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To address the degradation of diagnostic performance due to data distribution diferences and the scarcity of labeled fault data, this
study has focused on transfer learning-based cross-domain fault diagnosis, which attracts considerable attention. However, deep
transfer learning-based methods often present a challenge due to their time-consuming and costly nature, particularly in tuning
hyperparameters. For this issue, on the basis of classical features-based transfer learning method, this study introduces a new
framework for bearing fault diagnosis based on supervised joint distribution adaptation and feature refnement. It frst utilizes
ensemble empirical mode decomposition to process raw signals, and statistical features extraction is implemented. Ten, a new
feature refnement module is designed to refne domain adaptation features from high-dimensional feature set by evaluating the
fault distinguishability and working-condition invariance of feature data. Next, it proposes a supervised joint distribution
adaptation method to conduct improved joint distribution alignment that preserves neighborhood relationships within
a manifold subspace. Finally, an adaptive classifer is trained to predict fault labels of feature data across varying working
conditions. To prove the cross-domain fault diagnosis performance and superiority of the proposedmethods, two bearing datasets
are applied for experiments, and the experimental results verify that the model built by the proposed framework can achieve
desirable diagnosis performance under diferent working conditions and that it apparently outperforms comparative models.

1. Introduction

In the last several years, with the speedy and sustained
advancement of modern industrial equipment, rotating
machinery plays a major role in various production sce-
narios, such as transportation, mining, logistics, electricity,
and manufacturing [1]. Due to that, the bearing is one of the
most important units of industrial machinery, and the
malfunction of the bearing may cause serious accidents and
economic losses. Moreover, bearing typically operates under
complicated operating circumstances, which may cause it
easy to malfunction. Importantly and challengingly, it is
mostly difcult to collect fault samples of real-world me-
chanical facilities under variable operating conditions [2].

Terefore, when facing real-world industrial scenes, the
most existing artifcial intelligence-based fault diagnosis
techniques of rolling bearing still sufer from some chal-
lenges, such as data distribution diferences and inadequate
fault samples [3, 4].

Artifcial intelligence technologies applied to fault di-
agnosis of bearings are mainly divided into three classes:
classical machine learning-based method (CMLM), deep
learning-based method (DLM), and transfer learning-based
method (TLM) [5, 6]. Commonly, CMLM that has been
widely studied since many years ago include the support
vector machine (SVM) [7], artifcial neural network (ANN)
[8], k-nearest neighbor (KNN) [9], extreme learning ma-
chine (ELM) [10], and random forest (RF) [11]. Tese
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methods possess some major drawbacks, including heavy
reliance on expert knowledge under variable working
conditions and a default assumption that the samples share
the same probability distribution [3, 6]. At present, DLM has
attracted widespread attention and research with the help of
their powerful ability to automatically extract deep features
with better representation performance. Commonly, studied
approaches include deep auto-encoder (DAE) [12], deep
residual network [13], deep belief network (DBN) [14], and
convolutional neural network (CNN) [15]. Nevertheless,
several shortcomings of DLM are still prominent [1, 3].
Particularly, the fault diagnosis of rotating machinery based
on traditional DLM adheres to the hypothesis that the data
under diverse working conditions follow the identical dis-
tribution, which is adversarial to data distribution deviation
under actual operating status. Furthermore, a bearing fault
diagnosis model based on DLM requires sufcient training
samples to achieve ideal fault diagnosis performance, which
contradicts the insufcient fault data under actual industrial
scenes. Furthermore, DLM usually involves a high-cost and
high-time-consuming procedure to tune numerous
hyperparameters [3].

To date, TLM has made increasing attention and re-
search in cross-domain fault diagnosis (CFD) due to their
distribution adaptation ability that is hope to tackle the
above challenges of CMLM and DLM. TLM intends to learn
the related domain knowledges from source domain (SD)
and utilize them to target domain (TD). In the bearing fault
diagnosis feld, a fault dataset under one working state can
constitute a domain. Transfer learning methods can be
mainly divided into two classes: classical manual feature
extraction-based transfer learning (TL) approaches and deep
transfer learning (DTL) approaches [3, 16]. Although DTL
methods have attracted increasing attentions in bearing fault
diagnosis towards diferent working conditions, they still
have some drawbacks. A common and important one is that
a desirable DTL-based fault diagnosis model requires a high-
cost and time-consuming procedure because of the ad-
justment of numerous hyperparameters. Accordingly, in this
article, we focus on the typical feature-based TL approach to
achieve the desirable CFD of rolling bearing in real-world
industrial scenarios. Commonly studied feature-based TL
methods mainly include the balanced distribution adaption
(BDA) [17], joint distribution adaption (JDA) [18], transfer
component analysis (TCA) [19], geodesic fow kernel (GFK)
[20], and joint geometrical and statistical alignment (JGSA)
[21]. Based on these methods, some intelligent models for
cross-domain diagnosis have been investigated. In [22],
a transfer deep learning network was proposed to resolve the
drawbacks of existing rolling bearing fault algorithms on the
basis of deep learning. In this network, the feature transfer
using TCA and a pretrained convolutional neural network is
performed. In [23], a source domain multisample JDA (SM-
JDA) approach was used for the bearing fault diagnosis
under variable operating conditions. In [24], the BDA was
introduced to facilitate the domain adaptation on bearing
cross-domain fault diagnosis. In [25], aiming at the domain
shift (distribution discrepancy) issue in the feld of bearing
fault diagnosis, the multikernel joint distribution adaptation

(MKJDA) with dynamic distribution alignment is proposed
for bearing fault diagnosis. In [3], based on BDA, a new
balanced adaptation regularization was designed to solve the
problem of sample distribution discrepancy-caused degra-
dation of CFD performance. In [26], an adaptive manifold
probability distribution was studied for CFD; in this method,
the GFK was implemented for distribution adaptation, and
a domain adaptive classifer was further trained to diagnose
the target domain under diferent working conditions. In
[27], transfer sparse coding and JGSA were combined to
construct a novel fault diagnosis approach for bearing under
diferent operating status. Although the above-mentioned
methods have successfully realized CFD of bearings, three
issues are still blocking the application of these methods in
actual industrial scenarios. (1) Te implementation of dis-
tribution adaptation in most studies is based on the prob-
ability distributions alignment in the primitive characteristic
space, which makes it difcult to tackle the issue of feature
distortion andmay lead to the poor domain adaptation (DA)
performance [28]. (2) Te goals of mostly distribution ad-
aptation of TLM merely concentrate on decreasing proba-
bility distribution diferences and enhancing the
transferability of features, and the class distinguishability of
features is usually neglected, which may lead to the poor
classifcation performance [29, 30]. (3) In the process of
distribution adaptation, the impact of class information and
neighborhood relationships of feature data on distribution
adaptation has not been efectively considered, which may
restrict the CFD accuracy and generalization ability of the
model [28, 31].

Considering three issues of the above-mentioned TLM
approaches, we investigate a new DA idea, that is, joint
distribution alignment with neighborhood relationship
preserving in manifold subspace. Moreover, for improving
the DA capability, we consider the impact of fault dis-
criminability and working-condition invariance (WCI) of
features in the procedure of DA. Terefore, we designed
a feature refnement module to refne features with the better
domain adaptability from the original high-dimensional
feature set (OHFS). In view of the above discussion, this
study proposes a new CFD framework for bearing on the
basis of feature refnement and supervised JDA. Tere are
four modules in this framework: signal processing and
feature extraction module, feature refnement module, DA
module, and classifer module for CFD. In the signal pro-
cessing and feature extraction module, it uses ensemble
empirical mode decomposition (EEMD) to decompose the
raw signals collected from bearing and conducts feature
extraction. For the feature refnement module, a domain
adaptation feature refnement based on classifcation ac-
curacy and distribution discrepancies (DFCD) is in-
vestigated to estimate the fault distinguishability andWCI of
feature. In DAmodule, a new DAmethod, termed improved
JDA with manifold subspace learning and neighborhood
relationship preserving (IDAMN), is proposed. Finally, in
the cross-domain classifer module, the classical machine
learning classifer, the KNN, is trained by labeled data of SD,
and the trained classifer predicts the labels of data of TD.
Te main contributions are summarized as follows:
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(1) A feature refnement module is designed, named
domain adaptation feature refnement based on
classifcation accuracy and distribution discrepancies
(DFCD). Te classical classifer KNN is utilized to
estimate the fault distinguishability of features, and
the maximum mean discrepancy (MMD) and
Kullback–Leibler divergence (KLD) are employed to
quantify the WCI of features. Accordingly, it con-
structs a new feature estimation index to refne DA
features with better fault distinguishability and WCI
from the primitive characteristic set.

(2) It proposes a new DA method, improved JDA with
manifold subspace learning, and neighborhood re-
lationship preserving (IDAMN). IDAMN performs
improved JDA of diferent domains in a learned
manifold subspace with the consideration of
neighborhood relationship preserving and category
information, which help to shrink distribution dif-
ferences while overcoming feature distortion and
enhancing the discriminant performance of features.

(3) Aiming at the key challenges still exist in applying
artifcial intelligence-based fault diagnosis ap-
proaches to actual application scenes, a new fault
diagnosis framework constructed by the DFCD and
IDAMN is designed, termed as DFCD-IDAMN.Tis
framework can prominently strengthen CFD per-
formance. Two bearing datasets are utilized to set up
a series of CFD tasks in experimental verifcation.
Te outcome shows that DFCD-IDAMN signif-
cantly outperforms other comparative models that
use common baseline methods.

Te rest of the contents are arranged as follows. In
Section 2, the preliminary knowledges of ensemble empirical
mode decomposition, domain adaptation, MMD, and local
fsher discriminant analysis are introduced, respectively.
Section 3 describes the DFCD-IDAMN framework. In
Section 4, the experimental validation is given to illustrate
the performance of the proposed methods. Te conclusions
of this work are presented in Section 5.

2. Preliminaries

2.1. Ensemble Empirical Mode Decomposition (EEMD).
EEMD was proposed to overcome the mode confusion
problem of empirical mode decomposition (EMD), its basic
principle is that Gaussian white noise is added into raw
signals, and signals can be automatically distributed to the
appropriate reference scale. Terefore, EEMD can achieve
the better time-frequency analysis of nonstationary vibra-
tion signals from bearings [32, 33]. Te procedure of EEMD
is illustrated in Figure 1, and the specifc implementation
process of EEMD is as follows [34]:

(1) Given an original signal s(t), set up the variable i as 1,
and set up the average times of EEMD as N.

(2) Add the Gaussian white noise (GWN) ni(t) to s(t),
and the signal si(t) can be obtained. Te expression
of si(t) is as follows:

si(t) � s(t) + ni(t). (1)

(3) Apply EMD to process si(t), and various intrinsic
mode functions (IMF) and the corresponding re-
sidual components can be obtained; the expression
of si(t) can be presented as follows:

si(t) � 􏽘

J

j�1
IMFij(t) + rij(t), (2)

where IMFij(t) represents the j-th IMF component
obtained by EMD, J is the numbers of IMF, and rij(t)

represents the residual components.
(4) Add diferent GWN to s(t) and repeat steps (2) and

(3), obtain the sum and average of the IMF com-
ponents reached in N decompositions to ofset the
GWN, and the fnal IMF components can be ob-
tained as follows:

IMFj(t) �
1
N

􏽘

N

i�1
IMFij(t) + rij(t). (3)

(5) Trough the above steps, s(t) is fnally decomposed
to

s(t) � 􏽘
j

IMFij + r(t). (4)

2.2. Domain Adaptation and MMD. Domain adaptation
(DA) is a bright transfer learning-based approach in the
situation that traditional pattern recognition and classif-
cation models do not achieve ideal results due to the dis-
tribution discrepancies between the training and testing
samples [1, 5]. Given a SD DS � XS, YS􏼈 􏼉 � xi, yi􏼈 􏼉

nS

i�1 and
a TD DT � XT, YT􏼈 􏼉 � xi, yi􏼈 􏼉

nT

i�ns+1, nS and nT are, re-
spectively, the number of samples from DS and DT, re-
spectively. X � xi􏼈 􏼉

n
i�1 ∈ χ represents data of SD and TD;

Y � yi􏼈 􏼉
n

i�1 ∈ c represents the corresponding label set of X.
DT and DS are drawn from two diferent probability dis-
tributions, and the optimization goal of DA is to shrink the
distribution discrepancies between SD and TD [35].

MMD [36], a widely used nonparametric distance es-
timation in TL, was proposed by Gretton et al. for estimating
the distance of distributions based on reproducing kernel
Hilbert space (RKHS). Te MMD between distributions of
DS and DT can be expressed as

MMD D
S
, D

T
􏼐 􏼑 �

1
nS

􏽘
xi ∈ XS

ϕ xi( 􏼁 −
1

nT

􏽘
xj ∈ XT

ϕ xj􏼐 􏼑

�����������

�����������

2

H

, (5)

where ‖•‖H represents the RKHS norm and ϕ(·) is the
transformation function that transforms data to a RKHS.
Aiming at the challenge of that inconsistent feature distri-
bution is existed in CFD, the MMD has been widely utilized
to estimate distribution discrepancies between domains and
align data distributions.
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2.3. Local Fisher Discriminant Analysis (LFDA). LFDA was
proposed by improving local fsher analysis (LFA) by
Sugiyama [37], and it is a classical supervised di-
mensionality reduction approach. Let fi ∈ Rd,

i � 1, 2, · · · , n be d-dimensional data and yi ∈ [1, c] be the
corresponding category labels, where n and c are, re-
spectively, the number of fi and the class number of data.
According to the literature [37, 38], the objective of LDA
is to maximize the proportion of the between-class
scatter matrix (BSM) Sb to the within-class scatter ma-
trix (WSM) Sw:

J(A) � max
A

A
T

SbA
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

A
T
SwA

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (6)

where A is a mapping matrix, and the defnitions of Sb and
Sw are as follows:

Sb �
1
2

􏽘

n

i,j�1
p

b
ij fi − fj􏼐 􏼑 fi − fj􏼐 􏼑

T
, (7)

Sw �
1
2

􏽘

n

i,j�1
p

W
ij fi − fj􏼐 􏼑 fi − fj􏼐 􏼑

T
, (8)

where

p
b
ij �

1
n

−
1
nl

, yi � yj � l,

1
n

, yi ≠yj,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

p
W
ij �

1
nl

, yi � yj � l,

0, yi ≠yj,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where nl is the number of samples in class l. Compared to
LDA, the higher objective of LFDA is that the between-
categories divisibility is maximized and the within-category
local manifold structure is preserved simultaneously in
a new feature space with reduced dimension. Based on the
above Sb and Sw, the local relationship of feature data can be
incorporated into the defnition of weight. Accordingly, the
new BSM Sb and WSM Sw have been substituted for 􏽥Sb and
Sw, respectively. Te expressions of 􏽥Sb and 􏽥Sw are presented
as follows [37]:

􏽥Sb �
1
2

􏽘

n

i,j�1
􏽥p

b
ij fi − fj􏼐 􏼑 fi − fj􏼐 􏼑

T
, (11)

􏽥Sw �
1
2

􏽘

n

i,j�1

􏽥p
w
ij fi − fj􏼐 􏼑 fi − fj􏼐 􏼑

T
, (12)

where

􏽥p
b
ij �

Aij

1
n

−
1
nl

􏼠 􏼡, yi � yj � l,

1
n

, yi ≠yj,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

􏽥p
W
ij �

Aij

nl

, yi � yj � l,

0, yi ≠yj,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where the defnition of Aij is shown as follows:

Aij � exp −
fi − fj

�����

�����
2

cicj

⎛⎜⎜⎝ ⎞⎟⎟⎠, (15)

where ci and cj are the local scaling around fi and fj.

3. DFCD-IDAMN Framework

To achieve a desirable CFD of bearing, this work designs
a new DFCD-IDAMN framework based on the domain
adaptation feature refnement method DFCD and super-
vised joint distribution adaptation IDAMN. Te whole

Start

Raw signals s (t)

Add Gaussian 
white noise n1 (t)

EMD EMD EMD

IMF-1 IMF-2 IMF-N

END

Obtain the IMFs of s (t)

Add Gaussian 
white noise n2 (t)

Add Gaussian 
white noise ni (t)

Mean of N times decomposition

1
N

IMFj (t)= IMFij (t)+rij (t)∑
N

i=1

Figure 1: Te procedure of EEMD.
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structure is presented in Figure 2. DFCD-IDAMN frame-
work is constituted by four modules: signal processing and
feature extraction module, feature refnement module, do-
main adaptationmodule, and adaptive classifermodule.Te
specifc introduction is presented as follows.

3.1. Signal Processing and Feature Extraction Module.
Due to that, the original bearing vibration signals usually
possess severe nonlinearity and nonstationarity; in an efort
to tackle this issue and extract features that can efectively
refect fault states and help pattern recognition and classi-
fcation, frst of all, EEMD is applied to decompose the
collected vibration signals into several diferent IMFs, and
these IMFs are utilized to calculate the Hilbert envelope
spectrum (HES) and Hilbert marginal spectrum (HMS). By
using raw vibration signals, the decomposed IMFs, and the
corresponding HES, this module calculates the statistical
parameters of them to obtain the corresponding statistical
features. Te procedure of this module is drawn in Figure 3.

3.2. Feature Refnement Module. In order to strengthen the
performance of domain adaptation procedure, this work
designs the feature refnement module to refne domain
adaptation features with more satisfying fault discrimi-
nability and WCI from the original high-dimensionality
feature set. Tis module, domain adaptation feature re-
fnement based on classifcation accuracy and distribution
discrepancies (DFCD), is built by using the classical
classifer KNN, maximum mean discrepancy (MMD), and
Kullback–Leibler divergence (KLD). Te structure of
DFCD is drawn in Figure 4. Te feature datasets extracted
from vibration signals in a certain operating status and
other operating states are used as SD and TD, respectively.
In order to adapt to conditions as close as possible to actual
industrial scenarios, the DFCD runs on this input: tagged
feature data in fault states and normal state from SD,
untagged feature data in fault states from TD, and feature
data in normal state from TD. Te reason for setting such
input is that in actual industrial scenes, it is unknown that
which category the newly collected samples belong to and
samples in all fault states under one specifc working
condition are usually easy to prepare and obtain; therefore,
the inputted feature data from TD is untagged. However,
for any mechanical equipment, the samples in their normal
state under all working conditions are easily accessible.
Accordingly, the labeled feature data from SD are used to
evaluate the fault discriminability due to its known label,
and only feature data in the normal state from TD are used
to measure the WCI of feature.

According to the structure shown in Figure 4, the labeled
feature data (contains multiple fault categories) in a certain
operating condition and normal status feature data in other
operating conditions are used for feature evaluation. Firstly,
it randomly divides the labeled feature data into the training
and testing data, and it trains a KNN classifer to predict the
class labels of the testing data. Accordingly, the classifcation
accuracy of each feature can be used to measure the fault
discriminability. Ten, the normal state feature data in two

working conditions is implemented to calculate the MMD
and KLD of features, which accomplishes the quantifcation
of the WCI of feature. Finally, a novel evaluation index for
domain adaptation features refnement, the domain
adaptability index (DAI), is built. In this study, we presume
that the feature with higher DAI is more advantageous to
domain adaptation and fault classifcation. Te detailed
description of DFCD is as follows.

3.2.1. Evaluate Fault Discriminability of Feature Based on
Classifcation Accuracy. Given a high-dimensional original
feature set (OFS) that includes P feature samples containing
K class data, that is, OFS � [f1, f2, · · · , fP]T. For each
sample, it is constructed by Q features, that is,
fi � f1

i , f2
i , · · · f

Q
i􏽮 􏽯, and i ∈ [1, P], where f

q
i represents the

q-th feature of the i-th sample. Accordingly, the OFS can be
presented as follows:

OFS �

f
1
1 f

1
2 · · · f

1
P

f
2
1 f

2
2 · · · f

2
P

⋮ ⋮ ⋱ ⋮

f
Q
1 f

Q
2 · · · f

Q
P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Te row of OFS, the frst feature data [f1
1, f1

2, · · · , f1
P], is

used to obtain classifcation accuracy by KNN classifer. Te
labeled q-th feature data from source domain are randomly
divided into the training dataset Dtrain, Ytrain􏼈 􏼉 and the
testing dataset Dtest, Ytest􏼈 􏼉. Te Dtrain and Dtest present the
training and testing data samples, respectively.Te Ytrain and
Ytest are the corresponding labels of Dtrain and Dtest. On this
basis, the Dtrain, Ytrain􏼈 􏼉 is employed to train the KNN
classifcation, and the trained KNN predicts the labels of
Dtest. Accordingly, the predicted labels of Dtest, termed as
Y
predict
test , can be obtained. By comparing Ytest and Y

predict
test , the

number of correctly predicted samples for labels Ycorrect
test is

obtained. Based on the Ycorrect
test and Ytest, the expression of

accuracy (q) is presented as follows:

accuracy(q) �
Y
correct
test
Ytest

× 100%. (17)

Te remaining features are also handled in the same way.
Let accuracy (q) denote the classifcation accuracy of the q-th
feature. Terefore, it can obtain the classifcation accuracy
sequence, accuracy(1), accuracy(2), · · · , accuracy(Q)􏼈 􏼉. In
this study, we presume that the higher value of classifcation
accuracy indicates the better fault discriminability.

3.2.2. Measure WCI of Feature Based on MMD and KLD.
For a more comprehensive WCI evaluation of features,
MMD and KLD are employed to evaluate the distribution
diference between feature samples from SD and TD. Te
basic principle of MMD is introduced in Section 2.2. Te
details of KLD are described as follows [39].

KLD is an efective metric tool to estimate the distri-
bution diferences [40], and it is often applied in the felds of
statistical learning, information technique, signal
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processing, etc. Given two probability density functions of
two diferent variables as pro d1 and pro d2, the KLD is
represented on the basis of the defnition of information
entropy.

I pro d1 ‖ pro d2( 􏼁 � 􏽚 pro d1(x)log
pro d1(x)

pro d2(x)
dx,

(18)

where the function I(•) has no symmetry, that is,
I(pro d1 ‖ pro d2)≠ I(pro d2 ‖ pro d1).

According to the references [39–41], the expression of
KLD in symmetric form can be denoted as

K pro d1, pro d2( 􏼁 � I pro d1 ‖ pro d2( 􏼁

+ I pro d2 ‖ pro d1( 􏼁.
(19)

Based on the basic principles of MMD and KLD, given
normal state feature sets OFSnormal

s and OFSnormal
T from

source and target domains, respectively, OFSnormal
s and

OFSnormal
T are expressed as follows:

Intrinsic mode functions (IMF)

Vibration 
signals

1. EEMD is applied to decompose the collected 
vibration signals into several different IMFs
2. Perimitive signals, the IMFs, the HES, and the 
HMS are utilized for statistical features extraction. 

Input data 
Signal processing and 

feature extraction module

Feature refinement module

2. Working-condition-invariance evaluation by 
maximum mean discrepancy (MMD), and Kullback-
Leibler divergence (KLD)

1. Fault discriminability evaluation by classification 
accuracy

3. A new evaluation index (domain adaptability 
index) for domain adaptation features refinement

Domain adaptation module

1. Grassmann manifold subspace learning

2. Joint distribution alignment

3. Neighborhood relationships preserving

4. Improved joint distribution adaptation

 Adaptive classifier module

1. Learned adaptive classifier f 
2. Classifier f is employed to predict the 
labels of unlabelled source domain 
feature data
3. Calculate the cross-domain diagnosis 
accuracy

adaptive 
classifier f

Figure 2: Te architecture of the DFCD-IDAMN framework.

Primitive vibration signals

Signal processing by EEMD

Intrinsic mode functions (IMF)

Time-frequency domain statistical features extraction

Statistical parameters

Hilbert envelope spectrums (HES) Hilbert marginal spectrum (HMS)

Statistical features

Original high-dimensional feature set
(OHFS)

Figure 3: Te architecture of signal processing and feature extraction module.
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OFSnormal
s �

f
1
s1 f

1
s2 · · · f

1
sM

f
2
s1 f

2
s2 · · · f

2
sM

⋮ ⋮ ⋱ ⋮

f
Q
s1 f

Q
s2 · · · f

Q
sM
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T2 · · · f
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Q
T2 · · · f

Q
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)

where fQ
sM represents the q-th feature of the M-th sample

from SD, f
Q
TM represents the the q-th feature of the M-th

sample from TD, and M is the number of normal state
feature sample. Te frst row of OFSnormal

s and OFSnormal
T and

the frst feature data [f1
s1, f1

s2, · · · , f1
sM] and

[f1
T1, f1

T2, · · · , f1
TM] are used to calculate the MMD and

KLD, which can obtain the MMD and KLD of the frst
feature data between SD and TD. Te remaining features
data are also handled in the same way. Let mmd (q) and kld
(q) denote the MMD and KLD of the q-th feature, re-
spectively. Terefore, it can obtain the MMD sequence
mmd(1),mmd(2), · · · ,mmd(Q){ } and MMD sequence
kld(1), kld(2), · · · , kld(Q){ }. In this study, we presume that
theWCI of feature is better when the sum ofMMD and KLD
is smaller.

3.2.3. Build the Domain Adaptability Index. According to
the estimation of fault discriminability and WCI of features,
based on the classifcation accuracy, MMD, and KLD, a new
domain adaptability index, DAI, is proposed to assist refne
domain adaptation features. For the n-th feature, the def-
nition of DAI is presented as follows:

DAI(q) �
accuracy(q)

θ · mmd(q) +(1 − θ) · kld(q)
, (21)

where θ is a trade-of parameter. Ten, we can obtain the
DAI sequence of Q features, DAI � DAI(1),DAI(2), · · · ,{

DAI(Q)}. In this work, it is supposed that the domain
adaptability of feature is stronger when the corresponding
value of DAI is higher. Accordingly, we can refne domain

adaptation features from OHFS by sorting the DAI se-
quence in descending order, and the features with high DAI
values are used to form feature subset for domain
adaptation.

3.3. Improved JDA with Manifold Subspace Learning and
Neighborhood Relationship Preserving (IDAMN). Aiming at
three signifcant issues of many existing DA approaches
based on feature-based TL: (1) the implementation of dis-
tribution adaptation in most studies is based on the prob-
ability distributions alignment in the original complex and
high-dimensional feature space, which is difcult to tackle
the issue of feature distortion and may lead to the poor
domain adaptation performance [28]. (2) Te optimization
goals of numerous ready-made DAs of TLM merely con-
centrate on decreasing the distribution diferences and
enhancing the transferability of features, and the class dis-
tinguishability of feature is usually neglected, which may
lead to the poor classifcation performance [29, 30]. (3) In
the process of distribution adaptation, the impact of class
information and neighborhood relationships of feature data
on distribution adaptation has not been efectively consid-
ered, which may degrade the CFD performance and gen-
eralization ability of the model [28, 30]. Terefore, in this
section, on the basis of the idea that is joint distribution
alignment with neighborhood relationship preserving in
manifold subspace, a novel domain adaptation method,
IDAMN, is designed. Tere are four steps of IDAMN. (1)
Grassmann manifold subspace learning; (2) joint distribu-
tion alignment; (3) neighborhood relationships preserving;
and (4) improved joint distribution adaptation. Te details
of IDAMN are presented as follows.

3.3.1. Grassmann Manifold Subspace Learning. Tis work
applies the classical unsupervised manifold learning ap-
proach of the geodesic fow kernel (GFK) to learn low-
dimensional manifold structure of feature set in original
high-dimensional space [42]. Accordingly, some features
with certain geometrical structures in the manifold subspace
can be obtained, which can overcome the problem of feature
distortions in the raw feature space [28, 43]. Given that the
labeled feature dataset of SD and TD are, respectively,

Original high-dimensional 
feature set (OHFS) obtained 

by signal processing and 
feature extraction module
(Feature data from source 

domain)

Original high-dimensional 
feature set obtained by signal 

processing and feature 
extraction module

(Feature data from target 
domain)

Feature data under
normal state 

Feature data under
normal state 

Labeled feature set
under all states 

Unlabeled feature set under other states

Measure feature 
discriminability by

KNN classifier
Construct the 

domain adaptability 
index (DAI)

(Refine domain 
adaptation features 

from OHFS by 
sorting the DAI 

sequence in 
descending order)

Measure working-
condition-invariance by 

maximum mean 
discrepancy (MMD), 
and Kullback-Leibler 

divergence (KLD) 

Domain adaptability
index DAI 

Sorted
DAI Domain adaptation

features from target
domain

Domain adaptation 
features from source 

domain

Classification 
accuracy

MMD and
KLD 

Figure 4: Te process of DFCD.
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expressed as XS and XT, then, the GFK is implemented to
map original feature data XS and XT into Grassmann
manifold (GM) space G(d) by Z � g(X) �

��
G

√
X [20, 42],

and theZS andZT can be obtained, respectively.Te detailed
introduction of GFK can be referred to [20, 42].

In particular, the prevailing subspace dimension of GFK
must be set to less than half of the input feature space di-
mension. Terefore, aiming at the scenario that the input
feature dimension is less than twice the set dimension of
manifold subspace, before executing unsupervised manifold
learning of GFK, it will conduct dimension size comparison
and automatic adjustment. Specifcally, if the feature di-
mension is less than twice the dimension of the set manifold
subspace, the dimension of the manifold subspace will be set
as the half of the feature dimension. Conversely, if the
feature dimension is greater than twice the dimension of the
set manifold subspace, GFK will be implemented under the
set manifold subspace dimension.

3.3.2. Joint Distribution Alignment. In order to further
shrink the distribution divergences between SD and TD,
joint distribution alignment is introduced. It includes two
parts: marginal distribution alignment (MDA) and condi-
tional distribution alignment (CDA).

(1) MDA. Let ZS and ZT denote the representations of SD
and TD data on the GM space, respectively. Te corre-
sponding marginal distributions of them are P(ZS) and
P(ZT). Te marginal distribution alignment is conducted by
minimizing the MMD between P(ZS) and P(ZT) [17]. Te
expression of MMD between P(ZS) and P(ZT) is shown as
follows:

MMD2
H PS, PT( 􏼁 �

1
nS

􏽘
zi ∈ ZS

ϕ zi( 􏼁 −
1

nT

􏽘
zj ∈ ZT

ϕ zj􏼐 􏼑

�����������

�����������

2

Η

� tr W
TZL0Z

T
W􏼐 􏼑,

(22)

where H represents the RKHS. tr(WTZL0ZTW) represents
the trace of WTZL0ZTW, W is optimal transformation
matrix, and Z denotes the input feature data matrix com-
posed of ZS and ZT. Te defnition of matrix L0 is presented
as follows:

L0 �

1
n
2
S

, zi, zj ∈ ZS􏼐 􏼑,

1
n
2
T

, zi, zj ∉ ZS􏼐 􏼑,

− 1
nSnT

, (otherwise),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where nS and nT are the number of ZS and ZT, respectively.
By minimizing equation (22), a new representation WTZ

can be obtained to achieve that the marginal distribution
discrepancies between the SD and TD are narrowed.

(2) CDA. Te CDA is conducted by minimizing the MMD
between conditional distributions QS(YS ∣ ZS) and
QT(YT ∣ ZT) [18]. Aiming at the lack of YT, it utilizes base
classifer f trained on the ZS with YS, the pseudo labels 􏽢YT of
the TD data ZT can be easily predicted by f [18]. Due to that,
the QS(YS ∣ ZS) and QT(YT ∣ ZT) are posterior probabilities
and quite involved, it can explore the sufcient statistics of
QS(ZS ∣ YS � c) and QT(ZT ∣ YT � c) instead [44]. c is the
category in the label set and c ∈ [1, 2, · · · , C] (C is the total
number of categories) [18]. Terefore, the MMD between
the QS(ZS ∣ YS � c) and QT(ZT ∣ YT � c) can be expressed
as follows:

􏽘
C

c�1
MMD2

H Q
(c)
S , Q

(c)
T􏼐 􏼑 � 􏽘

C

c�1

1
n

(c)
S

􏽘

zi ∈ Z
(c)

S

ϕ zi( 􏼁 −
1

n
(c)
T

􏽘

zj ∈ Z
(c)

T

ϕ zj􏼐 􏼑

������������

������������

2

H

� 􏽘

C

c�1
tr W

TZLcZ
T
W􏼐 􏼑,

(24)

where Z
(c)
S � zi: zi ∈ ZS∧y(zi) � c􏼈 􏼉 and Z

(c)
T � zi: zi ∈􏼈

ZT∧􏽢y(zi) � c} are, respectively, feature sets pertaining to
class c. 􏽢y(zi) is the pseudo tag of the TD data zi. n

(c)
S and n

(c)
T

are the number of samples pertaining to class c, respectively.
Accordingly, the MMD matrix Lc can be obtained by the
following equation:

Lc �

1
n

(c)
S n

(c)
S

, zi, zj ∈ Z
(c)
S􏼐 􏼑,

1
n

(c)
T n

(c)
T

, zi, zj ∈ Z
(c)
T􏼐 􏼑,

− 1
n

(c)
S n

(c)
T

,

zi ∈ Z
(c)
S , zj ∈ Z

(c)
T ,

zi ∈ Z
(c)
T , zj ∈ Z

(c)
S ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

0, (otherwise).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

When the minimum of equation (24) is achieved, a new
representation WTZ can be obtained to achieve that the
conditional distribution discrepancies between QS(YS|ZS)

and QT(YT|ZT) are narrowed.

3.3.3. Neighborhood Relationships Preserving. In order to
consider the impact of class information and neighborhood
relationships of feature data in the process of distribution
adaptation, inspired by the principles of LDA [45] and
LFDA [37], a new local minimum margin criterion matrix
(LMMCM) is designed to utilize the label information while
preserving the local neighborhood geometry of the feature
data. Te expression of LMMCM is presented as follows:

LMMCM � S
L
w − S

L
b , (26)
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where SL
w and SL

b are local WSM and local BSM. Te SL
w and

SL
b are expressed as follows:

S
L
w �

1
2

􏽘

n

i,j�1

􏽥p
LW
ij zi − zj􏼐 􏼑 zi − zj􏼐 􏼑

T
, (27)

S
L
b �

1
2

􏽘

n

i,j�1

􏽥p
Lb
ij zi − zj􏼐 􏼑 zi − zj􏼐 􏼑

T
, (28)

where

􏽥p
Lb
ij �

Aij

1
n

−
1
nl

􏼠 􏼡, zi � zj � l,

nl

n
, zi ≠ zj(j ∈ Nst(i)),

1
n

, else,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

􏽥p
LW
ij �

Aij

nl

, zi � zj � l,

0, zi ≠ zj,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

where n, l, and nl are, respectively, the number of feature
sample, class label of feature sample, and the number of
feature samples that belongs to the class l.􏽥pLb

ij and 􏽥pLW
ij

constitute weight matrices. In 􏽥pLb
ij , the meaning of

zi ≠ zj(j ∈ Nst(i)) is that j is the nearest neighbor of i and
they pertain to diferent classes. Aij ∈ [0, 1] is defned as
follows:

Aij � exp −
zi − zj

�����

�����
2

cicj

⎛⎜⎜⎝ ⎞⎟⎟⎠, (31)

where ci � ‖zi − zm
i ‖ represents the local scaling around zi

and zm
i is them-th nearest neighbor of zi. When zi and zj are

closer, the Aij is larger, if not, the Aij is smaller. By in-
troducing the LMMCM, the local neighborhood geometry of
the feature data, including the neighborhood relationships
between data of the same category and the neighborhood
relationships between data of diferent classes, can be
considered. Furthermore, the class label information is ef-
fectively introduced, and it can improve the discriminability
of feature data by minimizing the LMMCM.

3.3.4. Improved Joint Distribution Adaptation. On the basis
of the above three contents, we design an improved joint
distribution adaptation, DIJDA(ZS, ZT); it is defned as
follows:

DIJDA ZS, ZT( 􏼁 � β􏽘
C

c�1
MMD2

H Q
(c)
S , Q

(c)
T􏼐 􏼑

+(1 − β)MMD2
H PS, PT( 􏼁

+ ηtr W
T
K S

L
w − S

L
b􏼐 􏼑KW􏼐 􏼑,

(32)

where β ∈ [0, 1] and η ∈ [0, 1] are adjustable parameters and
β tunes the proportion of the marginal and conditional
distributions adaptation. According to equations (22) and
(24), the DIJDA(ZS, ZT) can be further expressed as follows:

DIJDA ZS, ZT( 􏼁 � β􏽘
C

c�1
tr W

TZLcZ
T
W􏼐 􏼑

+(1 − β)tr W
T
ZL0Z

T
W􏼐 􏼑

+ ηtr W
T
Z S

L
w − S

L
b􏼐 􏼑Z

T
W􏼐 􏼑.

(33)

According to the optimization objective of JDA and
equation (26), the optimization goal of IDAMN can be
defned as

min
W

β, 􏽘
C

c�1
tr W

TZLcZ
T
W􏼐 􏼑

+(1 − β)tr W
TZL0Z

T
W􏼐 􏼑

+ ηtr W
T
Z S

L
w − S

L
b􏼐 􏼑Z

T
W􏼐 􏼑 + λ‖W‖

2
F,

s.t., W
TZEZT

W � I,

(34)

where λ is the regularization parameter with ‖ · ‖2F the
Frobenius norm and λ‖W‖2F is used to ensure the optimi-
zation problem to be well-defned. I ∈ R(nS+nT)×(nS+nT) and E

represent the unit matrix and centering matrix, respectively.
E � I − (1/(nS + nT))1, and 1 is the (nS + nT) × (nS + nT)

matrix of ones. For the solution of equation (34), based on
the constrained optimization theory, set Lagrange multi-
pliers Φ � diag(ϕ1,ϕ2, · · · , ϕk) ∈ Rk×k; accordingly, the
Lagrange function for solving equation (34) is as follows:

L � tr W
T
Z β􏽘

C

c�1
Lc +(1 − β)L0 + η S

L
w − S

L
b􏼐 􏼑⎛⎝ ⎞⎠Z

T
W⎞⎠⎛⎝ ⎞⎠

+ λ‖W‖
2
F + tr I − W

TZEZT
W􏼐 􏼑Φ􏼐 􏼑.

(35)

By setting derivative zL/zW � 0, the solution of equation
(34) can be derived as a generalized eigendecomposition
problem as follows:

Z β􏽘
C

c�1
Lc +(1 − β)L0 + η S

L
w − S

L
b􏼐 􏼑⎛⎝ ⎞⎠Z

T
+ λI⎛⎝ ⎞⎠W � ZEZT

WΦ.

(36)

According to equation (36), fnally, the optimal adap-
tation matrixW is built by using the k smallest eigenvectors,
and new feature representations US � WTZS and
UT � WTZT are obtained. Ten, it can use labeled US to
learn an adaptive classifer f, and the learned adaptive
classifer f is employed to predict the label of unlabeled UT.

In summary, the overall complete procedures of IDAMN
are presented as follows:

(1) Input: Source and target domains feature set XS and
XT, true labels YS of XS, manifold subspace di-
mension d, regularization parameters λ, β, and η, and
dimension of output source and target domains
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feature space k. Te iteration is i. Te dimension of
XS or XT is df. When the df < 2 × d, the manifold
subspace dimension d will be set as 0.5 × df.

(2) By equation (28), learn the Grassmann manifold
transformation kernel G to transform the original
feature data (XS and XT) into G(d) with
Z � g(X) �

��
G

√
X. Accordingly, the new source

domain ZS and new target domain ZT are obtained.
(3) Learn a base classifer on ZS and conduct prediction

on ZT to obtain its pseudo labels 􏽢YT.
(4) Constitute Z � [ZS, ZT]; compute L0 and Lc by

equations (23) and (25). Compute SL
w and SL

b by
equations (27) and (28).

(5) Solve the eigendecomposition problem in equation
(36) and use k smallest eigenvectors to form adap-
tation matrix W, and U � [US, UT] � WTZ �

[WTZS, WTZT].
(6) Train an adaptive classifer f on WTZS, YS􏼈 􏼉 and

update the pseudo labels 􏽢YT of target domain data,
􏽢YT � f(WTZT).

(7) Construct the MMD matrices Lc􏼈 􏼉
C

c�1 by
equation (25).

(8) Repeat the step (4) until the iteration i .
(9) Output the learned adaptive classifer f.

3.4. Complete Process of the Cross-Domain Fault Diagnosis
Based on the DFCD-IDAMN. Based on the DFCD-IDAMN
framework and cross-domain fault diagnosis tasks, the
complete process is described in detail as follows:

(1) Input collected fault vibration signals under a spe-
cifc working condition and unknown working
condition, and denote Ssource and Starget, respectively.
Ssource and Starget represent source and target domains
data, respectively. Te class information of Ssource is
known, but the class information of Starget is
unknown.

(2) Ssource and Starget are decomposed into several
diferent IMFs by EEMD, respectively. Ten, these
IMFs are utilized to calculate HES and HMS. On
the basis of raw vibration signals Ssource and Starget,
the IMFs, the corresponding HES and HMS, it
calculates statistical parameters of them to obtain
the corresponding statistical features, and the
high-dimensional statistical feature sets OFSsource
and OFSt arg et of source and target domains
are built.

(3) OFSsource and OFSt arg et are inputted in the DFCD
module, and set parameter in this step, the fault
discriminability evaluation of features, and the
WCI measurement of features are conducted,
which can obtain the domain adaptability index of
features for refning OFSsource and OFSt arg et.
Terefore, the new feature sets of source and
target domains XS and XT are obtained for the
subsequent step.

(4) Input: Source and target domains feature set XS and
XT, true labels YS of XS, manifold subspace di-
mension d, regularization parameters λ, β, and η, and
dimension of output source and target domains
feature space k. Te iteration is i. On this basis, the
proposed IDAMN is performed; accordingly, new
feature sets US, UT and adaptive classifer f are ob-
tained. Finally, the cross-domain fault diagnosis
accuracy is calculated.

4. Experimental Verification

In this work, for validating the performance and superiority
of the proposed methods, two bearing fault datasets, ob-
tained from the Case Western Reserve University (CWRU)
test platform [3, 6, 29, 31, 46–48] and the SQI-MFS test
platform [29, 31, 44, 46] are employed for a set of case
studies. To clearly illustrate the superiority of the proposed
methods (DFCD and IDAMN), some comparative models
are built by ready-made common methods: KNN, SVM,
DAE, CNN, DBN, JDA, TCA, JGSA, BDA, and GFK.

4.1. Case 1: Fault Diagnostic of Bearing Dataset 1 across
Diferent Working Loads

4.1.1. Description of Bearing Dataset and Fault Diagnosis
Tasks. In case 1, it utilizes the bearing vibration dataset
gained from the CWRU test-bed to conduct CFD experi-
ments. Te test platform is presented in Figure 5. Tis
bearing vibration signals are sampled through acceleration
sensors under 12 kHz sampling frequency. Table 1 lists the
description of bearing vibration dataset. Tere are three
categories of bearing defect: inner raceway defect (IRD), ball
defect (BD), and outer raceway defect (ORD). Te defect
parameters include 0.028 inch, 0.021 inch, 0.014 inch, and
0.007 inch. Moreover, vibration data for bearings without
defects is also used. In order to set CFD tasks, bearing data
under motor loads of 0 hp, 1 hp, 2 hp, and 3 hp are chosen for
experiments. Terefore, it can obtain bearing vibration data
of 12 classes, labeled 1–12. For each class, 60 samples are
used to build a training set and a testing set, and it randomly
divides 20 and 40 samples as training and testing samples.
Each sample is composed of 2000 continuous data points
from original vibration signals. Based on the bearing data
presented in Table 1, 12 CFD tasks are arranged, as listed in
Table 2.

4.1.2. Diagnosis Results of the DFCD-IDAMN Framework.
In this section, according to the overall procedure of the
DFCD-IDAMN framework shown in Figure 2, it frst
conducts signal processing and feature extraction, and
primitive signals are decomposed into several IMFs by
EEMD. Although the obtained IMFs are distributed from
high frequency to low frequency by default, it is not that
each IMF can represent the time-frequency feature of
a fault signal with efect [49]. For this issue, according to
related previous research work [49–51], correlation co-
efcient between each IMF and raw vibration signal is
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utilized to reduce redundant IMFs. Te IMF is more
closely related to the original vibration signal and has
richer time-frequency information when the value of the
correlation coefcient is higher. Terefore, in this work,
we refer to the literature [49]; the frst four IMFs are used
for feature extraction; furthermore, four Hilbert envelope
spectrums (HES) of four IMFs and one Hilbert marginal
spectrum (HMS) calculated from four IMFs are also used
to generate statistical features. Accordingly, it can obtain 4
IMFs, 4 HES, and 1 HMS from a vibration signal, then
calculate 18 statistical parameters [29, 31, 44, 52–55] of
them listed in Table 3, from which 162 statistical features
can be extracted to form the original high-dimensional
feature set. Vibration signal samples of no defect bearing
and inner raceway defect under motor loads of 0 hp, 1 hp,
2 hp, and 3 hp are presented in Figure 6. Te corre-
sponding IMFs from these samples are presented in
Figures 7 and 8.

Secondly, it carries out the feature refnement module.
Te proposed DFCD evaluates the fault distinguishability
and WCI of 162 statistical features, which obtains the DAI
of them and helps to refne features with better domain
adaptability from high-dimensional original feature set.
Take the no defect vibration data under motor load of 0 hp
as an example. Figure 9 presents the DAI of 162 statistical
features. From the fgure, it can be seen that diferent
features have diferent DAI values, and it indicates the
diferent domain adaptability quantifcation results of
diferent features. For the 39th and 42nd features, their
DAI values are signifcantly higher than other features,
and it shows that their domain adaptability is more
prominent. Terefore, in this study, we assume that the
higher DAI value indicates the greater domain adapt-
ability. Terefore, the DFCD can help to refne some
features (they are more advantageous to domain adap-
tation) by manually select a threshold of the DAI value,
and these refned features are processed by the subsequent
domain adaptation module.

Next, the refned features obtained by performing the
feature refnement module constitute a cross-domain ad-
aptation feature set (CDAF), and the labeled CDAF of the
SD and the unlabeled CDAF of the TD are inputted into the
proposed IDAMN domain adaptation method, achieving
the joint distribution alignment with neighborhood re-
lationship preserving is performed in Grassmann manifold
subspace, and learning an adaptive classifer f for CFD.
Finally, the learned classifer f is learned and it can predict
the labels of the target domain feature set; therefore, the CFD
result can be calculated.

After performing the above steps, the experimental re-
sults of 12 CFD tasks are listed in Table 4. It shows the mean
diagnosis accuracies of 12 bearing defect types under dif-
ferent numbers of domain adaptation features (nf).
According to the diagnosis accuracies of these 12 CFD tasks,
it can easily conclude the following analysis. Firstly, the
proposed DFCD-IDAMN framework for CFD of bearings
can achieve ideal fault diagnosis result. Te diagnosis ac-
curacies of tasks 2, 4, 5, 6, 9, and 12 can reach 100% with the
suitable nf. Tasks 1, 3, and 7 can attain over 99.5% diagnosis
accuracy. Accordingly, the efectiveness of the DFCD-
IDAMN framework can be validated. Secondly, it is evident
that the use of the proposed DFCD has an apparent efect on
the fault diagnosis accuracy. Without using DFCD, all of 162
features are utilized for the subsequent IDAMN domain
adaptation method and CFD, the diagnosis result is not
ideal. Te diagnosis accuracies of tasks 1–12 are 96.46%,
99.58%, 83.33%, 99.17%, 100.00%, 89.58%, 98.54%, 97.29%,
99.38%, 95.83%, 82.29%, and 99.58%, respectively. When the
DFCD is applied and the refned CDAF is employed for the
subsequent procedure, it can attain desirable CFD accuracies
that are apparently higher than that of diagnosis without
using DFCD. Te maximum accuracies (mda) of 12 CFD
tasks are 99.79%, 100.00%, 99.58%, 100.00%, 100.00%,
100.00%, 99.58%, 98.54%, 100.00%, 96.88%, 91.67%, and
100.00%, respectively. Terefore, the efectiveness of the
DFCD with a suitable nf for improving fault diagnosis ac-
curacy can be verifed. Te above CFD experiment involves
some parameters of DFCD and IDAMN that need to be
manually chosen. For the basis for setting hyperparameters
of the proposed methods, the specifc values of these pa-
rameters are set based on experimental experience. Tere-
fore, we directly present the relevant parameter values in this
manuscript. For the DFCD, the corresponding parameters
set in DFCD include trade-of parameter θ � 0.5. Te pa-
rameters set in IDAMN include manifold subspace di-
mension d � 50, regularization parameters λ � 0.1, β � 0.3,
and η � 0.5, dimension of output source and target domains
feature space k� 20. Iterations i� 10. In particular, although
the manifold subspace dimension is set as 50, when the
feature dimension after the proposed feature refnement
(that is nf ) is less than twice of the set manifold subspace
dimension, the manifold subspace dimension will be au-
tomatic adjusted as the half of nf. In Table 4, when the nf is
40, 50, 60, 70, 80, and 90, the manifold subspace dimension
will be automatic adjusted as 20, 25, 30, 35, 40, and 45. On
the contrary, when nf is not less than twice of the set
manifold subspace dimension (when the nf is 100 to 162),
the GFK is implemented under the set manifold subspace
dimension 50.

4.1.3. Comparative Analysis with Other Fault Diagnosis
Models. In an efort to further validate the advantages of the
DFCD-IDAMN framework for CFD, some common and
competitive approaches are used to conduct a series of
comparison experiments, these methods include KNN,
SVM, DAE, CNN, DBN, JDA, TCA, JGSA, BDA, and GFK.
Te reason of this set up is as follows: (1) it choses three

Figure 5: CWRU test platform.
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categories methods: classical machine learning methods,
classical deep learning methods, and classical transfer
learning methods, which are used to compare the efec-
tiveness diferences between them. (2) KNN and SVM are
classic classifers that have been widely used and are very
representative. (3) DAE, CNN, and DBN are widely de-
veloped and studied classical deep learning approaches. (4)
JDA, TCA, JGSA, BDA, and GFK are representative transfer
learning methods that have gradually received attention and
study from many researchers in recent years.

Table 5 presents comparative models built by these
methods, DFCD and IDAMN. Tese comparative models
are labeled as M1–M18 and can be divided into three types.
(1) Te models are not combined with domain adaptation
methods, and they only utilize the original high-
dimensional feature set (OHFS) and classical classifers.
Take M1 as an example; it is a classical classifer-based
model, and the OHFS is directly inputted in the SVM
classifer for cross-domain fault diagnosis. (2) Te models
are combined with domain adaptation methods, and they
use the OHFS, domain adaptation methods, and base

classifer. TakeM7 as an example, it is a domain adaptation-
based model. Te OHFS is frstly processed by TCA, and
the output features are inputted in the KNN classifer. (3)
Te models are combined with DFCD and domain ad-
aptation methods, and they use the OHFS, DFCD, domain
adaptation methods, and base classifer. Take M13 as an
example, the OHFS is frstly refned by the proposed
DFCD, then, the refned features are processed by TCA,
and fnally the output features are inputted in the KNN
classifer.

Te fault diagnosis results of M1–M18 models are
shown in Table 6 and Figures 10–14. It is obvious that the
M18 model obtained by the proposed DFCD-IDAMN
framework can achieve the better CFD performance
than other comparative models. Te detailed comparative
analysis can be easily drawn as follows. (1) Compared with
the M1–M6 (base classifer-based models), the fault di-
agnosis accuracies of tasks 1–12 of DFCD-IDAMN model
are remarkably higher than that of M1–M6 models. In
Figure 14, the mean fault diagnosis accuracy of 12 tasks of
DFCD-IDAMN model can reach 99.57%, which is re-
spectively 8.11%, 8.69%, 7.36%, 12.32%, 13.37%, and
18.01% higher than M1–M6 models. (2) Comparing
OHFS-IDAMN (M12) model with M7–M11 models
(domain adaptation-based models), the accuracies of 12
tasks are noticeably higher than M7–M11 models. Ac-
cordingly, the DA ability of the IDAMN outperforms
traditional TCA, JDA, BDA, JGSA, and GFK. (3) Com-
paring M7–M12 (domain adaptation-based models
without DFCD) with M13–M18 (domain adaptation-
based models with DFCD), it is easily found that the
use of the DFCD has a signifcant enhancement on the
fault diagnosis accuracy of domain adaptation-based
model, take OHFS-TCA (M7) and OHFS-DFCD-TCA
(M13) as examples, the diagnosis accuracies of tasks 1–12
of M13 model are, respectively, 98.75%, 99.79%, 90.63%,
97.92%, 100.00%, 97.92%, 97.50%, 96.67%, 99.38%,
89.79%, 97.92%, and 100.00%, which surpasses that of the
M7 model. Terefore, it implies that the DFCD can help to
refne features with strong domain adaptability, which can
efectively strengthen DA performance and increase fault
diagnosis accuracy.

Table 2: The CFD tasks for case 1.

Tasks
Training samples (SD) Testing samples (TD)

Motor load
(hp)

Defect types
of samples

Number of
samples

Motor load
(hp)

Defect types
of samples

Number of
samples

1 0 Classes 1–12 240 1 Classes 1–12 480
2 0 Classes 1–12 240 2 Classes 1–12 480
3 0 Classes 1–12 240 3 Classes 1–12 480
4 1 Classes 1–12 240 0 Classes 1–12 480
5 1 Classes 1–12 240 2 Classes 1–12 480
6 1 Classes 1–12 240 3 Classes 1–12 480
7 2 Classes 1–12 240 0 Classes 1–12 480
8 2 Classes 1–12 240 1 Classes 1–12 480
9 2 Classes 1–12 240 3 Classes 1–12 480
10 3 Classes 1–12 240 0 Classes 1–12 480
11 3 Classes 1–12 240 1 Classes 1–12 480
12 3 Classes 1–12 240 2 Classes 1–12 480

Table 3: 18 statistical parameters.

Number Title
1 Energy
2 Mean value
3 Kurtosis
4 Standard deviation
5 Range
6 Skewness
7 Crest factor
8 Impulse factor
9 Shape factor
10 Latitude factor
11 Energy entropy
12 Power spectral entropy
13 Singular spectrum entropy
14 Approximate entropy
15 Sample entropy
16 Fuzzy entropy
17 Permutation entropy
18 Envelope entropy
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Figure 6: Vibration signal samples of no defect bearing and inner raceway defect bearing. (a) A vibration signal sample of no defect bearing
under motor loads of 0 hp and 1 hp. (b) A vibration signal sample of no defect bearing under motor loads of 2 hp and 3 hp. (c) A vibration
signal sample of inner raceway defect bearing under motor loads of 0 hp and 1 hp. (d) A vibration signal sample of inner raceway defect
bearing under motor loads of 2 hp and 3 hp.
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Figure 7: IMF1-IMF8 of no defect bearing vibration signal under motor load of 0 hp.
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Figure 8: IMF1-IMF8 of inner raceway defect bearing vibration signal under motor load of 0 hp.
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Figure 9: DAI of 162 statistical features that extracted fromnodefect bearing vibration data undermotor load of 0 hp (trade-of parameter θ is 0.5).

Table 4: CFD results obtained by DFCD-IDAMN framework in case 1.

nf
Accuracies (%)

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

Task
11

Task
12

40 92.50 91.67 87.71 97.29 99.79 98.54 90.21 97.08 98.54 87.29 91.25 99.38
50 99.17 98.33 89.58 97.29 99.58 99.79 97.71 91.67 98.96 77.29 99.38 99.79
60 99.17 99.38 90.21 99.17 100.00 99.79 98.33 98.13 100.00 77.08 83.33 100.00
70 99.38 99.58 82.50 99.79 99.79 99.58 91.46 98.33 100.00 86.88 91.67 99.79
80 99.38 100.00 90.83 100.00 100.00 99.58 99.17 98.13 99.79 86.25 91.67 100.00
90 99.17 99.79 91.46 99.79 100.00 100.00 99.38 98.13 100.00 86.25 83.33 99.79
100 98.75 99.79 83.33 99.79 99.58 89.58 99.38 98.33 100.00 86.88 83.33 100.00
110 98.75 100.00 91.46 99.38 99.17 91.67 98.96 97.92 100.00 86.25 83.33 100.00
120 97.92 100.00 91.46 99.17 99.17 91.67 98.96 97.71 99.58 86.25 83.33 100.00
130 97.71 100.00 91.46 99.38 99.38 91.67 98.96 97.71 99.58 96.67 83.33 100.00
140 97.71 100.00 91.25 99.17 100.00 91.67 98.96 97.71 99.38 96.46 83.33 100.00
150 97.50 100.00 82.92 98.96 100.00 99.58 98.96 97.29 99.38 96.04 79.79 100.00
160 97.29 99.58 83.33 99.38 100.00 88.96 98.13 97.08 99.38 95.83 82.29 99.79
162 96.46 99.58 98.54 99.17 100.00 99.38 98.54 97.29 99.38 95.83 98.75 99.58

mda 99.79
nf : 67

100.00
nf : 80

99. 8
nf : 92

100.00
nf : 80

100.00
nf : 60

100.00
nf : 90

99. 8
nf : 81

99.79
nf : 46

100.00
nf : 60

96.88
nf :131

99.38
nf :  0

100.00
nf : 60

Te bold values highlight that the experimental results are desirable.
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Moreover, we select some other literature that used
similar DA methods for cross-domain fault diagnosis ex-
periments that are similar to ours and compare our ex-
perimental results with them. Table 7 presents the
comparison results. It is obviously true that our proposed
fault diagnosis method outperforms other methods pro-
posed in the corresponding literatures. To sum up, extensive
comparative experiments are conducted, and the results
prove the validity and advantages of the DFCD-IDAMN
framework under diverse working loads.

4.2. Case 2: Fault Diagnostic of Bearing Dataset 2 across
Diferent Working Speeds

4.2.1. Description of Bearing Dataset and Fault Diagnosis
Tasks. To further prove the validity and fexibility of the

DFCD-IDAMN framework for CFD, in this case, it utilizes
bearing vibration dataset sampled from the SQI-MFS test
platform to conduct fault diagnosis experiments. Te test
platform is presented in Figure 15. Tis bearing vibration
signals are sampled through acceleration sensors under 16 kHz
sampling frequency. Table 7 lists the description of bearing
vibration dataset. Tere are three categories of bearing defect:
inner raceway defect (IRD), ball defect (BD), and outer raceway
defect (ORD).Te defect parameters include 0.05mm, 0.1mm,
and 0.2mm. Moreover, vibration data for bearings without
defects is also used. To set CFD tasks, it utilizes the bearing
vibration data under diferent motor speeds for implementing
experiments. Terefore, it can obtain bearing vibration data of
10 classes, labeled 1–10. For each class, 90 samples are used to
build a training set and a testing set, and it randomly divides 30
and 60 samples as training and testing samples. Each sample is

Table 5: Comparative models.

Te model
without domain
adaptation method

Label
Te model
with domain

adaptation method
Label

Te model
with DFCD
and domain

adaptation method

Label

OHFS-SVM M1 OHFS-TCA M7 OHFS-DFCD-TCA M13
OHFS-KNN M2 OHFS-JDA M8 OHFS-DFCD-JDA M14
OHFS-RF M3 OHFS-BDA M9 OHFS-DFCD-BDA M15
OHFS-DAE M4 OHFS-JGSA M10 OHFS-DFCD-JGSA M16
OHFS-DBN M5 OHFS-GFK M11 OHFS-DFCD-GFK M17
OHFS-CNN M6 OHFS-IDAMN M12 DFCD-IDAMN M18

Table 6: CFD results of M1–M18 comparative models in case 1.

Models
Accuracies (%)

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

Task
11

Task
12

M1 96.46 93.13 81.25 98.33 99.79 88.75 91.46 94.17 96.88 83.75 83.33 94.79
M2 91.25 89.79 81.04 95.63 99.79 87.50 93.54 92.71 99.17 84.38 83.13 92.92
M3 98.75 94.38 82.71 97.08 99.58 96.88 91.25 92.08 99.38 83.75 84.38 92.29
M4 89.38 87.29 78.33 86.25 93.96 91.67 88.54 90.00 92.50 79.79 80.83 90.42
M5 87.29 84.58 80.00 88.54 91.04 89.17 88.33 90.63 88.75 76.25 79.79 91.04
M6 78.96 74.79 71.46 79.17 82.50 80.42 87.08 91.25 89.38 78.13 78.96 84.17
M7 96.04 94.58 82.50 97.08 98.96 87.29 96.88 94.58 94.79 84.79 83.33 91.04
M8 98.13 98.33 89.17 95.42 99.79 98.96 96.67 95.83 99.17 90.83 83.33 98.54
M9 89.17 98.75 87.08 94.58 99.79 98.75 97.08 91.67 98.75 88.75 92.29 92.50
M10 97.71 97.92 90.42 95.83 99.79 98.33 96.25 94.58 98.96 91.88 94.38 98.75
M11 93.54 91.25 80.21 96.67 99.38 84.17 94.38 93.13 98.33 88.75 82.92 95.42
M12 96.46 99.58 98.54 99.17 100.00 99.38 98.54 97.29 99.38 95.83 98.75 99.58

M13 98.75
nf : 40

99.79
nf : 40

90.63
nf : 40

97.92
nf :127

100.00
nf :122

97.92
nf :  6

97.50
nf :130

96.67
nf : 61

99.38
nf : 80

89.79
nf : 72

97.92
nf : 71

100.00
nf : 71

M14 99.38
nf :122

100.00
nf : 40

97.92
nf : 80

99.58
nf :   

100.00
nf : 40

99.17
nf : 67

98.96
nf :  6

97.92
nf : 4 

99.79
nf : 98

95.21
nf :134

98.96
nf :134

100.00
nf : 41

M15 100.00
nf : 73

100.00
nf : 4 

91.46
nf : 82

98.96
nf : 99

100.00
nf : 40

99.38
nf : 99

98.96
nf :140

96.88
nf : 43

99.58
nf : 9 

93.75
nf :140

98.33
nf : 9 

100.00
nf :  7

M16 99.58
nf : 62

100.00
nf : 40

99.79
nf : 70

98.33
nf : 73

100.00
nf : 40

99.38
nf :100

99.17
nf : 74

98.33
nf :  8

99.79
nf : 9 

91.17
nf : 74

99.17
nf : 9 

100.00
nf : 4 

M17 99.38
nf : 86

99.79
nf : 62

89.79
nf : 47

100.00
nf :  6

100.00
nf : 4 

98.75
nf : 44

96.04
nf :11 

97.29
nf : 46

99.58
nf :101

90.63
nf : 40

91.25
nf : 44

99.58
nf : 46

M18 99.79
nf : 67

100.00
nf : 80

99. 8
nf : 92

100.00
nf : 80

100.00
nf : 60

100.00
nf : 90

99. 8
nf : 81

99.79
nf : 46

100.00
nf : 60

96.88
nf :131

99.38
nf :  0

100.00
nf : 60

Te bold values highlight that the experimental results are desirable.
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composed of 5000 continuous data points from original vi-
bration signals. On the basis of the bearing vibration data listed
in Table 8, it sets 2 CFD tasks for experiments, and the details
are shown in Table 9.

4.2.2. Diagnosis Results of the Proposed DFCD-IDAMN
Framework. To further demonstrate the performance and
advantages of the DFCD-IDAMN framework, bearing
datasets from the SQI-MFS test-bed under diverse working
speeds are employed for CFD experiments, and the contents

are similar to that of case 1. Take the no defect vibration data
under a motor speed of 1730 rmp as an example. Figure 16
presents the DAI of 162 statistical features. From the fgure,
it can be seen that diferent features have diferent DAI
values, and it indicates the diferent domain adaptability
quantifcation results of diferent features. For the 3rd, 6th,
16th, 21st, and 24th features, their DAI values are signif-
cantly higher than other features, and it shows that their
domain adaptability is more signifcant. Due to that, this
work assumes that the higher DAI value indicates the greater
domain adaptability; therefore, the DFCD can help to refne
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Figure 10: Comparison of CFD results of M1–M18 models (tasks 1–3).
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Figure 11: Comparison of CFD results of M1–M18 models (tasks 4–6).
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some features (they are more advantageous to domain ad-
aptation) by manually select a threshold of the DAI value,
and these refned features are processed by the subsequent
domain adaptation module. Table 10 lists the diagnosis
results of 2 CFD tasks under diferent nf, it is easy to draw
conclusions similar to the experimental analysis for case 1.
Firstly, the model built by the DFCD-IDAMN framework
attains an ideal result, the maximum diagnosis accuracies of
tasks 1 and 2 are 91.83% and 95.17%, respectively. Secondly,
the signifcant enhancement efect of the use of DFCD on
CFD performance is further proven. When the DFCD is not

applied, all of 162 features are employed for the subsequent
IDAMN domain adaptation method and fault classifcation,
the diagnosis result (task 1: 86.17%, task 2: 86.83%) is not
ideal. When the DFCD is used and the refned CDAF is
employed for the subsequent procedure, it can attain ob-
viously improved CFD accuracies. Terefore, the efective-
ness of DFCD-IDAMN framework is validated again. Te
above CFD experiment involves some parameters of DFCD
and IDAMN that should be manually set. For the basis for
setting hyperparameters of the proposed methods, the
specifc values of these parameters are set based on
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Figure 12: Comparison of CFD results of M1–M18 models (tasks 7–9).
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Table 7: Comparison of experimental results between DFCD-IDAMN and relevant methods from other literatures.

Abbreviation of
methods

DA
method Literature Experimental data Cross-domain tasks

Maximum
mean

accuracy (%)

DFCD-IDAMN IDAMN Tis article Bearing data from CWRU
and our own test-bed

12 tasks under 4 working
conditions 99. 7

MTSDE [56] MMD

A novel cross-domain intelligent
fault diagnosis method based on
entropy features and transfer

learning

Bearing from PHM2009,
CWRU, and MFPT

6 diagnosis tasks under 2
working conditions 97.10

BARTL [3] BDA

Balanced adaptation regularization
based transfer learning for

unsupervised cross-domain fault
diagnosis

Bearing data from Jiangnan
university and Politecnico di

Torino

6 diagnosis tasks under 2
working speeds 98.73

FT-IDJ [57] JDA

An intelligent fault diagnosis
method for rolling bearings based
on feature transfer with improved
DenseNet and joint distribution

adaptation

Bearing data from CWRU 12 diagnosis tasks under
4 working speeds 98.50

TCA-based [58] TCA Transfer learning based data feature
transfer for fault diagnosis Bearing data from CWRU 6 diagnosis tasks under 2

working speeds 91.40

AMPD [26] GFK

A new transferable bearing fault
diagnosis method with adaptive
manifold probability distribution
under diferent working conditions

Bearing data from own test rig 12 diagnosis tasks under
4 working speeds 98.85

JGSA-FTFE
[59] JGSA

Time frequency feature analysis of
rolling bearing fault based on deep

transfer learning

Bearing data from CWRU
and own test-bed

2 diagnosis tasks under 2
working conditions 95.55

Te bold values highlight that the experimental results are desirable.

Figure 15: Te SQI-MFS test-bed.
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experimental experience. Terefore, we directly present the
relevant parameter values in this manuscript. For the DFCD,
trade-of parameter θ � 0.5. Te parameters manual set in
IDAMN include: manifold subspace dimension d � 40,
regularization parameters λ � 0.1, β � 0.3, and η � 0.5, di-
mension of output source and target domains feature space
k� 20. Iterations i� 10. In particular, although the manifold
subspace dimension is set as 40, when the feature dimension
after the proposed feature refnement (that is nf) is less than
twice of the set manifold subspace dimension, the manifold
subspace dimension will be automatic adjusted as the half of
nf. In Table 10, when the nf is 40, 50, 60, and 70, the manifold
subspace dimension will be automatic adjusted as 20, 25, 30,
and 35. On the contrary, when nf is not less than twice of the
set manifold subspace dimension (when the nf is 80 to 162),
the GFK is implemented under the set manifold subspace
dimension 40.

4.2.3. Comparative Analysis with Other Fault Diagnosis
Models. Te comparative models used in this section are
also shown in Table 6, and the experimental contents are
the same as case 1. Te corresponding cross-domain fault
diagnosis results are listed in Table 11 and Figure 17. It is
also obviously concluded that the performance of the
model built by the DFCD-IDAMN framework signif-
cantly surpasses that of the other models. Te detailed
comparative analysis is illustrated as follows. (1) Com-
paring the DFCD-IDAMN model with M1–M6 (base
classifer-based models), the diagnosis accuracies of tasks
1 and 2 of DFCD-IDAMN model are remarkably higher
than that of the M1–M6 models. Moreover, the OHFS-
IDAMN model can achieve the higher diagnosis accu-
racies in tasks 1 and 2 than M1–M6 models. (2) Com-
paring the OHFS-IDAMN (M12) model with the
M7–M11 models (domain adaptation-based models), the

diagnosis accuracies of tasks 1 and 2 are noticeably
higher than M7–M11 models. Te accuracy of the M12
model in task 1 can attain 86.17%, which is, respectively,
10.17%, 3.67%, 20.00%, 6.00%, and 11.67% higher than
the M7–M11 models. Accordingly, for domain adapta-
tion ability, it is evident that the proposed IDAMN
outperforms traditional JDA, BDA, TCA, JGSA, and
GFK, which can efectively increase the CFD accuracy.
(3) Comparing M7–M12 (domain adaptation-based
models without DFCD) with M13–M18 (domain
adaptation-based models with DFCD), it is easily found
that the utilization of the DFCD has a remarkable im-
provement on the diagnosis accuracy of domain
adaptation-based model, take OHFS-JDA (M8) and
OHFS-DFCD-JDA (M14) as examples, the accuracies of
tasks 1 and 2 of the M14 model are, respectively, 89.00%
and 83.83%; nevertheless, the M8 model only attains

Table 8: Te bearing data from SQI-MFS test-bed.

Category
of bearing defect Defect diameter (mm)

Number of training/testing samples
Class label

Motor speeds 1730 rmp Motor speeds 1750 rmp
No defect 0 30/60 30/60 Classes 1

IRD
0.05 30/60 30/60 Classes 2
0.1 30/60 30/60 Classes 3
0.2 30/60 30/60 Classes 4

ORD
0.05 30/60 30/60 Classes 5
0.1 30/60 30/60 Classes 6
0.2 30/60 30/60 Classes 7

BD
0.05 30/60 30/60 Classes 8
0.1 30/60 30/60 Classes 9
0.2 30/60 30/60 Classes 10

Table 9: Te CFD tasks for case 2.

Tasks
SD (training samples) TD (testing samples)

Motor speed
(rmp)

Defect types
of samples

Number of
samples

Motor speed
(rmp)

Defect types
of samples

Number of
samples

1 1730 Classes 1–10 300 1750 Classes 1–10 600
2 1750 Classes 1–10 300 1730 Classes 1–10 600
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Figure 16: DAI of 162 statistical features that extracted from no
defect bearing vibration data under motor speed of 1730 rmp
(trade-of parameter θ is 0.5).
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82.50% and 72.00% accuracies, respectively, which is
obvious inferior than the M14 model. Accordingly, the
above experimental analysis once again shows that the
DFCD can help to refne features with strong domain
adaptability, which can efectively enhance domain

adaptation performance and increase CFD accuracy. To
sum up, extensive experiments are carried out, and the
results further validate the validity, adaptability, and
superiority of the DFCD-IDAMN framework under
diverse working speeds.

Table 11: CFD results of M1–M18 models in case 2.

Model Accuracies of task 1
(%)

Accuracies of task 2
(%)

M1 81.17 77.83
M2 76.33 75.00
M3 75.17 80.83
M4 71.83 73.00
M5 69.33 67.67
M6 66.17 59.33
M7 76.00 69.83
M8 82.50 72.00
M9 66.17 70.83
M10 80.17 74.00
M11 74.50 75.50
M12 86.17 86.83

M13 77.67
nf :136

79.17
nf : 7 

M14 89.00
nf :116

83.83
nf : 99

M15 74.33
nf :112

76.83
nf : 88

M16 84.67
nf :118

86.83
nf :  6

M17 81.67
nf : 9 

78.83
nf :110

M18 91.83
nf :121

9 .17
nf : 6 

Te bold values highlight that the experimental results are desirable.

Table 10: CFD results of DFCD-IDAMN in case 2.

nf Accuracies of task 1
(%)

Accuracies of task 2
(%)

40 77.67 74.17
50 87.67 72.17
60 87.00 91.00
70 88.67 92. 0
80 90.00 89.50
90 89.83 93.17
100 88.83 92.33
110 89.00 91.50
120 91.67 87.67
130 91.50 87.83
140 91.17 90.67
150 90.00 90.50
160 81.50 88.00
162 86.17 86.83

mda 91.83
nf :121

9 .17
nf : 6 

Te bold values highlight that the experimental results are desirable.
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5. Conclusions

Tis work designs a new framework based on the proposed
DFCD and IDAMN for rolling bearing across diverse op-
erating conditions. In this framework, the EEMD is frst
applied for signals processing and statistics-based features
extraction. Ten, the DFCD is employed to refne the fea-
tures by evaluating the fault distinguishability and WCI.
Next, the IDAMN is performed to maps the feature data into
a GM subspace and further achieves improved JDA with
neighborhood relationship preserving. Finally, an adaptive
classifer is trained for fault diagnostic.

By utilizing bearing data collected from two experi-
mental platforms, extensive fault diagnosis experiments
are conducted. Tese experimental results show the fol-
lowing: (1) the DFCD can efectively refne features with
the better domain adaptability; accordingly, the utiliza-
tion of the DFCD has a signifcant enhancement on the
diagnosis accuracy of domain adaptation-based models.
(2) IDAMN possesses more robust domain adaptation
ability than JDA, TCA, BDA, JGSA, and GFK. (3) Te
model built by the DFCD and IDAMN can attain a de-
sirable cross-domain fault diagnosis accuracy with
a suitable nf, which presents a promising capability for
employing it in practical industrial scenarios with variable
working conditions. In future, we are planning to develop
stronger domain adaptation-based approaches for more
complicated fault detection scenes and conduct research
on adaptive optimization methods for related parameters
used in the proposed methods.
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