, the damping
matrix, and the stifness matrix of the eccentric mass ele-
ment, respectively. Based on the above analysis, the formula
of the element combined disc is as follows:

Mc + Mw( €u + Cc +ΩGw(  _u + Kcu � Fuc
. (9)

2.1. Beam Element Model for Hollow Shaft. Te Timoshenko
beam is used to establish the element matrix of the shaft
considering the rotational inertia and the shear deformation
of the beam element. Figure 4 shows a schematic diagram of
the Timoshenko beam element. A beam element contains
two nodes, and each node contains fve degrees of freedom
(DOF): the X-direction translation, the Y-direction trans-
lation, the rotation around the X-axis, the Y-axis rotation,
and the Z-axis rotation. Te coordinate system oxyz is

established; x1 and y1 are the displacements of the frst node
of the beam element in the x and y directions, respectively.
Similarly, x2 and y2 are the displacements of the second
node of the beam element in the x and y directions, re-
spectively. θx1, θy1, θz1, θx2, θy2, and θz2 are the rotational
angles of the frst node in x, y, and z directions and the
rotational angles of the second node in x, y, and z directions,
respectively. Writing the above DOF as a vector, then the
node displacement us is expressed as

us � x1 y1 θx1 θy1 θz1 x2 y2 θx2 θy2 θz2.

(10)

Using the interpolation function method, the dis-
placement of any section in the element is represented by
the product of the shape function and the node
displacement:
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Figure 3: Te disc model considering the eccentricity.
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X � N1 0 0 N2 0 N3 0 0 N4 0 us � NXus,
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all shape functions.
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where a � s/L, Φ � 12EIe/κGeAL2, E is the elastic modulus
of the shaft material, Ie is the moment of inertial for the
section, Ge is the shear modulus of the shaft, and A is the
cross-sectional area of the shaft. Since the shaft is hollow,
the shear infuence factor of the beam element κ= 2
(1 + μ)/(4 + 3μ), and μ is Poisson’s ratio of the material.
Terefore, the strain energy of the shaft element Us can be
written as
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1
2
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where J is the polar moment of inertial. Substituting the
expression, one can get
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1
2
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T
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where Ke is the element stifness matrix in the form of the
ten-order symmetric matrix.
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Figure 4: Schematic diagram of the Timoshenko beam element.
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Te kinetic energy of the shaft beam element Ts is
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where Ω is rotating speed of the shaft and Id is the diameter
moment of inertia of the hollow shaft. Substituting the
formula, one can get

Ts �
1
2

€us
T
Me€us, (18)

where Me is the mass matrix of the element in the form of
ten-order symmetric matrix.

Me �
ρπL ro

2
− ri

2
 

840(1 +Φ)
2

312

0 312

0 −44L 8L
2

44L 0 0 8L
2

0 0 0 0 0

108 0 0 26L 0 312

0 108 −26L 0 0 0 312

0 26L −6L
2 0 0 0 44L 8L

2

−26L 0 0 −6L
2 0 −44L 0 0 8L

2

0 0 0 0 0 0 0 0 0 0
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+
ρπ ro

4
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2
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2
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2
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,

(19)
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where ro and ri are the outer diameter and the inner di-
ameter of the hollow shaft section, respectively. Considering
the gyroscopic efect of the beam element, any infnitesimal
segment ds is taken from the hollow shaft section, and the
cross-section diagram of the shaft is shown in Figure 5.

Te rotational inertia of diameter Id can be written as

Id � 4ρ
ro

ri


π/2

0
r
3 sin2(θ)dθ dr ds � ρIeds. (20)

Te polar moment of inertia Ip is

Ip � 2Id � 2ρIeds. (21)

Te rotation of the microelement around the diameter
will produce the kinetic energy increment dT:

dT � −dIpΩ _φeθe, (22)

where φe and θe are the arbitrary displacement expressed in
the form of the product of the interpolation function and the
node displacement vector, respectively. By integrating along
the axial section of the entire beam element, one can obtain

TG � −2ρIeΩ
L

0
φeθeds. (23)

According to the Lagrange equation, the gyro matrix of
the element is obtained. Te matrix is a ten-order anti-
symmetric matrix as follows:

Ge �
ρπ ro

4
− ri

4
 

60L

0

−36 0

3L 0 0

0 3L −4L
2 0

0 0 0 0 0

0 −36 3L 0 0 0

36 0 0 3L 0 −36 0

3L 0 0 −L
2 0 −3L 0 0

0 3L L
2 0 0 0 −3L −4L

2 0

0 0 0 0 0 0 0 0 0 0
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. (24)

2.2. Bearing Modeling. Bearing is simplifed as a linear
spring, and the stifness matrix of support Ks and the
damping matrix Cs are derived by the Lagrange equation:

X

Y

O

ri

ro

Figure 5: Te cross-section diagram of the shaft.
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Ks �

ks 0 0 0 0

0 ks 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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Cs �

cs 0 0 0 0

0 cs 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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.

(25)

Te Rayleigh damping is used to describe Cs in the total
damping matrix of the system. Te specifc expression is as
follows:

Cs � αm + βk, (26)

where α and β are the mass matrix and the stifness matrix
scale coefcients, respectively:

α �
60 ωn2ξ1 − ωn1ξ2( ωn1ωn2

π ω2
n2 − ω2

n1 
,

β �
π ωn2ξ2 − ωn1ξ1( ωn1ωn2

15 ω2
n2 − ω2

n1 
,

(27)

where ωn1 and ωn2 are the frst- and second-order critical
rotational speed values, respectively, ξ1 and ξ2 are the frst-
and second-order modal damping ratios, respectively, and
α= 0.02 and β= 0.0005.

2.3. Impact-Rubbing Modeling. Te research on the impact-
rubbing of the power turbine rotor needs to establish
a rubbing model which is close to the reality. Te rub-impact
fault will occur when the radial displacement of the rotor
exceeds the gap between the stator and the rotor. Te local
rubbing diagram between the stator and the rotor is shown in
Figure 6, wherePN is the radial impact force of the rotor,PT is
the tangential friction force of the rotor, ω is the rotational
speed of the rotor system, and φ is the angle between the
normal direction and the x axis at the rubbing point.

Considering that the radial deformation of the stator is
linear, Kr is the radial stifness of the stator, dr is the radial
displacement of the rotor, and the coefcient of friction
between the rotor and the stator is f. Te friction law
conforms to Coulomb’s Law, and friction is proportional to
the radial pressure acting on the friction point. Assuming
that the clearance between the rotor and the stator is δ0 when
the system is stationary, the impact-rubbing force is

PN � dr − δ0(  · kr

PT � f · PN

 dr ≥ δ0 (28)

where dr �
������
x2 + y2


. Decomposing the impact-rubbing

force into the OXY coordinate system produces the fol-
lowing equations:

Px

Py

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� −

dr − δ0(  · kr

dr

1 −f

f 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x

y

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dr ≥ δ0,

Mr � fkrr0 dr − δ0(  dr ≥ δ0,
(29)

where Mr is the friction torque generated by the friction
force on the disc.

3. Equations and Solutions

Te equation of motion for the power turbine rotor system
can be derived based on the beam element model, bearing
model, and impact-rubbing force model. If the rotor system
has N nodes, the system consists of N− 1 beam elements.
Letting q be the displacement column vector of the power
turbine rotor, the equation of motion for the power turbine
rotor system is as follows:

[M] €q  +[C +ΩG] _q  +[K] q  � F{ }, (30)

where

q � x1 y1 θx1 θy1 θz1 · · · xn yn θxn θyn θzn .

(31)

[M], [C], [G], [K], and [F] are the mass matrix, damping
matrix, gyro matrix, stifness matrix, and force vector of the
overall system, respectively.

According to above modeling, the FE model of the power
turbine rotor was established as shown in Figure 7.Tismodel
consists of 16 nodes and 15 beam elements. Disc 1 is loaded at
node 11 with a diameter of 0.2m, and disc 2 is loaded at node
12 with a diameter of 0.3m.Te left and right bearings are set
at nodes 2 and 14, respectively.Tematerial used for the discs
and shaft is the same, and the related parameters of the power
turbine rotor system are shown in Table 1.

Te Newmark-βmethod is used to calculate the dynamic
response of the power turbine rotor system. One establishes
ut, _ut, €ut at t-moment and ut+∆t, _ut+∆t, €ut+∆t at t + ∆t-mo-
ment, and the frst-order Taylor expansion of the velocity
function is obtained:

Casing

Y PT

PN

X

dr

Rotor

φ

ω

Figure 6: Schematic diagram of local impact-rubbing.
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_ut+∆t � _ut + €u∆t, (32)

where €u is the acceleration of a point in the interval (t + ∆t),
and it can be assumed

€u � (1 − c)€ut + c€ut+∆t 0< c< 1. (33)

Substituting equation (33) into equation (32) leads to
_ut+∆t � _ut +(1 − c)€ut∆t + c€ut+∆t∆t. (34)

Te frst-order Taylor expansion of the displacement
function is obtained:

ut+∆t � ut + _ut∆t +
1
2

€u∆t
2
. (35)

Supposing
€u � (1 − 2β)€ut + 2β€ut+∆t

(36)

ut+∆t � ut + _ut∆t +
1
2

− β €ut∆t + β€ut+∆t∆t
2
. (37)

According to the above relationship, _ut+∆t and €ut+∆t can
be expressed as follows in the form of ut+∆t, ut, _ut and €ut:

€ut+∆t �
1

β∆t
2 ut+∆t − ut(  −

1
β∆t

_ut −
1
2β

− 1 €ut (38)

_ut+∆t �
α
β∆t

ut+∆t − ut(  + 1 −
α
β

  _ut + 1 −
α
2β

 €ut∆t.

(39)

Substituting equations (37) and (38) into equation (30)
produces

M€ut+∆t + C _ut+∆t + Kut+∆t � Ft+∆t,

Kut+∆t � Qut+∆t,
(40)

where

K � K +
1

β∆t
2 M +

α
β∆t

C,

Qut+∆t � Qut+∆t + M
1

β∆t
2ut +

1
β∆t

2 _ut +
1
2β

− 1 €ut 

+ C
α
β∆t

ut +
α
β

− 1  _ut +
α
2β

− 1 €ut∆t .

(41)

4. Validation

In order to validate the correctness of the modeling
method proposed in this research, the fnite element
model of the rotor system was established according to the
same parameters and constraints as theoretical modeling,
as shown in Figure 8, and the time history curve and
frequency-domain diagram of the vibrational displace-
ment at the center of mass for the disc under unbalanced
load are drawn; the comparison of the fnite element
method (FEM) result and the theoretical modeling
method (TMM) result is conducted, as shown in
Figures 9(a) and 9(b). It can be inferred from the fgures
that the theoretical and fnite element calculations agree
well, which verifes the correctness of the theoretical
modeling method.

Table 1: Parameters for the power turbine rotor system.

Te parameter names Unit Values
Modulus of elasticity E Pa 2.1× 1011

Material density ρ Kg/m3 7850
Left support stifness kL N/m 6×107

Right support stifness kR N/m 6×107

Te length of the shaft L mm 1.1
Outer/inner diameter of shaft ri/ro — 20/18
Friction coefcient f — 0.1
Poisson’s ratio μ 0.3

NODE 1
2

3 4 5 6 7 8 9 10 11

Disc 1

Disc 2

12 13
14

15 16

Right bearingLeft bearing

Figure 7: FE model of the power turbine rotor system.
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5. Results and Analyses

5.1. Rotating Speed. According to the equations in the
previous section, the working speed, eccentricity, impact-
rubbing, gap, and friction coefcient afect the vibration
characteristics of the whole rotor system. Te working ro-
tational speed is a fundamental parameter for rotational
machinery. Terefore, the working speed of the rotor is
selected as the controlled variable, and the related param-
eters of the system are shown in Table 2. Te working speed
is selected at 1000 rad/sec∼2500 rad/sec for analysis, the
eccentricity is 5×10−4m, the impact-rubbing stifness is
2×107m, the gap is 6×10−4m, and the coefcient of friction
is 0.1. Te time-domain data of the system vibration can be
obtained after calculating, the transient vibration caused by
the initial conditions in the data is abandoned, and the
steady-state vibration is used for analysis. Te bifurcation
diagram of the vibration with change in the rotational speed
can refect the dynamic characteristics of the system at
diferent speeds, such as the periodic vibration, multiple
periods, quasi-period, chaos, and jump.Te system response
is calculated once for every 10 rad/sec with increasing of the
rotating speed (after a lot of calculations and analyses, the
step length is more appropriate for research focus than
others), and the system bifurcation diagram of the dis-
placement with the change in the working speed is drawn as

shown in Figure 10. It is shown from Figure 10 that the
system exhibits a variety of nonlinear dynamic behaviors
such as the period, quasi-period, and chaotic motion; the
bifurcation diagram is a single curve (period-1) when the
speed is from 1000 rad/sec to 1240 rad/sec; when the speed is
in the range of 1240 rad/sec∼1931 rad/sec, the system is
under the state of the quasi-period, multiperiod, and chaotic
motions; when the speed is from 1931 rad/sec to 2026 rad/
sec, the system is always in the stable period-1 motion; when
the speed is from 2026 rad/sec to 2329 rad/sec, the system is
also in the quasi-periodic motion, multiperiod motion, and
chaotic motion. Te rotating speeds 1300 rad/sec, 1700 rad/
sec, 2000 rad/sec, and 2200 rad/sec are taken to analyze the
specifc nonlinear dynamic behaviors.

Figure 11 shows the response diagram of the system at
the rotating speed of 1300 rad/sec, including the trajectory of
shaft center, Poincaré map, and spectrum. It can be seen
from Figure 11(a) that the blue trajectory exceeds the red
boundary curve of the system and is characterized by many
irregular curves, and the system is in quasi-periodic motion.
It can be observed from Figure 11(b) that there are many
irregularly distributed points. Figure 11(c) shows more
frequency divisions. Figure 12 presents the trajectory of the
shaft center, Poincaré map, and spectrum at the rotating
speed of 1700 rad/sec. Figure 12(a) shows that local impact-
rubbing has occurred between the rotor and the stator.

0.00 250.00 500.00 (mm)

Figure 8: Finite element model and constraints of the rotor system.
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Figure 9: Comparison between FEM result and TMM result. (a) Time history curve. (b) Frequency-domain diagram.
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In Figure 12(b), there are three points from which it can be
inferred that the system enters period-3 motions from the
chaotic region, and Figure 12(c) confrms this point. It can
be seen from Figure 13(a) that the system does not intersect
with the boundary and moves within the boundary. Tere is
only a single isolated point in Figure 13(b), and it is inferred
that the system is undergoing period-1 motion. Figure 13(c)
shows only one frequency of the rotating speed. Figure 14(a)
presents the regular petal shape that is complex but not
chaotic. Figure 14(b) shows an approximately closed tri-
angle. Tere are X/4 and X/2 of the rotating frequency in
Figure 14(c). In conclusion, the vibration characteristics of

the rotor are sensitive to the rotational speed, the rotor
shows complicated motions such as period-1, period-3, and
the quasi-period, and the order of these motions is almost
irregular. Te working rotational speed of the rotor shall
make the system in periodic motion to avoid the quasi-
periodic or the chaotic motion.

5.2. Gap between Rotor and Stator. Te gap between the
rotor and the stator is an essential parameter for the ef-
ciency and dynamics. From the perspective of safe operation,
the radial gap should not be less than the largest

Table 2: Te related parameters of impact-rubbing for the rotor system.

Working speed (rad/s) Eccentricity (m) Impact-rubbing
stifness (N/m) Gap (m) Friction coefcient

1000∼2500 5×10−4 2×107 6×10−4 0.1
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Figure 10: Bifurcation diagram of displacement with change of rotational speed.
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Figure 11: Response diagram of the system at the rotating speed of 1300 rad/sec. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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displacement of the vibration. Te gap interval of
0.2mm∼0.8mm from Table 3 is chosen to draw the bi-
furcation diagram of the displacement, as shown in Fig-
ure 15. It can be shown from Figure 15 that the bifurcation
diagram is a single curve (period-1) when the gap is from
0.2mm to 0.4mm; the jump occurs when the gap is 0.4mm;
when the gap increases from 0.4mm to 0.49mm, the mutual
transformation of period-1 and the multiperiod occurs;
when the gap is between 0.49mm and 0.57mm, the rotor

system is always in the stable period-1 motion; when the gap
interval is between 0.57mm and 0.775mm, the system is in
the quasi-period motion, multiperiod, and chaotic state. Te
gaps of 0.41mm, 0.48mm, 0.54mm, 0.62mm, 0.70mm, and
0.77mm are selected for analysis.

Figure 16 includes the trajectory of the shaft center,
Poincaré, and spectrum diagrams when the gap is 0.41mm.
Figure 16(a) shows that the axis trajectory does not exceed
the boundary curve, but the rotor and the stator collide at
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Figure 14: Response diagram of the system at the rotating speed of 2200 rad/sec. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 12: Response diagram of the system at the rotating speed of 1700 rad/sec. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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a certain point. Tere is only one point in Figure 16(b),
indicating that the system is in the period-1 motion which is
consistent with Figure 16(c). Figure 17(a) shows that the
blue trajectory exceeds the red boundary curve of the
system and many stacked ellipses appear when the gap is
0.48mm. Figure 17(b) presents the quasi-periodic motion
of the system. In Figure 17(c), there are many messy and
small frequency components which are in accordance
with Figure 17(b). It can be inferred from Figure 18(a) that
there is no impact-rubbing when the gap is increasing up
to 0.54mm. Figures 18(b) and 18(c) show the same
conclusion. In Figure 19(a), there are many circles stacked
together like a petal shape. Figure 19(b) shows a distorted

closed triangle. It can be observed from Figure 19(c) that
there is 3X/10 of the speed frequency except for the speed
frequency and the system is in quasi-period motions.
When the gap is increasing up to 0.7 mm, the three di-
agrams nearly remain unchanged, as shown in Figure 20.
Figure 21 presents no impact-rubbing of the system when
the gap is 0.8 mm. In summary, the gap between the rotor
and the stator has a great infuence on the dynamic
characteristics of the whole system. Te dynamics and
efciency of the system should be comprehensively
considered for the gap design. Te system is in the period-
1 motion as much as possible to avoid the multiperiod
motion or chaos.

5

0

-5

-10

-15

D
isp

la
ce

m
en

t (
m

)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Clearance (m) ×10-4

×10-4

e=0.4
e=0.445 e=0.49

e=0.43 e=0.46
e=0.57

e=0.775

Figure 15: Bifurcation diagram of the displacement with the gap.

Table 3: Te related parameters of the rotor system.

Gap (mm) Eccentricity (m) Impact-rubbing
stifness (N/m) Working speed (rad/s) Fiction coefcient
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Figure 16: Response diagram of the system when the gap is 0.41mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.
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5.3. Impact-Rubbing Stifness. Te impact-rubbing stifness
has a certain correlation with the vibrational response of the
rotor. Table 4 shows the parameters of the impact-rubbing
for the rotor system in this calculation example. Figure 22
shows the bifurcation diagram of the displacement for the
rotor with the change in impact-rubbing stifness. It can be
shown from Figure 22 that the jump occurs when the
impact-rubbing stifness is 0.5×108N/m. Te system is in
the period-1 motion when the impact-rubbing stifness is
from 0∼1.4×108N/m; when the impact-rubbing stifness is

greater than 1.4×108N/m, the system is in the mutual
transformation of the quasi-period motion and the chaotic
motion. Te impact-rubbing stifnesses 0.5×108N/m,
1.4×108N/m, 3.3×108N/m, and 4.3×108N/m are selected
to draw the trajectory of the shaft center, Poincaré, and
spectrum diagrams, as shown in Figures 23∼25.
Figures 23(b) and 24(b) show only one isolated point which
can be identifed by Figures 23(c) and 24(c) presenting only
one frequency of the rotating speed. Figures 23(a) and 24(a)
indicate that the system is in a stable period-1 motion.
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Figure 17: Response diagram of the system when the gap is 0.48mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.
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Figure 18: Response diagram of the system when the gap is 0.54mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.
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Figure 19: Response diagram of the system when the gap is 0.63mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.
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Figure 20: Response diagram of the system when the gap is 0.7mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.
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Figure 21: Response diagram of the system when the gap is 0.8mm. (a) Trajectory of shaft center. (b) Poincaré map. (c) Spectrum.

Table 4: Parameters of the impact-rubbing for rotor system.

Impact-rubbing
stifness (N/m) Eccentricity (m) Gap (mm) Working speed (rad/s) Friction coefcient

0∼5×108 8×10−4 0.7 1700 0.1
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Figure 22: Bifurcation diagram of displacement with impact-rubbing stifness.
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Figures 25(b) and 26(b) show many points which form
a closed irregular shape. It can be seen from Figures 25(a)
and 26(a) that the system is in full-cycle rubbing. It is
inferred that the rotor vibration hardly changes within
a certain range of the small stifness which is called the ideal
stifness range, and when the stifness exceeds a critical
value, the rotor vibration gradually increases. Tis critical

stifness value is of great signifcance to the structural design
in engineering. Generally, the impact-rubbing stifness of the
rotor is less than this critical value and in the ideal stifness
range so as to avoid working for a long time in nonperiodic
motion conditions. Tis work has some guiding signifcance
for the design of rotor and stator stifness, which can be
achieved by selecting material and surface treatment.
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Figure 23: Response diagram of the system when impact-rubbing stifness is 0.5×108N/m. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 24: Response diagram of the system when impact-rubbing stifness is 1.4×108N/m. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 25: Response diagram of the system when impact-rubbing stifness is 3.3×108N/m. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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5.4. Eccentricity. Te eccentricity has a signifcant efect on
the vibration of the system. Te infuence of the eccentricity
on the dynamics will be studied in this section. Te related
parameters are shown in Table 5 where the eccentricity is in
the range of 0.1mm∼1mm, and the bifurcation diagram of
the eccentricity is drawn, as shown in Figure 27 which shows
a straight line; i.e., the system is in the state of period-1 when
the eccentricity is 0.1mm∼0.53mm; when the eccentricity is
0.53mm∼0.84mm, the motion of the system is more
complicated; when the eccentricity is in the range of
0.84mm∼0.94mm, the bifurcation diagram presents
a straight line again; when the eccentricity is
0.94mm∼1mm, the system is chaotic and complex. Te
eccentricities 0.5mm, 0.6mm, 0.7mm, 0.84mm, 0.91mm,
and 0.98mm are chosen to draw the corresponding tra-
jectory, the Poincaré map, and the spectrum diagrams, as
shown in Figures 28∼33.

Figure 28 shows that the system is in a stable period-1
motion and the rotor does not rub and impact with
the stator. Comparing with Figure 28(a), Figure 29(a) is
more complex; Figure 29(b) shows the system is approxi-
mately in a period-3 motion; with the increase of the ec-
centricity up to 0.91mm, the amplitude of the 1X frequency
increases gradually and exceeds the amplitude of the 1/3
frequency in the spectrum diagram, while the system enters
into the period-1 motion from the period-3 motion in
Poincaré diagrams, as shown in Figure 32(b); with the in-
crease of eccentricity to 0.98mm, the axis trajectory enters
into the disorderly state, as shown in Figure 33(a). It can be
inferred from the analysis above that the dynamic

characteristics of the system are sensitive to the change of
eccentricity, and the system mainly presents period-1,
period-3, the quasi-period, and other motion types; the
order of occurrence has no obvious rule. In engineering, the
dynamic balance of the rotor system can usually be con-
ducted to adjust the eccentricity, and the ideal value of the
eccentricity is determined according to the vibrational level
of the rotor. Te specifc dynamic behaviors should be
analyzed according to the actual situation.
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Figure 26: Response diagram of the system when impact-rubbing stifness is 4.3×108N/m. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.

Table 5: Te related parameters of eccentricity infuence.

Eccentricity (mm) Impact-rubbing
stifness (N/m) Gap (mm) Working speed (rad/s) Friction coefcient

0.1∼1 2×107 0.7 1700 0.1
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Figure 27: Bifurcation diagram of displacement with eccentricity.
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Figure 28: Response diagram of the system of the rotor with an eccentricity of 0.53mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 29: Response diagram of the system of the rotor with an eccentricity of 0.6mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 30: Response diagram of the system of the rotor with an eccentricity of 0.7mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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6. Conclusions

Te impact-rubbing dynamic characteristics of the power
turbine rotor systemwith the hollow shaft and two ofset discs
for aircraft engines are investigated in this paper. Timoshenko
beam theory considering theMDOF is applied to establish the

rotor model, and the Newmark-βmethod is used to solve the
equations of motion for the system. Te infuence of the
rotating speed, gap, and eccentricity on the vibration response
of the system is studied; the fnite element analysis was
conducted to verify the correctness of the theoretical mod-
eling method. Te main conclusions are drawn as follows:
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Figure 31: Response diagram of the system of the rotor with an eccentricity of 0.84mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 32: Response diagram of the system of the rotor with an eccentricity of 0.91mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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Figure 33: Response diagram of the system of the rotor with an eccentricity of 0.98mm. (a) Trajectory of shaft center. (b) Poincaré map.
(c) Spectrum.
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(1) Te power turbine rotor with the hollow shaft on
operation shows the various nonlinear dynamic
behaviors such as the multiperiod motion, quasi-
periodic motion, jumping phenomenon, and the
chaotic motion.Te impact-rubbing stifness and the
eccentricity also have the signifcant efect on the
bifurcation characteristics of the system.

(2) Te rotating speed has a fundamental infuence on
the nonlinear dynamics of the system. With the
increase of the speed, the system switches among
period-1, period-3, the multiple period, and the
chaos motions. Te working rotational speed should
be designed in period-1 for stability; otherwise, the
vibration of the system is so unpredictable that
a potential risk may occur.

(3) Tere exists an optimal gap between the stator and
the rotor from the perspective of the mechanical
efciency and the dynamics of impact-rubbing. Too
large gaps will decrease the efciency of the rota-
tional machinery, while too small gaps will increase
the risk of the impact-rubbing. Te optimal gap
should make system avoid the chaos or the quasi-
periodic motion.
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