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Te current methods for early fault diagnosis of rolling bearing have some faws, such as poor fault feature information and
insufcient fault feature extraction capability, which makes it challenging to guarantee fault diagnosis accuracy. In order to increase
the accuracy of fault diagnosis, it proposes a new fault diagnosis method based on enhanced Symplectic geometry mode de-
composition with cosine diference factor and calculus operator (ESGMD-CC) and bat algorithm (BA) optimized extreme learning
machine (ELM).Te vibration signal is frst decomposed into a number of Symplectic geometry components (SGCs) by SGMD.Te
number of iterations is reduced by the cosine diference factor, which also successfully separates the noise components from the
efective components. Te calculus operator is adopted to strengthen the weak fault features, making it simple to extract. Te fault
feature vectors are calculated by the power spectrum entropy-weighted singular values. Finally, the ELM model optimized by BA
iteratively is performed as the fnal classifer for fault classifcation. Te simulation and experiments demonstrate that the proposed
method has a better degree of fault diagnostic accuracy and is efective at extracting the rich fault information from vibration signals.

1. Introduction

Bearings are commonly used as critical components of
mechanical machinery. Failure of a component may cause
fnancial loss or endanger human life. As a result, a more
comprehensive examination of rolling bearing defect di-
agnostic technology is critical for ensuring the dependable
operation of mechanical equipment and minimizing acci-
dents [1–3]. In normal operation, the signal generated by
a rolling bearing is steady; however, the signal produced
following a failure is nonstationary. When a failure occurs,
the bearing will vibrate and impact severely, which will cause
pulse and random signals to be produced.Te extraction and
identifcation of fault signals will be signifcantly hampered
by the creation of pulse signals, which will interact with and
bury the fault characteristic signal [4, 5].

Numerous signal decomposition techniques have been
presented in order to enhance the capability of feature

extraction from vibration signals. Empirical mode de-
composition (EMD) [6] is a popular adaptive signal pro-
cessing technique that extracts more information from
a signal by subdividing it into various IMFs. It is utilized in
a variety of industries [7–9]. Although EMD can efciently
process nonlinear signals, it sufers from substantial mode
aliasing and end efect issues because it relies too heavily on
the interpolation process of the carrier envelope.Te authors
of [10] generate the fnal decomposition component, known
as ensemble EMD (EEMD), by recycling EMD and adding
Gaussian white noise to address the aforementioned issue.
However, the noise robustness still has two nonadaptive
parameters, which makes it less than ideal. Local mean
decomposition (LMD) [11] is enhanced by EMD as
a foundation which is frequently employed in the identif-
cation of bearing faults [12, 13]. In recent years, variable
mode decomposition (VMD), a technique that can suc-
cessfully identify fault features from vibration data, has
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received a lot of attention [14]. Two crucial elements that
afect the results of VMD decomposition are the number of
modal decompositions and the penalty factor.Te authors of
[15, 16] and others have optimized the selection of pa-
rameters and achieved certain application efects. SGMD
proposed by PAN [17] can adaptively partition time series
into SGCs of various independent modes based on Sym-
plectic geometry theory, improving the feature extraction
capability of fault information. SGMD is efective at pro-
cessing mechanical fault vibration signals because it prevents
modal aliasing and preserves the intrinsic properties of time
series. However, there are still several theoretical and
practical issues with SGMD that need to be fxed, such as the
faws of reconstruction constraints and decomposition er-
rors. Te enhanced ESGMD-CC is proposed in this paper as
a solution to these issues. To accurately distinguish between
the noisy components and the efective components, the
cosine value is used to calculate how similar the two stacked
components are, and the diference factor is adopted to set
a limit on the number of repeats. Decomposition compo-
nents are processed by a calculus operator, which is con-
venient for enhancing weak fault characteristics and making
them simple to extract, successfully resolving the issue of the
SGMD algorithm’s poor ability to recognize fault features.

Te enhanced ESGMD-CC decomposition leaves a sig-
nifcant amount of fault-related data in the enhanced
Symplectic limiting components (ESLCs). However, a suit-
able technique is still needed to extract defect features from
these decomposed components. Diferent approaches have
been explored to address this issue. Ren et al. [18], for in-
stance, compute multiscale permutation entropy to produce
eigenvectors. Zhang et al. [19] also derive the feature vector
from the permutation entropy. Liu et al. [20] create the
eigenvectors by the fault energy moment values. Tese
techniques are efective in extracting fault features that
precisely show signal properties. Tese methods do not
account for the fact that some of the decomposed compo-
nents are noisy and require additional processing because of
their computational complexity. Considering these prob-
lems, this paper adopts the PSE-weighted singular values as
the fault feature vectors to efectively overcome the above
problems and accurately extract the fault feature vectors for
later fault classifcation.

After feature extraction, it is essential to adopt the proper
classifcation methods to quickly identify probable rolling
bearing defects. Machine learning has been the subject of
extensive research by academics both domestically and
overseas [21]. Based on the machine learning diagnosis
approaches, it frst extracts distinctive sample features by
signal analysis and other technologies, and then classifers
such as backpropagation (BP), random forest (RF), support
vector machine (SVM), and extreme learning machine
(ELM) [22–24] should be performed to identify the mapping
relationship between fault feature components and labels. In
[25], the ideal weight and threshold of the BP are optimized
using the genetic algorithm’s global search advantage. Te
authors of [26] proposed a signal processing strategy that
combines RCHFE and RF for planetary gearbox failure
diagnosis, and by combining simulation and experimental

signals, it demonstrated the superiority of the proposed
RCHFE-RF method. Liu et al. [27] applied an improved
EMD method in bearing fault diagnosis. According to the
aforementioned research, these classifcation algorithms
have a large number of parameter settings, extreme values,
a sluggish training speed, and other issues that restrict their
application in defect diagnosis. ELM is a learning technique
for feedforward neural networks with a single hidden layer
[28]. It is suitable for application in fault diagnosis since it
has great generalization capabilities and a quick learning
rate. In [29], a new deep kernel limit learning machine (DK-
ELM) was proposed. For fault classifcation, the kernel is
utilized in place of the conventional ELM, and better di-
agnostic performance is obtained in terms of diagnostic
accuracy and fexibility in working situations. Input weights
and bias are selected at random during the ELM compu-
tation, which will have an impact on the stability and
precision of fault diagnosis. To prevent the impact of ran-
dom selection on the outcomes of the diagnostic, appro-
priate optimization techniques must be added, such as
particle swarm optimization [30], ant colony optimization
[31], and artifcial fsh swarm algorithm [32].

BA [33] is a brand-new method using frequency tuning
mode. It is a suitable optimization technique created by
modeling bat features. It is easy to construct, quickly con-
verge, and beneft from distributed and parallel computa-
tion. From the aspect of fault diagnosis, in order to fnd the
optimal connection weights and neuron bias in the ELM
model better and faster, this paper intends to use BA to
optimize the weights and bias in the ELM model to achieve
a better calculation efect.

To overcome these concerns, this work provides an
enhanced ESGMD-CC theory and BA-ELM model. To
properly separate the noisy and efective components, the
cosine diference factor is employed to minimize the number
of iterations for the SGCs produced by the SGMD. Te
calculus operator is used to improve and simplify the ex-
traction of the weak defect feature. Furthermore, the fault
feature vectors are built using power spectrum entropy-
weighted singular values, which efectively tackles the is-
sue of poor feature identifcation. Te BA then repeatedly
optimizes the ELM model to discover the appropriate input
weights and neuron bias faster andmore efciently, resulting
in enhanced fault classifcation performance.

In summary, the main contributions of this paper can be
summarized as follows:

(1) An improved ESGMD-CC technique is given based
on Symplectic geometry similarity transformation.
Tis approach efectively extracts rich fault features
from signals and has better vibration signal de-
composition performance.

(2) Te cosine diference factor is performed to limit the
number of iterations of SGMD, distinguish the noise
components, and reduce the feature dimension. Te
weak fault features are enhanced by the calculus
operator to make it easy to extract. Te feature
mapping method by power spectrum entropy-
weighted singular values is adopted, and the
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enhanced ESGMD-CC algorithm is fully combined
to efectively extract the fault features of the signal.

(3) BA is performed to iteratively optimize the input
weights and bias in the ELMmodel, and its diagnosis
efect is better than that of traditional BP, SVM, and
ELM models.

Te rest of this paper is organized as follows. Section 2
introduces the signal decomposition method of enhanced
ESGMD-CC and the feature extraction method. Section 3
introduces BA-ELM theory. Section 4 introduces the overall
process of the fault diagnosis algorithm. In Section 5, the
simulated signal is used to verify the efectiveness of the
proposed signal decomposition method. Section 6 presents
the experimental results and corresponding analysis of
rolling bearing fault diagnosis based on enhanced
ESGMD-CC and BA-ELM. Finally, according to the work
done in this paper, it is summarized in Section 7.

2. SignalDecompositionandFeatureExtraction

2.1. SGMDTeory. Te algorithm of the traditional SGMD
is described as follows:

(1) Phase space reconstruction
Suppose an original time series signal
(x � x1, x2, · · · , xn), which n represents the length of
the signal. According to the Takens embedding
theory, the trajectory matrix X can be constructed as
shown in the following equation:

X �

x1 x1+τ · · · x1+(d− 1)τ

: : :

xm xm+τ · · · xm+(d− 1)τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where d is the embedded dimension, τ is the delay
time, and m � n − (d − 1)τ. Te method in [17] is
used to adaptively determine the value d by calcu-
lating the power spectral density of the original time
series.

(2) QR decomposition of the Symplectic orthogonal
matrix
In order to obtain the Hamiltonian matrix, the co-
variance matrix A is obtained through the auto-
correlation analysis of the trajectory matrix X:

A � X
T
X. (2)

Ten, the HamiltonianmatrixM is obtained through
matrix A:

M �
A 0

0 − A
T

 . (3)

It is proved that there is a Householder matrix
H � diag(Q, Q), in which the matrix Q can be
composed of real symmetric matrix A, and the
matrix H is also a Symplectic geometry orthogonal
matrix:

HMH
T

�
Q 0

0 Q
 

A 0

0 − A
T

 
Q 0

0 Q
 

T

�
QAQ

T 0

0 − QA
T
Q

T
⎛⎝ ⎞⎠

�
B 0

0 − B
T

 ,

(4)

where the matrix B is an upper triangular Hessen-
berg matrix, which is easy to obtain
λ(A) � λ(B) � λ2(X). Te eigenvalues of the matrix
B are λ1, λ2, · · · , λd. According to the properties of the
Hamiltonian matrix, the eigenvalues of the matrix X

are as follows:

σi �

��

λi



(i � 1, 2, · · · d), (5)

where λ1 > λ2 > · · · > λd, λi is arranged from high to
low. Te distribution of λi represents the spectral
distribution of matrix A. Te smaller values are
usually considered as the noise components. Qi(i �

1, 2, · · · , d) are the eigenvectors corresponding to the
eigenvalues of matrix A. Te transformation co-
efcient matrix S is calculated by equation (6)
through the eigenvector Q and the trajectory matrix
X:

Si � Q
T
i X

T
(i � 1, 2, · · · , d). (6)

Furthermore, the reconstruction matrix Z is calcu-
lated by equation (7) through the eigenvector Q and
transformation coefcient matrix S:

Zi � QiSi(i � 1, 2, · · · , d). (7)

Te reconstruction matrix Z is composed of d

groups initial single components reconstruction
matrix Zi:

Z � Z1 + Z2 + · · · + Zd. (8)

(3) Diagonal averaging transformation
Te dimension of the reconstructed matrix Zi ob-
tained is m × d. By diagonal averaging, the recon-
structed matrix Zi can be transformed into a one-
dimensional time series Yi(y1, y2 · · · , yn) with
a length of n. Such time series can obtain d groups in
total, and the sum of these d groups of time series is
equal to the original time series x.

Te specifc transformation process of the diagonal
average is as follows:

For the element zij(1≤ i≤m, 1≤ j≤ d) in matrix Zi, let
d∗ � min(m, d), m∗ � max(m, d), m � n − (d − 1)τ. If
m<d, let z∗ij � zij, otherwise, z∗ij � zji.

Ten, the element yk(k � 1, 2, · · · , n) in the corre-
sponding time series Yi is calculated as shown in the fol-
lowing equation:
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yk �

1
k



k

p�1
z
∗
p,k− p+1, 1≤ k< d

∗
,

1
d
∗


d∗

p�1z
∗
p,k− p+1

, d
∗ ≤ k≤m

∗
,

1
n − k + 1



n− m∗+1

p�k− m∗+1
z
∗
p,k− p+1, m

∗ < k≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

By equation (9), the initial single components re-
construction matrix Zi is converted into a one-dimensional
time series Yi(y1, y2 · · · , yn). Terefore, by diagonal aver-
aging, the trajectory matrix X can be converted into a series
of d groups with a length of n:

Y � Y1 + Y2 + · · · + Yd. (10)

It is easy to know that the sum of these series is the
original time series x.

2.2. ESGMD-CC. Several initial single components
(Y � Y1 + Y2 + · · · + Yd), which typically contain a lot of
noise components, are obtained by the SGMD technique.
Importantly, it is frst to separate the noise components from
the efective components. To reduce the number of iterations
and efectively separate the noise components from the
efective components, the cosine diference factor is applied
in this case. Further processing is necessary because the
eigenvectors that correspond to signifcant eigenvalues in
the noise signal also contain noise components. A calculus
operator is adopted to enhance weak fault characteristics so
that they may be easily extracted, preventing weak fault
features from being masked by background noise.

(1) Separation of noise components
First, we sum the decomposed components. For the
obtained d groups initial single components
(Y1, Y2, · · · , Yd), the sum components Sk are ob-
tained by calculating the sum of the previous k group
components:

Sk � 
k

i�1
Yi (k � 1, 2, · · · , d). (11)

Second, we calculate the cosine values between ad-
jacent components. For the obtained k groups sum
components Sk, calculate their cosine values Ci

according to the following equation:

Ci � cos θk,k+1 �
Sk · Sk+1

Sk

����
���� · Sk+1

����
����

(i, k � 1, 2, · · · , d − 1). (12)

Finally, we calculate the diference factor. Combined
with the characteristics of cosine values, the difer-
ence operation can highlight the turning point where
the stack components tend to be stable. Te cosine

diference factor CSi is constructed by the following
equation:

CSi � Ci+1 − Ci( 


< εe. (13)

When the values of CSi change steadily and reach the
preset threshold value εe which tends to zero, the
former z groups components can be selected as the
efective components. Before the z point, it contains
a lot of useful information about the original signal.
After the z point, it can be regarded as noise
components.
Te original signal x is decomposed into:

x � 

z

i�1
Yi + gz,

gz � 

d

i�z+1
Yi,

(14)

where gz is the sum of the noise components after
the turning point z.

(2) Enhancement of limiting components
Diferential and integral signals can enhance fault
characteristics through research. Te calculus op-
erator is applied to the processing of signal com-
ponents in order to fully exploit the benefts of
diferentiation and integration. Te signifcance is
that the efect features can be made more visible by
the calculus operator to diminish low-frequency
noise components, strengthen high-frequency ben-
efcial components, and emphasize the transient
components. So weak fault features are strengthened
and made easier to extract.

It gives the diferential result of the discrete signal Y(n)

in the following equation:

D(Y(n)) �
(Y(n) − Y(n − 1))

∆t
, (15)

where ∆t � 1/fs and fs is the sampling frequency。
It gives the integral result of the discrete signal Y(n) in

equation (15):

I(Y(n)) �
∆T(Y(n) + Y(n − ∆T))

2
, (16)

where ΔT is the step factor. If it is set to 1, equation (16) can
be simplifed as follows:

I(Y(n)) �
(Y(n) + Y(n − 1))

2
. (17)

By combining the diferential and integral equations, the
calculus operator of discrete signal Y(n) can be obtained as
follows:

ca(Y(n)) � I(D(Y(n)))

� I(Y(n) − Y(n − 1))

�
(Y(n) − Y(n − 2))

2
.

(18)
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For the reserved frst z groups efective components, the
calculus operator is performed for signal enhancement,
which can give full play to the advantages of diferential and
integral. To simplify the calculation, ∆t and ∆T in equations
(15) and (16) are both set to 1, so the ESLCs are as follows:

ESLCi � ca Yi(n)( 

�
Yi(n) − Yi(n − 2)( 

2
.

(19)

As an adaptive signal decomposition method,
ESGMD-CC has strong robustness and is suitable for
processing fault signals with background noise and weak
fault characteristics.

2.3. Feature Extraction: Power Spectrum Entropy-Weighted
Singular Values. Following the decomposition and re-
construction of rolling bearing vibration signals by the
aforementioned ESGMD-CC algorithm, a number of ESLCs
that are rich in fault-related data can be retrieved. To extract
defect features from these decomposed components,
a suitable technique is still required. Singular value de-
composition (SVD) has a low computing complexity, is
efective at extracting these fault features, and accurately
reveals the signal’s feature information. It is appropriate for
feature extraction of the ESLCs-based matrix. Te singular
value feature vectors are weighted at the same time by the
power spectrum entropy which can refect the complexity of
the signal. Te following are the steps:

(1) ESGMD-CC is frst adopted to decompose the vi-
bration signals, which can be decomposed into
multiple ESLCs, recorded as ei(t), i � 1, 2, . . . , h

(2) SVD is performed on the row vector matrix com-
posed of ESLCs to obtain the singular value matrix
Ei:

Ei � SVD e1(t), e2(t), . . . , eh(t) 
T

 . (20)

(3) Fourier transforms the component ei(t) � (ei1,

ei2, . . . , ein) of each ESLC to obtain the frequency
domain signal Xi(ωr), where ωr is a spectrum, then
the power spectrum Pi(ωr) is as follows:

Pi ωr(  �
1

2πn
Xi ωr( 



2
. (21)

According to Parseval’s theorem, energy is conserved
in the transformation from the time domain to the
frequency domain, so it can be written as follows:



n

j�1
eij





2

� 

n

r�1
Pi(r)





2

. (22)

Pi(r) can be regarded as the energy distribution of
ei(t) in the frequency domain, so the power spec-
trum entropy PSi can be defned as follows:

PSi � − 
n

r�1
HirlnHir, (23)

where Hir is the proportion of the r-th power
spectrum component in ei(t), and its calculation is as
follows:

Hir �
Pi(r)


n
r�1Pi(r)

. (24)

(4) According to the values of power spectrum entropy,
the weighted matrix Wi is constructed by

g � PSmax − PSmin,

Wi �
PSi − PSmin

g
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25)

where PSmax is the maximum value in the power
spectrum entropy and PSi and PSmin are the mini-
mum value in the power spectrum entropy PSi.

Using the weighted matrix and according to equation
(26), the singular value feature vectors Ei are weighted, and
fnally, the power spectrum entropy-weighted singular
values ETi are obtained as follows:

ETi � Wi × Ei(i � 1, 2, . . . , h). (26)

Te complete process of the signal decomposition and
the feature extraction is shown in Figure 1.

3. The Establishment of the BA-ELM Classifier

ELM theory and BA theory are introduced initially in this
section. Te classical ELM acquires input weight and bias at
random, and the model’s prediction accuracy needs to be
increased. However, based on the robust global search ca-
pability of the BA, the input weight and bias of ELM are
regarded as each bat of BA to plan the optimal path and
obtain the global optimal solution to optimize the input
weight and bias in ELM, thereby improving the precision
and generalization capability of the classifcation model.

3.1. ELM Teory. In its most basic form, ELM is a single-
layer neural network. Comparatively, its structure is simpler,
and it operates more quickly. Te most remarkable aspect of
the ELM theroy is that weights and biases between layers do
not require predefned settings. Figure 2 depicts the ELM
network structure.

Te ELM algorithm uses functions to produce the hidden
layer neuron bias and the connection weights between the
input layer and the hidden layer. To get the best result during
training, only the hidden layer’s number of neurons needs to
be set.Te connection weight between the input layer and the
hidden layer in themodel isω, the connection weight between
the hidden layer and the output layer is β, the total number of
training samples is Q, the output of the ELM model is T, and
the activation function is g.Te hidden layer output matrix H

can be solved by the following equation:
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Hβ � T
′
. (27)

Te connection weights β between the hidden layer and
the output layer can be found by resolving the minβ‖Hβ −

T′‖ the equation’s least squares solution where g(x) is an
infnitely diferentiable function. At this point, it changes to
the following procedure for solving the weight matrix β of
the output layer:

β � H
+
T, (28)

where H+ is the generalized inverse of the output matrix H.
At present, the singular value decomposition method is
commonly used to solve the generalized inverse matrix H+.
Te singular value decomposition method can efectively
ensure that whether HTT is a singular matrix that not can be
run, and the running speed is faster than the forward
overlapping method. Te specifc solution is shown in the
following equation:

β � H
T
T 

− 1
H

T
T. (29)

It can be seen that the ELM algorithm is simple to solve
and easy to implement. Compared with the traditional
gradient descent algorithm, the ELM model has the fol-
lowing advantages: (1) the activation function of the model
can use a discontinuous function; (2) the model has good
generalization ability; (3) the model can efectively avoid the
local minimum problem of traditional gradient descent

algorithm; (4) the model only needs to manually set the
number of hidden layer neurons, which can efectively
improve the experimental efciency.

In theory, ELM can achieve the lowest training error.
Only the number of neurons must be taken into account
when utilizing ELM for pattern recognition. Te stability
and accuracy of fault detection will be impacted since the
input weight and bias of the ELM are generated by functions,
which have some randomness. In order to optimize it,
a suitable algorithm must be included.

3.2. BA-ELM Model. BA is a new intelligent algorithm. It
uses the method of frequency tuning and was frst proposed
by Yang. It is also an intelligent optimization method
designed by simulating the characteristics of bats. It has the
advantages of simple model construction, fast convergence,
and distributed and parallel computations. Because the
initial position, pulse frequency, loudness, fight speed, and
other factors of bat individuals are diferent, the fnal op-
timized position is also diferent. All optimization results are
actually the optimal individual and its location.

Due to the poor stability of a single ELM model, the
parameters that may be selected during ELMmodel training
cannot meet the needs of model stability diagnosis. An
important reason for the instability of ELM model pre-
diction results is that the input weight and hidden layer bias
of ELM are artifcially set, which are generally assigned by
random calculation functions, and the input weight and
hidden layer bias thus obtained may not meet the re-
quirements of fault classifcation.

In order to better search for the optimal input weight and
bias in the ELM model to achieve better classifcation ac-
curacy and generalization capability, the BA is introduced to
modify the input weights and hidden layer bias of ELM, so as
to build the BA-ELM model. Compared with simple ELM,
the complexity of the BA-ELM model is slightly increased,
but the stability of ELM is greatly improved to achieve
a better classifcation efect. Te building steps of the
BA-ELMmodel are as follows, and the fowchart is shown in
Figure 3.

(1) Te ELM single hidden layer neural network
structure is constructed, and the input weight and
hidden layer bias are initialized.

Signals with m samples SGCs with dimension d SLCs with dimension h

ESLCs with dimension h

Weighted values with
dimension h

Singular values with 
dimension h

Feature vectors with
dimension h

weighted 

Cosine diference
factor

SVD

SGMD

PSE Calculus operator

Figure 1: Te complete process of the signal decomposition and the feature extraction.

x

xn

x2

x1

ym

y2

y1

wij βjk

o1

o2

ol

y. .
 . . .
 .

. .
 .

. .
 .

Input Layer Output LayerHidden Layer

Figure 2: Te network structure of the ELM model.
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(2) Te input weight and hidden layer bias are trans-
ferred to the bat individual position in BA, the re-
lationship between the two is established, and the
sample data are input into the BA-ELM model.

(3) We update the two important parameters of BA,
namely, frequency and speed, to get the next position
of the corresponding bat individual.

(4) We evaluate the next position of the bat. Te eval-
uation standard is the classifcation experiment error
of ELM. We transfer the value of this position to the
ELM part. Based on the sample data, we use the
generalized inverse matrix to calculate the classif-
cation results and error indicators on the sample
data. Tis error indicator is the evaluation standard
of bat position.Te error index value is transferred to
the BA, and the error value is lower than the error
value corresponding to the current position of the
bat, which means that the next position of the bat is
better, and the bat individual fies to the next po-
sition. On the contrary, the individual bat remains in
its current position.

(5) When the termination conditions of the BA are met,
the optimal bat individual position in the current BA
dataset is transferred to ELM, that is, the optimal
input weight and hidden layer bias that can be ob-
tained by the current ELM, and then, the output
weight is obtained through the generalized inverse
matrix, so as to complete the construction of the
BA-ELM classifcation model, and the validity of the
model is verifed through further prediction
experiments.

4. Overall Process of the Proposed Fault
Diagnosis Method

Te comprehensive method that combines the ESGMD-CC
algorithm and the BA-ELM model discussed above has not
yet been thoroughly explained in the context of diagnosing
rolling bearing faults. Data acquisition, vibration signal de-
composition and feature extraction, model construction, and
fault diagnosis make up its four primary stages. In this study,
the original signals are divided into numerous ESLCs by the
ESGMD-CC method. Te power spectrum entropy-weighted
singular values are extracted as the fault feature vectors for the
acquired ESLCs. Te BA technique is then performed to it-
eratively optimize the ELM model’s parameters to get the
ideal input weights and bias. Finally, the training and di-
agnostic assignments are carried out by the BA-ELM model.
Te technical route of this paper is shown in Figure 4.

5. Simulated Vibration Signal Analysis

In order to verify the efectiveness of the proposedmethod in
fault diagnosis, and combined with the actual working
environment, the rolling bearing vibration signal submerged
in the noise background is simulated.Te simulated signal of
the rolling bearing fault is established as shown in the
following equation:

x(t) � x0e
− εωnt sinωn

�����

1 − ε2


t, (30)

where the displacement constant x0 � 5, damping coefcient
ε � 0.15, system natural frequency fn � 2500Hz, and fault
period t0 � 0.01, so the fault characteristic frequency of the
rolling bearing is fg � 100Hz. Generally, rolling bearings
work under strong background noise. Terefore, strong
background Gaussian white noise with SNR � − 10 dB is
added to x(t). Te time-domain waveform of the simulated
signal is shown in Figure 5, and the envelope spectrum of the
simulated signal is shown in Figure 6.

Direct observation of the modulation information of
a bearing fault from Figure 5 is not possible. Te envelope
spectrum analysis in Figure 6 cannot reveal the appropriate
fault characteristic frequency of the bearing fault due to the
signifcant background noise addition. Te fault charac-
teristic frequency is surrounded by interference peaks of
intense background noise, and the characteristic fault is
masked by the strong noise components, which reduces the
precision of fault identifcation. To decrease noise and de-
compose the rolling bearing simulated signal, it is, therefore,
required to use the proper signal analysis technique.Tis will
enable the presentation and extraction of fault information.
Te decomposition methods of VMD and conventional
SGMD are used to decompose the original signals. Tey are
shown in Figures 7 and 8, respectively. In this paper, the
previously proposed ESGMD-CC approach is performed to
decompose and analyze the simulated signal, and the
decomposed components are shown in Figure 9.

It is impossible to immediately observe the rolling
bearing’s modulation information decomposition compo-
nents. As a result, the envelope spectrum analysis method is
utilized to extract the fault characteristic frequency from the
envelope spectrum of the efective components acquired.
Figures 8 and 9 illustrate how the frst component contains
the majority of the main features for the SGMD and
ESGMD-CC deconstructed components. Tey are chosen
for envelope spectrum analysis as useful components as
a result. Te envelope spectrum analysis diagrams by the
above methods are shown in Figures 10–12. Te fault fre-
quency and its frequency multiplication have clear peaks in
Figure 12, and there are just a few interference components
in the surrounding frequency, which can indicate that there
is a bearing fault in the simulated signal.

6. Experimental Verification

6.1. Experimental Equipment and Data Preparation. In this
section, the CWRU rolling bearing vibration dataset and the
HFZZ-II rotating machinery fault diagnosis simulation
platform vibration dataset are selected for analysis and
verifcation.

Te CWRU rolling bearing vibration platform is shown
in Figure 13. It includes a 2 hp motor, torque encoder,
dynamometer, and electronic control equipment which is
not shown. Te EDM technology is utilized to simulate the
motor bearing inner race fault, outer race fault, and ball
fault. One of the bearing positions is located at the motor
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drive end, and the other is located at the fan end. Te
sampling frequency is 12KHz.Tis section sets 11 fault types
including normal state (NM), inner race fault (IF), outer race
fault (OF), and ball fault (BF), and it consists of 1 normal
state and 5 drive end (DE) faults (IFDE, BFDE, OFDE@3,
OFDE@6, and OFDE@12), 5 fan end (FE) faults (IFFE,
BFFE, OFFE@3, OFFE@6, and OFFE@12), with labels of
0–10, respectively. Each fault includes 1024 sampling points,
and 80 groups of data are selected and distributed to the
training set and test set with a ratio of 1 :1.

Te HFZZ-II experimental device of the rotating ma-
chinery fault diagnosis platform is shown in Figure 14. It is
composed of a three-phase AC asynchronous motor, motor
control system, bearing pedestal, accelerometer, and data
acquisition instrument. Te bearing is N205. Among them,
two IEPE piezoelectric accelerometers with the model of
1A111E and the acquisition frequency of 12.8 kHz are in-
stalled on the tested bearing pedestal. Four types of data,
including normal state, inner race fault, ball fault, and outer
race fault, are selected for verifcation, with labels of 0–3,
respectively. 80 groups of data are also set for each fault type
and allocated to the training set and test set. Te physical
diagram and time-domain waveform of each fault are shown
in Figures 15 and 16.

6.2. Experimental Setup. After data preparation, evident
features cannot be separated by the rolling bearing’s time-
domain waveform, necessitating the use of the proposed
method for fault detection. Tis paper conducts

corresponding comparative tests from the following aspects
in order to thoroughly assess the performance of the pro-
posed method:

(1) In order to evaluate the advantages of the overall
feature extraction method, the enhanced
ESGMD-CC is combined with the power spectrum
entropy-weighted singular values feature extraction
and compared with the traditional mechanical vi-
bration signal decomposition methods EEMD,
LMD, and VMD. At the same time, in order to
evaluate the necessity of the proposed constraint
conditions based on the cosine diference factor and
calculus operator, the traditional SGMD method is
also compared.

(2) In order to verify the advantages of BA optimized
ELM classifcation model, it is compared with the
traditional ELM model, and several common clas-
sifcation models such as BP and SVM are also
compared.

(3) In order to evaluate the performance of the proposed
method in terms of time consumption, the calcu-
lation time of the proposedmethod is compared with
that of other methods in diferent stages of the di-
agnosis process.

(4) In order to evaluate the performance of the whole
fault diagnosis process, the proposed fault diagnosis
method is compared with some work published in
the literature.

Construct the ELM structure

Initialize of the input weight and bias

Calculate the output matrix and
weight matrix

Test the network and correct the 
error

Terminate?

Application of the optimized model

Initialize the individual position of
the bat

Update the frequency and the speed

New position
priority?

Transfer to the new position

Terminate?

Current optimal solution

Extreme learning machine (ELM) Bat algorithm (BA)

Yes

Yes

No

No

Yes

No

Start

End

Figure 3: Te fowchart of the BA-ELM.
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Figure 4: Te technical route of this paper.
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Four groups of related comparative experiments were
carried out in accordance with the aforementioned four
levels. In the aforementioned four groups of studies, each
group carried out ten separate experiments in an efort to
minimize variation. It also provided other comparative
items, such as the average accuracy and time consumption.
Particularly in the third group of studies, the time con-
sumption performance was fnished all at once, and other
comparison elements such as total consumption time, fea-
ture extraction time, training time, and testing time were
provided. Some requirements must be established in

advance of the experiment. Te threshold value εe set for
calculating the cosine diference factor in equation (13) is
0.01%, the maximum pulse fmax, the minimum pulse fmin,
the number of bats M � 20, the maximum loudness Amax,
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Figure 5: Te time-domain waveform of the simulated vibration
signal.
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the initial pulse emissivity r0i � 0.1, and the maximum it-
eration number P � 100. In the experiment, the SVM ex-
periment is completed by calling LIBSVM.

6.3. Results andAnalysis. Te initial set of comparative trials
was conducted frst. To assess if cosine diference factor and
calculus operator limitations needed to be included, the
enhanced ESGMD-CC was compared to the standard

SGMD. In the event of an inner race fault, Figure 17 depicts
the frst four SGCs in a series of vibration signals, and
Figure 18 depicts the fnal four SGCs. It is clear that the
amplitude and energy proportion of the last four SGCs are
lower in comparison. It may minimize the feature di-
mension, restrict the number of iterations, and efectively
separate the noise components from the efective compo-
nents by the restriction requirements of the cosine diference
factor. Tey are contrasted with the enhanced ESGMD-CC
because EEMD, LMD, and VMD are a few signal de-
composition techniques frequently utilized in rotating
machinery diagnostics. Te feature extraction portion uses
the power spectrum entropy-weighted singular values
mapping approach, while the classifcation process outputs
the diagnosis results by the BA-ELM model.

Visualization through the t-SNE mapping of the feature
vectors acquired by various techniques is shown in Fig-
ure 19. It illustrates how distinct clustering efects are
produced by various approaches, although it is not possible
to determine the precise classifcation accuracy alone from
this fgure. Te comparable experimental fndings are dis-
played in Table 1. It demonstrates that the enhanced
ESGMD-CC outperforms the competition in terms of di-
agnosis performance. Tis is mostly due to the fact that all
ESLCs can enhance the fault features of the signal, hence
reducing the feature dimension, while also retaining the
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Figure 11: Te envelope spectrums of the components of the
SGMD.
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helpful components and eliminating the useless ones in the
process of limiting iteration and feature enhancement. Te
number of deconstructed modes is also shown at the same
time. Te enhanced ESGMD-CC has more decomposed
components than other signal decomposition techniques,
but far fewer than the traditional SGMD. Te enhanced
ESGMD-CC can successfully analyze and recreate the
original signal’s existing modes while preserving the phase
space structure. More comprehensive and rich fault in-
formation is contained in its deconstructed components.
Te mapping method of power spectrum entropy-weighted
singular values feature extraction is adopted, and the en-
hanced ESGMD-CC algorithm is fully combined to extract
the feature values more efectively, which provides a nec-
essary basis for the fault identifcation of the later

classifcation algorithm. Tis is also the reason why the
algorithm proposed in this paper has better diagnostic
performance than other algorithms.

Next, a second set of comparative tests is conducted to
assess how well classifers and optimization methods work.
Te role of BA is to iteratively optimize the input weight and
bias in the ELM model in the BA-ELM classifer in order to
improve classifcation accuracy and generalizability. SVM
and BP, two popular classifcation models, are also included
in the comparison. Table 2 displays the results of the clas-
sifcation. In most experiments, it can be seen that the ELM
model’s classifcation accuracy is higher than that of other
models following the feature extraction algorithm proposed
in this paper and the classifer for fault recognition, and the
model’s diagnosis performance is more exceptional fol-
lowing BA optimization of the ELM parameters. In order to
ensure that the two parameters of the ELM model are op-
timized, the input weight and hidden layer bias in the
BA-ELM fault diagnosis model are modifed based on the
prediction error on the training set, and the output weight is
further adjusted based on the above two parameters,
allowing for faster and better convergence to the optimal
solution, and thus has better classifcation accuracy and
stronger generalization ability.

Of course, in addition to diagnostic accuracy, diagnostic
efciency and time consumed are also important factors in
fault diagnosis. In order to evaluate the performance of the
proposed method in terms of time consumption, the cal-
culation time of the proposed method was compared in the
third group of experiments. It mainly includes two levels:
fault feature extraction (including signal decomposition and
feature mapping) and fault classifcation (including training
and optimization of the classifer, and fault discrimination of
the classifer). Generally, the model only needs to be trained
once and then put into use. Tis shows that the time for fault
feature extraction and fault recognition of the classifer is
more important than the time for training and optimization
of the classifer. In this experiment, the training and opti-
mization time of the classifer should also be compared, and
we compare the fault feature extraction time, the fault
recognition time of the classifer, and the overall con-
sumption time. Table 3 displays the detailed results. It can be
seen from the table that the test time of several methods is
basically the same. Terefore, the total time is mainly spent
on signal feature extraction and classifer training. Te
training time often depends on the optimization algorithm
and the feature dimensions of the input classifer data, which
are also added to Table 3 for comparison. For the SGMD and
BA-ELM models without dimension reduction and im-
provement, the feature extraction time is relatively less and
the training time is more due to the lack of relevant cal-
culations such as dimension reduction. For the ESGMD-CC
and BA-ELM models proposed in this paper, due to a series
of operations such as cosine diference factor and feature
enhancement, the feature extraction time is relatively large,
and the training time is small due to the reduction of feature
dimension. Generally speaking, the algorithm can only
accomplish the best strategy by balancing the relationship
between the two in order to have good performance in the
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time and accuracy required for the computation. Te
weights and bias for the unoptimized ELM model are
produced at random through functions, which has some
blindness and results in a generally subpar diagnosis per-
formance. Its training duration decreases as a result of the
lack of iterative optimization, but the diagnostic perfor-
mance also sufers. Te VMD algorithm is another typical
signal extraction technique for feature extraction. VMD and
BA-ELM algorithm is employed in this investigation. Al-
though their feature dimensions are low, their feature ex-
traction time and diagnosis time are higher than those of
other methods. Among them, the experimental data in
Table 3 were tested on the CWRU dataset containing 11
types of faults.

Many literatures also adopted the CWRU rolling bearing
dataset for testing, and some literature also used other public
dataset or self-built dataset for testing. In order to further
prove the efectiveness of the proposedmethod, in the fourth
group of experiments, some comparisons have been made to
the published literature, as shown in Table 4. It can be seen
that although the accuracy rates of the listed methods are
diferent, they all have higher accuracy rates, and the test
accuracy of the proposed method is higher than that of other
methods. Compared with the feature extraction and clas-
sifcation algorithm without depth optimization in [37], the
enhanced feature extraction algorithm and the iterative
optimization classifcation model adopted in this paper
should be outstanding in overall performance. Te authors
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Figure 19: Te t-SNE mapping after the feature extraction by diferent methods. (a) EEMD. (b) LMD. (c) VMD. (d) SGMD. (e) ESGMD-
CC.

Table 1: Te results of the frst comparative experiments: evaluate the performance under diferent feature extraction methods.

Dataset Methods EEMD LMD VMD SGMD ESGMD-CC

CWRU Feature dimension 11 5 7 341 23
Accuracy (%) 92.95 86.81 96.13 97.05 98.41

HFZZ-II Feature dimension 14 8 7 28 16
Accuracy (%) 90.67 85.77 94.36 95.17 96.42

Table 2: Te results of the second comparative experiments: evaluate the diagnostic.

Dataset Methods BP SVM ELM BA-ELM
CWRU Accuracy (%) 93.92 89.09 95.68 98.41
HFZZ-II Accuracy (%) 91.48 88.35 92.95 96.42
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of [35] adopt a kind of depth network in which better di-
agnosis results can be obtained through the one-dimensional
convolutional neural network. Trough the method
designed in this paper, its diagnostic performance is similar
to that of the well-designed depth network model in terms of
diagnostic accuracy.

Te feature extraction and fault diagnosis model pro-
posed in this paper, which combines ESGMD-CC and BA-
ELM, have a better performance and are a viable rolling
bearing fault detection approach, according to the afore-
mentioned comparison studies.

7. Conclusions

Tis work presents an improved ESGMD-CC decomposition
approach and a BA-ELM classifcation model for diagnosing
rolling bearing faults. Te vibration signal is frst separated
into many SGCs using SGMD in the proposed method, and
then, the cosine diference factor and calculus operator
constraint standards are used to reconstruct the SGCs. Te
power spectrum entropy-weighted singular values feature
vectors are extracted from the obtained components as fault
features to simplify the input to the subsequent classifer for
fault identifcation. After the BA repeatedly improves the
ELM parameters, the fnal classifer is generated for fault
classifcation.Te relevant comparison tests are performed on

the bearing dataset to establish the method’s diagnostic ef-
fectiveness. Te experiment’s fndings are summarized as
follows:

(1) Te enhanced ESGMD-CC algorithm, which is
based on Symplectic geometry similarity trans-
formation, has better vibration signal decomposition
performance and can efectively extract rich defect
data from signals.

(2) Te addition of the cosine diference factor efciently
lowers the feature dimension, separates the noise
components, and reduces the number of SGMD
decomposition iterations. Te calculus operator is
performed to improve the weak defect feature and
make it simpler to extract.

(3) To extract the signal characteristics more efciently,
the enhanced ESGMD-CC is fully coupled with the
mapping method of power spectrum entropy-
weighted singular values feature extraction. It pro-
vides the necessary foundation for the later classi-
fcation diagnosis.

(4) Iteratively optimizing the input weights and bias of
the ELM model by the BA has better performance,
and the diagnostic impact is superior to that of the
unoptimized ELM, BP, and SVM models.

Table 3: Te results of the third comparative experiments: evaluate the time consumption between the current work and some other
methods.

Methods ESGMD-CC and
BA-ELM

SGMD and
BA-ELM

ESGMD-CC and
ELM

ESGMD-CC and
ELM

VMD and
BA-ELM

Feature dimension 23 341 23 341 7
Accuracy (%) 98.41 97.05 95.68 94.51 96.13
Total (s) 304.77 240.77 299.68 233.51 348.91
Feature extraction (s) 299.61 233.45 299.61 233.45 343.79
Training (s) 5.15 7.31 0.06 0.05 5.11
Testing (s) 0.01 0.01 0.01 0.01 0.01

Table 4:Te results of the fourth comparative experiments: comparative study between the proposedmethod of this article and the reported
methods.

References Methods Dataset Fault types Accuracy (%)

(1). Ren et al. [34] Sparse representation and SVM CWRU

Ball fault (BF)
Inner race fault (IF)
Outer race fault (OF)

Normal condition (NO)

94.11

(2). Li et al. [35] DBN and 1D-CNN Self-built BF, IF, OF, and NO 97.50

(3). Gu et al. [36] SDP-DCNN Self-built

Outer ring crack
Roller crack

Inner ring crack
Outer ring pitting
Roller pitting

Inner ring pitting

96.00

(4). Zhang et al. [37] SGMD and SVM CWRU BF, IF, OF, and NO 96.23
(5). Authors of this paper ESGMD-CC and BA-ELM CWRU BF, IF, OF, and NO 98.41
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