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Tis study proposes an uncertainty quantifcationmethod based on deep neural networks and Catmull–Clark subdivision surfaces
for vibroacoustic problems. Te deep neural networks are utilized as a surrogate model to efciently generate samples for
stochastic analysis. Te training data are obtained from numerical simulation by coupling the isogeometric fnite element method
and the isogeometric boundary element method. In the simulation, the geometric models are constructed with Catmull–Clark
subdivision surfaces, and meantime, the physical felds are discretized with the same spline functions as used in geometric
modelling. Multiple deep neural networks are trained to predict the sound pressure response for various parameters with diferent
numbers and dimensions in vibroacoustic problems. Numerical examples are provided to demonstrate the efectiveness of the
proposed method.

1. Introduction

Tin-shell structures manifest an evident vibroacoustic in-
teraction phenomenon, which has a signifcant impact on
structural safety and noise control. Considering the inherent
randomness of material properties, geometry, and loading
[1–7], it is necessary to quantify these uncertainties to
evaluate structural reliability in engineering [8]. Te com-
monly used uncertainty quantifcation methods include
Monte Carlo simulation (MCs) [9–15], stochastic spectral
methods [16, 17], and perturbation methods [18]. Among
them, MCs is the most versatile and easiest to implement,
but it requires a large number of samples to ensure sufcient

accuracy [19]. Hence, MCs is feasible in practice only when
simulation can be conducted very efciently.

A surrogate model can accurately ft numerical calcu-
lation results and consume less computing power, thereby
speeding up the sample generation process and alleviating
the issue of inadequate samples during Monte Carlo sim-
ulation. Well-known surrogate models include radial basis
functions (RBFs) [20–23], polynomial chaos expansions
[24–26], Gaussian processes [27–30], and relevance vector
machines [31, 32]. Each of these models has its own ad-
vantages and is widely used. Nonetheless, when the number
of random variables increases, the efectiveness of these
approaches signifcantly diminishes.
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Te state-of-the-art surrogate model, deep neural net-
work (DNN), can efectively address the issue of excessive
input dimensions. Huang [33] et al. conducted a compara-
tive analysis for diferent regression surrogate models in
energy transmission quality forecasting, which reveals that
DNN serves as the most suitable regression model. Jung [34]
et al. constructed a DNN surrogate model to predict pro-
pellant combustion characteristics, in which the high-
dimensional inputs are captured throughout stochastic
analysis. Kontou [35] et al. have efectively minimized the
optimization turnaround time by employing DNN for
turbulence closure in Reynolds-averaged Navier–Stokes
equations. Te results obtained by the DNN model agree
well with the solution by classical numerical methods.
Shahriari [36] et al. used DNN as a surrogate model of
Maxwell’s equations to infer geological conditions from
resistivity. Sun [37] et al. used 15 input variables to estimate
the variable infltration capacity of soil moisture. Com-
parative analysis of models validates the superior perfor-
mance of DNN. Moreover, many eforts are made to
improving DNN by incorporating physical information
[38–43].

In order to construct a reliable DNNmodel, high-quality
training data should be generated from high-performance
simulation. Te fnite element method (FEM) is a powerful
method in vibration analysis. However, the boundary ele-
ment method (BEM) is superior to FEM in calculating sound
waves in exterior domains [44–49], as it discretizes only the
structural surfaces without truncating the unbounded do-
main. Terefore, combining these two methods can sig-
nifcantly enhance calculation efciency and accuracy [50].
Moreover, traditional FEM/BEM employs polygonal ele-
ments, which deteriorate geometric accuracy and lead to
heavy meshing burden. Te isogeometric analysis (IGA)
[51–54] can address this challenge by integrating numerical
analysis and computer-aided design (CAD). Coupling the
FEM/BEM in the context of isogeometric analysis further
improves the computing performance.

In this paper, a novel DNN-accelerated MCs framework
is proposed for uncertainty quantifcation. Following the
work of [55], the Catmull–Clark subdivison is applied as
a surface refnement method. We add density and Young’s
modulus as independent variables in DNN inputs and ex-
pand the input dimension to 5 in calculation of a sphere
model. We add density, Young’s modulus, and Poisson ratio
in the analysis of the submarine model. As shown in Fig-
ure 1, the method is mainly comprised of two parts. Te frst
part is isogeometric FEM/BEM, which simulates vibroa-
coustic systems from the geometric model of Catmull–Clark
subdivision surfaces. Te simulation results provide training
data for DNN. It is noted that compared to loop subdivision
surfaces as used in [55], the Catmull–Clark subdivision
surface allows for quadrilateral elements. Te second part of
the uncertainty analysis framework is that DNN is employed
as a surrogate model to rapidly generate samples for MCs.
Multiple DNN models are created due to diferent types of
input variables, and the statistical indicators of MCs include
expectation and standard deviation.

Te remainder of this paper is as follows: Section 2
describes MCs and presents the physics problem. Section 3
describes a brief DNN theory. Section 4 presents the IGA
FEM/BEM with the Catmull–Clark subdivision surface.
Section 5 applies sphere and submarine models to verify the
proposed method. Finally, in Section 6, the conclusion is
provided.

2. MCs and Structureacoustic
Coupling Problems

TeMonte Carlo simulation (MCs) can learn about a system
through a large number of random samples afected by
stochastic parameters. By calculating statistics, for example,
expectation and standard deviation, MCs can be applied to
stochastic analysis, which is shown as follows:

E ≈
1
N



N

l�1
f xl , (1)

D ≈
1

N − 1


N

l�1
f xl  − E 

2
, (2)

where N is the number of samples, x is the independent
variable, and l denotes the l-th sample.

In general, MCs mainly consists of the following four
processes:

(1) Determine the physics problem and its infuencing
factors

(2) Collect or generate sample data through
various means

(3) Calculate the physical responses of each sample point
(4) Calculate statistical indicators for uncertainty

quantifcation

Te MCs is suitable for multidimensional input prob-
lems and less limited by geometric conditions. Its conver-
gence speed is independent of the dimension, and errors are
easy to determine. Tus, it is suitable for stochastic analysis
of vibroacoustic coupling problems. Te mathematical
model of the problem is shown in Figure 2. In the fgure, Ωs

is the thin-shell structure, Ωf is the fuid domain, and Γ �

Ωs ∩Ωf is the coupling surface. Te Kirchhof–Love shell
theory and the Helmholtz equation are used as a governor
for thin-shell mechanical behavior and radiation or scattered
acoustic feld, respectively.

We consider the input plane wave or a time-harmonic
force with an angular frequency ω and use subscript (x) as
random parameters. It is essential to solve the following
coupled equations [56, 57]:

∇ · σ(x) + ω2ρsu(x) � 0, in Ωs, (3)

∇2p(x) + k
2
p(x) � 0, in Ωf, (4)

σ(x) · ns + p(x) � 0, on Γ, (5)
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ωu(x) · nf � v, on Γ, (6)
where equations (3) and (4) are the governing equations, (5)
and (6) represent force balance and displacement continuity,
∇, σ(x), and u(x) are the Laplace operator, stress tensor, and
displacements, respectively, ρs, p(x), and v are the density,
the sound pressure, and the the fuid normal velocity, ns and
nf are the normal vectors, and i �

���
−1

√
and k are the

imaginary unit and the wave number, respectively.
Before presenting the specifc numerical calculation

methods, we will show how to calculate the statistical
characteristics of responses.

Let X denote the random variables, which is

X � x1, x2, · · · , xn 
xi ∈ xmin, xmax  , i � 1, · · · , n,

(7)

where xmin and xmax are input bounds and n is the input
dimension. We select N values from X to form samples
X ∈ RN, that is

X � xl
x

l ∈ X , l � 1, · · · , N, (8)

where x � [x1, · · · , xn]T. Ten, utilizing IGA FEM/BEM, the
response Y � [y1, · · · , ym]T of each point x can be evaluated
as follows:

Y � f xl 
x

l ∈ X , l � 1, · · · , N. (9)

Finally, the dataset can be generated by assembling X
and Y as follows:

x1,Y1
 , · · · , xl,Yl

 , · · · xN
,YN

  . (10)

Although MCs has numerous advantages, its accuracy
heavily relies on the number of samples, which results in
signifcant wastage of computing resources. With com-
plexity and infuencing factors increasing, numerical cal-
culations become highly time-consuming and put a heavy
burden on computer performance. Furthermore, to main-
tain the accuracy of stochastic analysis, increasing the
number of sampling points becomes necessary, which makes
it challenging to obtain the response merely through nu-
merical simulation. Terefore, a cost-efective and time-
efcient method is required to overcome this drawback.

3. DNN Surrogate Model

Asmentioned previously, the process of fnding solutions for
all samples in Monte Carlo simulation is typically time-
consuming and requires signifcant computing power. Tus,
to solve this problem, in this section, we propose a DNN
surrogate model to accelerate stochastic analysis. It can
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enlarge the initial dataset of NI generated by numerical
calculations to dataset of NL as follows:

X1
,Y1

 , · · · , Xl
,Yl

 , · · · XNI ,YNI  ⟶ X1
,Y1

 , · · · , Xl
,Yl

 , · · · XNL ,YNL  . (11)

Now, let us provide a brief introduction for DNN (please
see [58–61] for detailed information). By utilizing a specifc
mapping function f, DNN can use input of multitype and
any amount to predict output of multitype and any amount.
To acquire a best f, the original DNN model needs to be
trained, and this process is usually guided by the loss
function. Assuming that the initial dataset with NI samples
is the training dataset, in which Xl � (xl

1 , xl
2 , · · · , xl

n )T is the
input data, Yl � (yl

1 , yl
2 , · · · , yl

m)T is the real value (target)

needed to be compared with predictions (outputs). After
training, the best model can then use larger amounts of
inputs to generate corresponding outputs, which is the
process of expansion of the initial dataset for MCs.

Moreover, a general DNN model is shown in Figure 3.
According to it, letXl, Hn, andYl denote the vector of input
layer, hidden layer, and output layer, respectively, the for-
ward calculation process of DNN can be expressed by fol-
lowing equations:

h
1
j1

� f̂ 
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i�1
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1
ij1

· x
l
i + b

1
j1

⎛⎝ ⎞⎠, j1 � 1, 2, · · · , s1,

h
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y
l
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sm

i�1
w

m+1
ik · h

m
i + b

m+1
k

⎛⎝ ⎞⎠, k � 1, 2, · · · , sm+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where w and b are the weights and bias of linear trans-
formation between layers and s, m, and f are the number of
neurons, number of hidden layers, and activation function,
respectively.

Te response predicting by DNN of the vibroacoustic
problem is a regression process. Te mean square error
(MSE) is a typical loss function for this process. Assuming
that the prediction is ŷ

l

i (i for i-th unit), MSE is as follows:

Loss �
1

NI



NI

l�1


m

i�1
ŷ
l

i − y
l
i 

2
. (13)

By selecting an appropriate learning rate, the optimal
weights w and biases b can be acquired through a chosen
optimizer. It is difcult to fully evaluate the performance of
the DNN model from all perspectives with a single eval-
uation metric. Terefore, additional metrics such as RMSE
(root mean squared error), MAE (mean absolute error),
and MAPE (mean absolute percentage error) are in-
troduced to assess the performance of the trained model,
which are

RMSE �
1

Ntest


Ntest

l�1

��������������

1
n



n

i�1
ŷ
l

i − y
l
i 

2




, (14)

MAE �
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1
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n

i�1
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l
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l
i



, (15)

MAPE �
1

Ntest


Ntest

l�1

100%
n



n

i�1

ŷ
l

i − y
l
i





y
l
i




, (16)

where ŷi and yi are the prediction and the real value, re-
spectively, and n and Ntest are the number of testing points
and testing data, respectively.

By employing both MAE and RMSE, one can assess the
extent of dispersion of sample error. Likewise, when using
MAPE and MAE in conjunction with the average value of
prediction, the ftting accuracy across samples of varying
magnitudes can be evaluated. More clearly, a DNN-based
stochastic analysis process is illustrated in Figure 4.Te steps
in the fgure can be concluded into following three parts:
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(i) Dataset preparation: Using statistical data to stan-
dardize the dataset (Xl,Yl),

Sxl
i

�
x
l
i − μ⌢i

σ⌢i

,

Syl
j

�
y
l
j − �μj

�σj

, l � 1, · · · , NI;   i � 1, · · · , n;   j � 1, · · · , m( ,

(17)

where xl
i and yl

j represent the input and output of
(Xl,Yl), respectively, the corresponding Sxl

i
and

Syl
j
denote the standardized value, μ⌢i and σ

⌢

i � μ⌢i × c
⌢

i

denote the mean value and standard deviation of
inputs, and c

⌢

i is the coefcient of variation.
Meanwhile, �μj and �σj are the mean value and the
standard deviation of outputs. Finally, the exact
dataset can be rewritten as

SX1 , SY1( , · · · , SXl , SYl( , · · · SXNI , SYNI(  . (18)

(ii) Training and testing: Te dataset in equation (18) is
divided into two groups for training and testing.Te
mapping function f is acquired through the
training dataset, and then, the testing dataset is used
to assess the trained model. Finally, postprocessing
of ŷ

l

j is conducted, which is as follows:

Post
ŷ
l
j

� ŷ
l

j × �σj + �μj, (j � 1, · · · , m), (19)

where Post
ŷ
l
j
denotes the j-th postprocessed value,

ŷ
l

j denotes the initial output of the DNNmodel, and
�μj and �σj are priori data in equation (17).

(iii) Application: After the function f has been con-
structed, it can be used to predict the responses SYusing existing or randomly generated data as inputs
SX ∈ Rn. Ten, postprocessing should be conducted

to get the meaningful value. Finally, the dataset with
NI samples obtained by numerical calculations is
enlarged to one with NL samples generated by DNN
through the above operations.

4. IGA FEM/BEM with Catmull–Clark
Subdivision Surfaces

In order to obtain the initial samples of good quality for
DNN training, it is necessary to choose an appropriate
numerical calculation method. In this work, IGA FEM/
BEM with the Catmull–Clark subdivision surface
method is introduced to acquire responses of random
generated samples. In the following subsections, the
Catmull–Clark subdivision surfaces will be introduced
frst; then, IGA FEM and IGA BEM methods are dem-
onstrated, respectively. Finally, the coupled method is
presented.

4.1. Catmull–Clark Subdivision Surface Scheme. Te sub-
division surface method has drawn signifcant attention due
to its efectiveness in shaping smooth limit surfaces.
Moreover, the compatibility of the subdivision surface
method with the shell fnite elementmethod or the boundary
element method is natural since they all focus on the
structural surface. Te Catmull–Clark subdivision surface
method is one of the self-adaptive mesh technologies.
Compared to other similar methods, it can maintain
structural model consistency with no geometric model error

Input Layer Hidden Layers Output Layer

Figure 3: Deep neural network structure.
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during automatic mesh refnement (increasing the mesh
number). Tus, the Catmull–Clark subdivision algorithm
with the bicubic B-spline is applied to refne the control
meshes.

Te subdivision process divides each element into four
subquadrilateral elements, as illustrated in Figure 5. Te
refnement of the quadrilateral mesh can be seen in Figure 6.
To explain its rules, let us assume the initial mesh sub-
division level k, and after one subdivision, it becomes the
level k + 1. Te vertices denoted by “V” on the k level are
weighted to determine the k + 1-level vertices. At each el-
ement, four new vertices are inserted at the middle of edges,
denoted by “E.” In addition, a new vertex is inserted at the
center of the k-level element, denoted by “F.” Te edge
passing through “V” on the k level is the adjacent edge. Te
valence nv of a vertex represents the number of adjacent
edges. A vertex is classifed as a regular vertex if nv � 4;
otherwise, it is an irregular vertex, as shown in Figure 7. Te
interpolation weights are illustrated in Figure 6.

To build smooth surfaces, bicubic box splines are ap-
plied. Te patch of a regular element contains 16 vertices
(Figure 7). Te shape of the mapped surface is expressed as
follows [62]:

X α1, α2(  � 
16

i�1
Bi α1, α2( xi, (20)

where X is the point coordinates, (α1, α2) is its parameter
coordinate, Bi is the basis function, and xi is the control
vertex coordinate. Detailed formulas for Bi can be found
in [62].

Figure 8 shows how to deal with irregular elements, and
the ftting point will fnally be located in regular subelements
after a limited number of subdivisions. Ten, equation (20)
can be used to acquire the shape of the mapped surface.

4.2. IGA FEM with Catmull–Clark Subdivision Surfaces.
According to the Kirchhof–Love shell theory, the thin-shell
variational formulation can be written as follows [57, 63]:

δW � δWv + δWi + δWe � 0, (21)

where the three terms δWv, δWi, and δWe are the virtual
work contributions, internal, and external forces, re-
spectively. If the midsurface displacements u are time
harmonic, they can be rewritten as

δWv � −ω2

Γ
ρstu · δudΓ,

δWi � 
Γ

1
2

Et
1 − v

2 δε
TCε +

1
2

Et
3

12 1 − v
2

 
δκTCκ⎛⎝ ⎞⎠dΓ,

δWe � −
Γ
pns · δudΓ,

(22)

where C is material constants, E, ], and t are Young’s
modulus, Poisson ratio, and the shell thickness, respectively,
ε and κ are the membrane and bending strains, respectively,
and Γ is the boundary.

After the governor equation is determined, the Cat-
mull–Clark subdivision surface is introduced to FEM [64].
To discrete the displacement, the basis functions B(α1, α2)
are used as follows:

u � 
2v+8

i�1
Bi α1, α2( ui, (23)

where ui is the nodal parameter. Terefore, after element
matrices are assembled, the equations system is as follows:

Au � f , (24)

where A � K − ω2M is the coefcient matrix of FEM, K and
M are the stifness matrix and mass matrix, u is the dis-
placement, and the load f is the sum of fm (the mechanical
force) and fs (the sound pressure load) as follows:
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Figure 4: Flow of DNN-based stochastic analysis.
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Figure 5: Catmull–Clark subdivision process.
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f � fm + fs. (25) 4.3. IGA BEM with Catmull–Clark Subdivision Surfaces.
Based on the Burton–Miller formulation, Helmholtz
equation (4) can be transformed to the following boundary
integral equation [65–69]:

C(x)[p(x) + δq(x)] + H
∗
p( (x) + δ H

∗
p (x) � G

∗
q( (x) + δ G

∗
q (x) + pinc(x) + δpinc(x), (26)

where δ � i/k (for k> 1) is the combining parameter, C(x) is
the jump term, pinc is the acoustic pressure of the incident
wave, q and pinc are the normal derivative of p and pinc,
respectively, and G∗, H∗, G

∗, and H
∗ are the boundary

integral operators, which are as follows:

G
∗
q( (x) ≔ 

Γ
G(x, y)q(y)dΓ(y),

H
∗
p( (x) ≔ 

Γ

zG(x, y)

zn(y)
p(y)dΓ(y),

G
∗
q (x) ≔ 

Γ

zG(x, y)

zn(x)
q(y)dΓ(y),

H
∗
p (x) ≔ 

Γ

z
2
G(x, y)

zn(x)zn(y)
p(y)dΓ(y),

(27)

where n(x) and n(y) are unit outward normal, respectively.
G(x, y) (Green’s function) and the derivative are defned as
follows:

G(x, y) �
e
ikr

4πr
,

zG(x, y)

zn(y)
� −

e
ikr

4πr
2 (1 − ikr)

zr

zn(y)
,

zG(x, y)

zn(x)
� −

e
ikr

4πr
2 [ikr − 1]

zr

zn(x)
,

z
2
G(x, y)

zn(x)zn(y)
�

e
ikr

4πr
3 (1 − ikr)nj(x)nj(y) + 3 − 3ikr − k

2
r
2

 
zr

zn(x)

zr

zn(y)
 ,

(28)

where r � |x − y|.
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Ten, the boundary is discreted by quadrilateral ele-
ments and constructed by IGA principles. In this work, the
applications of basis functions of the Catmull–Clark sub-
division surface are as follows:

p
e

� 
2v+8

i�1
Bi α1, α2( pi,

q
e

� 
2v+8

i�1
Bi α1, α2( qi,

(29)

where p and q are sound pressure and normal fux and
subscripts e and i are for the element and node. Afterwards,
the following equation is assigned to a collection of collo-
cation points, which are

C(x)[p(x) + δq(x)] � pinc(x) + δpinc(x) + 

Ne

e�1


2v+8

i�1
qi
Γe

Bi α1, α2( G x, y α1, α2( ( dΓ

− 

Ne

e�1


2v+8

i�1
pi
Γe

Bi α1, α2( 
zG x, y α1, α2( ( 

zn y α1, α2( ( 
dΓ

+ δ 

Ne

e�1


2v+8

i�1
q

e
i 
Γe

Bi α1, α2( 
zG x, y α1, α2( ( 

zn(x)
dΓ

− δ 

Ne

e�1


2v+8

i�1
p

e
i 
Γe

Bi α1, α2( 
z
2
G x, y α1, α2( ( 

zn(x)zn y α1, α2( ( 
dΓ,

(30)

where the quantity Ne represents the element number. Te
placement is acquired through ftting operations. Moreover,
by gathering the equations for all collocation points and
presenting them in matrix form, the linear system of
equations can be obtained, which is as follows:

Hp � Gq + pinc, (31)

where H and G are the coefcient matrices, p and q are the
sound pressure and its fux, respectively, and pinc is the
incident wave.

It should be emphasized that solving equation (30) di-
rectly using the Gaussian quadrature method can be chal-
lenging as a result of singular integrals present in the
equation. Tus, we use the regularization technique to deal
with the problem. For more detailed information, please
refer to [70].

4.4. IGAFEM/BEMwithCatmull–Clark Subdivision Surfaces.
Since u, p, fp, and q are unknown, equations (24) and (31)
cannot be solved individually. Tey can be bond together
through the boundary conditions in equations (5) and (6). In
addition, the nodal force in equation (25) is related to p as
follows:

fp � nfΘ p, (32)

where Θ � ΓB
TBdΓ, B is the global vector, and nf is the

normals matrix which is defned as [57, 63]:

nf �

n1 · e1 0 · · ·

n1 · e2 0 · · ·

n1 · e3 0 · · ·

0 n2 · e1 · · ·

0 n2 · e2 · · ·

0 n2 · e3 · · ·

· · · · · · · · ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (33)

where e1, e2, e3 are the orthogonal normal Cartesian base
vectors. Terefore, the new expression of equation (25) can
be acquired through equation (32) as follows:

f � Np + fs, (34)

where N � nfΘ.
Substituting equation (34) into equation (24), the

structural system equation can be expressed as follows:

Au � Np + fs, (35)

q (sound fux) in equation (31) is given as q � ω2ρfNTu,
where ρf is the fuid density and NT � nT

f. Ten, equation
(31) can be rewritten as

Hp � Gω2ρfN
Tu. (36)

Substituting equation (35) into equation (36), the dis-
placement u can be eliminated; then, the boundary element
formulation is as follows [57, 63]:
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[H − GY]p � Gqs, (37)

with

Y � ω2ρfN
TA− 1N,

qs � ω2ρfN
TA− 1fs.

(38)

In this work, direct computation of the inverse matrix A
in equation (38) is avoided due to its high time complexity.
Instead, the solution of A− 1fs can be obtained by directly
solving the algebraic equation Ax � fs.

An important drawback of the boundary element
method is the formation ofH and G ∈ CN×N, which leads to
O(N2) algorithmic operations when the number of degrees
of freedom N is large. In this work, the FMM is utilized to
address this issue for its low memory consumption and high
accuracy. In addition, to further improve the speed of the
algorithmic operations, a multipole expansion formulation
based on partial wave expansion with rotation-coaxial
translation is implemented. Te original boundary in-
tegral can be divided into two parts: the near and the far feld.
Te former is computed using the boundary element
method (BEM), while the latter is computed using the
accelerated BEM based on the fast multipole method
(FMBEM). For more detailed information about the FMM,
please refer to [70–73].

5. Calculation Examples for Verification

5.1. Verifcation of IGAFEM/BEM. In this section, a series of
spherical models are used to validate the numerical simu-
lation algorithm. Te model is present in Figure 9. Te
external efect is incident plane waves with amplitude 1. Te
IGA FEM/BEMmethod is employed to handle the problem,
and the obtained solution is compared with the analytical
one. We use 6 × 6 and 10 × 10 Gaussian quadrature points
for regular and singular integrals, respectively.

Figure 10 shows the results of sound pressure calculated
with diferent variables and frequency at the computing
point located on the fuid domain. Table 1 displays the
variable settings for each case, where each case has a diferent
variable value relative to Case 1. In Figure 10, the symbol
“Simulation” represents the IGA FEM/BEM solution and
“Analysis” represents the analytical solution. All calculations
are performed in the lower frequency band, such as
f � 50, 150, 300Hz. Since the error becomes larger at higher
frequencies (for details, see [55]), the high frequency cases
are not considered in this work.

Observing the fgure, it can be found that the two so-
lutions exhibit a high level of agreement, which provides
evidence for the efectiveness of the proposed method. Te
deviations at some certain frequencies like f � 150Hz are
caused by nonunique solutions, and the details can also be
seen in [55]. In addition, with the change of diferent var-
iables, the change trend of sound pressure as well as the peak
position and occurrence times will change. In comparison,
the radius and Young’s modulus have a more substantial

impact on sound pressure values, while other parameters
have an impact that is less apparent. Sound pressure cloud
diagrams are given in Figure 11. Te fgure once again
confrms that diferent random parameters have a signifcant
impact on the sound pressure value and its distribution.

In order to get further information about the specifc
evolution trends of sound pressure with diferent variables,
analytical calculations and numerical calculations are con-
ducted employing the radius and other variables as in-
dependent variables. Figures 12 and 13 illustrate the sound
pressure changes with diferent variables at the fxed cal-
culating point (5, 0, 0). It shows that there is a decreasing
trend of sound pressure with radius increasing, while with
other variables increasing, the sound pressure is growing as
a whole. Due to the strong correlation between sound
pressure and shown variables, it is worth using these vari-
ables to perform stochastic analysis of sound pressure. At the
same time, it can also be found that the results of numerical
simulation and theoretical analysis are still in agreement
with diferent independent variables.

5.2. DNN-MCs with Sphere Models

5.2.1. Dataset Generation. Te simulation results in Section
5.1 are chosen to form the datasets for DNN. Terefore, the
output of both model training and model testing is merely
sound pressure. Te diferences between the datasets are the
type and number of input variables. All input variables are
generated with a normal distribution by the built-in random
function. In order to avoid that the sound pressure distri-
bution is not obvious due to excessive parameter changes,
the maximum of the coefcient is 0.2, and the input variables
change within a reasonable range. Table 2 lists all the pa-
rameters details. Te 3σ principle is used to determine
parameter variation ranges.

Te datasets are specifcally divided into two types: one
with a single input is called “1-D” dataset, and the other with
5 inputs is called “5-D” dataset. Tese inputs are variables
mentioned in Section 5.1 and also present in Table 2. Te
number of initial sampling points is 100 and 500 for 1-D and
5-D analysis, respectively.Te calculation frequency is 50Hz
and 300Hz because the numerical calculation method has
high accuracy and the sound pressure changes smoothly at
these two frequencies. Te calculation point of the sound
pressure is still at (5, 0, 0), which is outside the sphere and
not at infnity.

According to equation (17), all inputs and outputs are
standardized using built-in functions for DNN training and
testing. Te processed data conform to the standard normal
distribution.

5.2.2. Model Training and Testing. Each dataset is auto-
matically divided into training and testing datasets by
a random process. Some training parameters are shown in
Table 3. Te ratio of the training set to test set is 9 :1. Te
number of hidden layers for 1-D input and 5-D inputs is 2
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Figure 9:Te vibroacoustic coupling system: (a) the outside fuid is water; (b) Catmull–Clark subdivision surface is applied to subdivide the
control mesh.
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Figure 10: Comparison between analytical and numerical solutions of sound pressure with diferent variables for diferent frequencies.
(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f ) Case 6.

Table 1: Variables setting for simulation verifcation.

Number Radius (m) Tickness (mm) Density (kg/m3)
Young’s modulus

(Pa) Poisson ratio

Case 1 1.8 18 7860 2.10E+ 11 0.3
Case 2 2 18 7860 2.10E+ 11 0.3
Case 3 1.8 25 7860 2.10E+ 11 0.3
Case 4 1.8 18 6000 2.10E+ 11 0.3
Case 5 1.8 18 7860 7.00E+ 10 0.3
Case 6 1.8 18 7860 2.10E+ 11 0.2
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Figure 11: Spherical shell surface sound pressure distribution. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f ) Case 6.
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Figure 12: Sound pressure evolution with diferent variables at 50Hz. (a) With radius (m). (b) With thickness (m). (c) With density
(kg/m3). (d) With Young’s modulus (Pa). (e) With Poisson ratio.
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and 3, respectively. Since it is a simple regression problem,
the optimizer is chosen as SGD. Diferent learning rates are
picked for datasets of diferent dimensions. All processes are
performed by an Intel(R) Xeon(R) Bronze 3204 CPU with
PyTorch.

Te loss function is MSE. Table 4 gives the loss change.
For the 1-D input network, its loss converges faster than that
of the 5-D input network (mainly because a bigger learning
rate). Usually after 10 iterations, MSE can reach a quite low
level for 1-D inputs, while the number of iterations is 100 for
5-D inputs. Finally, all losses have reached a low level, and all
model training processes take less than 10minutes.

For 1-D input and 5-D inputs, the prediction accuracies
are verifed by 10 and 50 data, respectively. Figures 14 and 15
give the comparison between the simulation and the DNN
prediction at diferent frequencies. Except that in the
comparison chart with shell thickness as a variable (Fig-
ures 14(b) and 15(b)) where there is a certain gap between
the predicted results and the numerical calculation results in
a small range, all of the rest of the subfgures show that the
two solutions are in good agreement.

More specifc statistical results calculated through
equations (14)–(16) for DNN prediction evaluation are
shown in Table 5 (all values are calculated after prediction

destandardization), from which it could be found that the
dispersion of prediction errors of each model is small and
the model fts well to samples of diferent orders of mag-
nitude. To sum up, the prediction efects of the trained
models for diferent situations are good, and DNN can be
used as an efective surrogate model to replace IGA FEM/
BEM to generate samples.

5.2.3. MCs with Samples Generated by DNN. After obtaining
a DNN model with a good ftting efect, it can be further
utilized for uncertainty quantifcation analysis. Here, results
of MCs with sound pressure generated by IGA FEM/BEM
are used as a comparison. Table 6 shows the details for this.
Te new input data are also generated through the 3σ
principle. For one-dimensional input,N in equations (1) and
(2) are 100 and 1,000 for IGA FEM/BEM and DNN, re-
spectively. For fve-dimensional inputs, N is 500 and 2000.

Table 6 shows that the results of DNN are consistent with
the IGA FEM/BEM results. As for calculating time contrast,
the time of 1-dimensional input (per group) and 5-
dimensional inputs of the IGA FEM/BEM method is
about 3 hours and 12 hours, respectively, while for DNN, the
calculation time is less than 1minute regardless of
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Figure 13: Sound pressure evolution with diferent variables at 300Hz. (a) With radius (m). (b) With thickness (m). (c) With density
(kg/m3). (d) With Young’s modulus (Pa). (e) With Poisson ratio.

Table 2: DNN training dataset input variable settings.

Variables Mean
Variable boundary

c � 0.05 c � 0.1 c � 0.15 c � 0.2
Radius 2 (1.700, 2.300) (1.400, 2.600) (1.100, 2.900) (0.800, 3.200)
Tickness 0.02 (0.017, 0.023) (0.014, 0.026) (0.011, 0.029) (0.008, 0.032)
Density 7860 (6681, 9039) (5502, 10218) (4323, 11397) (3144, 12576)
Young’s modulus 2.10E+ 11 (1.785E11, 2.415E11) (1.47E11, 2.73E11) (1.155E11, 3.045E11) (8.40E10, 3.36E11)
Poisson ratio 0.3 (0.255, 0.345) (0.210, 0.390) (0.165, 0.435) (0.120, 0.480)
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Table 3: Training hyperparameter settings.

Dimensions Variables
Sample amount Hidden layers Optimizer

Training Testing Amount Neurons Type Learning rate
1-D Radius 90 10 2 (10, 10) SGD 0.001
1-D Tickness 90 10 2 (10, 10) SGD 0.001
1-D Density 90 10 2 (10, 10) SGD 0.001
1-D Young’s modulus 90 10 2 (10, 10) SGD 0.001
1-D Poisson ratio 90 10 2 (10, 10) SGD 0.001
5-D All fve 450 50 3 (10, 10, 10) SGD 0.00001

Table 4: Training loss evolution.

Frequency (Hz) Variables
Loss (MSE) with diferent iterations

10 iters 50 iters 100 iters 500 iters

50

1-D radius 3.14E− 02 1.03E− 03 4.96E− 03 4.41E− 04
1-D thickness 5.08E− 03 8.85E− 04 1.01E− 02 6.22E− 04
1-D density 1.87E− 03 1.17E− 04 2.21E− 04 2.59E− 05

1-D Young’s modulus 0.1389 3.41E− 03 2.46E− 03 5.31E− 04
1-D Poisson ratio 9.99E− 03 1.16E− 03 5.15E− 04 2.06E− 04
5-D variables 2.4763 3.62E− 02 0.1486 2.05E− 02

300

1-D radius 2.41E− 02 2.01E− 02 5.49E− 04 1.37E− 03
1-D thickness 0.1335 8.63E− 04 3.73E− 04 8.52E− 04
1-D density 1.81E− 03 1.55E− 04 8.31E− 05 2.07E− 04

1-D Young’s modulus 4.87E− 03 4.71E− 04 2.39E− 04 1.30E− 03
1-D Poisson ratio 2.71E− 02 9.38E− 04 3.20E− 04 4.21E− 04
5-D variables 6.5665 1.4078 0.3623 0.1480
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Figure 14: Comparison between simulation results and DNN prediction with diferent variables at 50Hz. (a) With radius (m). (b) With
thickness (m). (c) With density (kg/m3). (d) With Young’s modulus (Pa). (e) With Poisson ratio. (f ) With 5 inputs.
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Figure 15: Comparison between simulation results and DNN prediction with diferent variables at 300Hz. (a) With radius (m). (b) With
thickness (m). (c) With density (kg/m3). (d) With Young’s modulus (Pa). (e) With Poisson ratio. (f ) With 5 inputs.

Table 5: DNN prediction statistical results.

Frequency (Hz) Variables RMSE MAE MAPE

50

1-D radius 7.17E− 04 6.14E− 04 1.02
1-D thickness 1.24E− 05 9.16E− 06 2.82E− 02
1-D density 1.94E− 05 1.72E− 05 3.91E− 02

1-D Young’s modulus 3.59E− 05 2.78E− 05 5.94E− 02
1-D Poisson ratio 6.74E− 06 4.71E− 06 1.05E− 02
5-D variables 1.04E− 03 6.86E− 04 1.80

300

1-D radius 2.13E− 03 1.77E− 03 0.17
1-D thickness 1.89E− 04 1.58E− 04 2.12E− 02
1-D density 3.19E− 04 2.26E− 04 2.58E− 02

1-D Young’s modulus 1.44E− 04 1.05E− 04 1.17E− 02
1-D Poisson ratio 6.49E− 05 4.92E− 05 5.57E− 03
5-D variables 5.59E− 02 2.20E− 02 2.44

Table 6: MCs results of simulation and DNN.

Frequency (Hz) Variables
Expectation Standard deviation

Simulation DNN Simulation DNN

50

1-D radius 4.54E− 02 4.67E− 02 1.60E− 02 1.72E− 02
1-D thickness 3.23E− 02 3.23E− 02 1.04E− 03 1.11E− 03
1-D density 4.51E− 02 4.52E− 02 3.76E− 03 4.00E− 03

1-D Young’s modulus 4.44E− 02 4.46E− 02 3.05E− 03 2.87E− 03
1-D Poisson ratio 4.49E− 02 4.49E− 02 1.11E− 03 1.16E− 03
5-D variables 4.57E− 02 4.64E− 02 1.83E− 02 1.90E− 02

300

1-D radius 8.71E− 01 8.81E− 01 1.75E− 01 1.85E− 01
1-D thickness 7.47E− 01 7.47E− 01 1.74E− 02 1.78E− 02
1-D density 8.84E− 01 8.85E− 01 3.00E− 02 3.05E− 02

1-D Young’s modulus 8.80E− 01 8.83E− 01 4.56E− 02 4.44E− 02
1-D Poisson ratio 8.85E− 01 8.85E− 01 4.02E− 03 4.18E− 03
5-D variables 8.88E− 01 8.92E− 01 1.78E− 01 1.74E− 01
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dimensions (meanwhile, the amount of data is several times
that of the numerical method). Tis shows the time ad-
vantage of DNN computing.

In conclusion, the DNN model is well-suited for un-
certainty quantifcation, especially for multidimensional and
large-scale inputs. Te proposed method ofers the
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Figure 16: Te submarine model (a) and its subdivision surface (b).
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Figure 17: Sound pressure distribution at diferent frequencies (each picture from left to right in each part corresponds to 50Hz, 75Hz, and
100Hz). (a) Real part. (b) Imaginary part. (c) Sound pressure.
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advantage of eliminating the scale problem associated with
the IGA FEM/BEM method and signifcantly reducing the
calculation time.

5.3. DNN-MCs with the Complicated Model. Te compli-
cated thin-shell submarine model is used to prove the
stochastic analysis ability of MCs with DNN in this section.
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Figure 19: Training loss varies with diferent hyperparameters. (a) Diferent activation function. (b) Diferent learning rate. (c) Diferent
optimizer. (d) Diferent amount of hidden layers.
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Te geometrymodel and its subdivision surface are shown in
Figure 16. Te loading conditions are similar to those of the
sphere model. Te response is calculated at fxed points (i.e.,
m � 100). DNN training data are still generated by IGA
FEM/BEM, and numerical calculation result cloud diagrams
are shown in Figure 17. It can be found that the sound
pressure distribution varies across diferent frequencies.
Figure 18 shows the evolution curve of sound pressure with
frequency, from which we can see that 100Hz is suitable for
sampling. Because the sound pressure exhibits an obvious
change and clear trend near this point, consequently,
conducting calculations at this point can obtain data of
higher quality.

For DNN training, the input variables are shell thickness,
material density, Young’s modulus, and Poisson ratio. Te
output value is sound pressure. All input variables are
generated with a normal distribution by the built-in random
function. Te mean of four types of inputs is 0.05m,
7860 kg/m3, 210GPa, and 0.3, respectively. Te coefcients
of variation for each variable include 0.05, 0.1, 0.015, and 0.2.
50 samples are generated through IGA FEM/BEM for each
coefcient of variation.

Due to the complexity of the model, adjusting the
hyperparameters of the DNN training process becomes
necessary for achieving the optimal ftting network. Fig-
ure 19 shows how the training loss varies with diferent
hyperparameters. Among diferent activation functions,
tanh demonstrates faster convergence speed and avoids loss
oscillation in later stages. As the learning rate decreases, the
convergence speed of the model drops signifcantly, but the
accuracy does not show a signifcant improvement. In
comparison to the other two optimizers, despite not being
the fastest in terms of convergence speed, SGD does not
exhibit oscillation in later iterations, making it more efective
overall. As the complexity of the model increases, the
convergence speed initially rises and then declines, and the
model with four hidden layers has the most favorable efect.
Based on this, the activation function, learning rate, opti-
mizer, and number of hidden layers of the trained DNN
model are tanh, 0.01, SGD, and 4, respectively.

Table 7 shows the sound pressure comparison. For
several points, the relative error is close to 10 percent, but for
most points, the relative error is stable within 3 percent and
mostly below 1 percent. Tis shows that the calculation
results of the trained DNN surrogate model are in good
agreement with the numerical simulation results.

Finally, the DNNmodel is used to generate 2000 datasets
for MCs. Comparing the calculation time of IGA FEM/BEM
with DNN, the former takes around 647.66 h, while the latter
is only 18.7 s.Tis shows that DNN is far ahead of IGA FEM/
BEM in efciency. In the end, the expectation and standard
deviation are calculated, and their values at the point (100, 0,
0) are 6.62 Pa and 3.21 Pa, respectively.

6. Conclusion

In this work, our purpose is to enhance the sampling speed
of MCs and minimize the resource consumption of tradi-
tional numerical calculation methods. To achieve this, we
utilize a DNN as a surrogate model to generate a substantial
volume of multidimensional data.We employ the IGA FEM/
BEM method to compute the sound pressure of the
vibroacoustic coupling problem infuenced by multidi-
mensional uncertain parameters. Subsequently, we process
these parameters and sound pressure values to construct the
training dataset for DNN. Te sound pressure predicted by
DNN shows excellent agreement with the results of nu-
merical calculations. Compared to IGA FEM/BEM, DNN
also exhibits a signifcantly higher sample generation rate.
Tis suggests that DNN holds great potential as a surrogate
model. Furthermore, the MCs result comparison between
DNN samples and numerical calculation samples is con-
ducted, and the two match well, which afrms the efec-
tiveness of the DNN surrogate model in performing
stochastic analysis.

Data Availability

Te data that support the fndings of this study are available
on request.

Table 7: DNN testing input parameters and results.

Test points Tickness Density Young’s modulus Poisson ratio Simulation DNN Relative error (%)
1 0.0536 8088.8471 2.22E+ 11 0.3111 8.0201 7.9639 0.70
2 0.0516 7550.6692 1.99E+ 11 0.3022 6.2470 6.3056 0.94
3 0.0507 8440.9587 2.12E+ 11 0.2782 6.5299 6.7278 3.03
4 0.0486 7730.0233 2.08E+ 11 0.2756 6.3238 6.3212 0.04
5 0.0507 7898.3327 1.93E+ 11 0.2812 4.0138 4.0400 0.65
6 0.0439 7489.9340 1.67E+ 11 0.2834 2.5693 2.3127 9.99
7 0.0514 6663.0713 2.07E+ 11 0.3318 7.6297 7.5717 0.76
8 0.0581 8242.2959 1.81E+ 11 0.2774 4.5975 4.7346 2.98
9 0.0413 7622.3172 1.83E+ 11 0.2652 2.6338 2.4841 5.68
10 0.0460 6730.4673 2.17E+ 11 0.2720 7.5994 7.3584 3.17
11 0.0384 6327.8107 1.95E+ 11 0.2717 3.5071 3.4159 2.60
12 0.0442 7610.9517 1.71E+ 11 0.3190 2.5558 2.5304 1.00
13 0.0433 7834.8434 2.15E+ 11 0.3558 4.3514 4.4192 1.56
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