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As an important force transmission component of mortars, the seat plate afects some core indicators of mortars such as range,
shooting accuracy, and maneuverability. In order to withstand huge impact loads, the seat plate was previously made of metal,
which accounts for approximately 30%–45% of the total weight of the gun. Te drawbacks of the heavy weight of the seat plate,
which are not conducive to transportation and transfer, run counter to the current direction of the mortar’s lightweight de-
velopment. Te application of composite materials can greatly reduce the weight of the seat plate, but it exacerbates the
contradiction between the mobility and combat efectiveness of mortars. In order to achieve the best match between mortar
stability and maneuverability, a multiobjective optimization of composite material layers for seat plates is proposed, utilizing the
designability of composite material layers. First, a fber continuity model based on dropout sequence is adopted to solve the
problems existing in the design of inherent continuity classes for composite layered fbers. Second, a hybrid surrogate model that
considers the composite material seat plate quality, structural strength, shooting stability, shooting accuracy, and various working
conditions is considered. Ten, in order to improve the optimization efciency and robustness of the algorithm, a multiobjective
optimization algorithm based on the Chebyshev combination pattern is used to solve the mixed surrogate model. Finally, the
optimization results are comprehensively evaluated against the optimization objectives. Research has shown that the method
proposed in this article can efectively solve the time-consuming problem of multiobjective optimization, improve the accuracy of
hybrid surrogate models, and meet the expected requirements of multiobjective optimization of composite material seat plates.
While ensuring shooting stability, the weight of the seat plate is reduced by 18.43% compared to the metal seat plate, which has
important application value for lightweight design of mortars.

1. Introduction

Mortar is a type of artillery with a special trajectory that plays
a huge role in complex terrain combat environments, such as
mountains, hills, and cities. As an important force trans-
mission component of mortars, the seat plate afects the core
indicators of mortar range, shooting accuracy, and ma-
neuverability. Due to the need to withstand huge impact
loads, the seat plate was previously made of metal, which
accounts for approximately 30%–45% of the total weight of
the gun. Te drawbacks of heavy weight of the seat plate,
which are not conducive to transportation and transfer, run
counter to the current direction of the mortars lightweight

development. Terefore, while meeting the requirements of
intensity and shooting stability, reducing the weight of the
seat plate as much as possible is an urgent technical chal-
lenge. It can facilitate rapid disassembly and assembly,
human and animal carrying, vehicle transportation, and
paratroopers’ airborne and airdrop and improve the mor-
tar’s rapid mobility and combat capability.

Composite materials are widely used in various felds
due to their advantages such as lightweight, high strength,
design ability, and good impact performance and are con-
sidered to be helpful in solving the problem of lightweight
design of seat plates [1]. However, the design of composite
material structures requires the layer structure
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determination of the laminated plate, including the number
of layers, the thickness of each layer, and the laying angle.
Compared to the metal structure design, more design var-
iables are required. Moreover, the optimization of the laying
angle includes discrete variables [2]. Although the appli-
cation of composite materials can reduce structural mass,
but the material characteristics of composite materials make
the structural nonlinear problem in mortar systems more
prominent than conventional ground guns, and the con-
tradiction between mortar mobility and combat efective-
ness has become increasingly acute.

In order to match multiple objectives of mortars, Zhang
et al. [3] applied the multiobjective optimization to the
optimization of seat plates. Ma [4] established fnite element
models of the underground seat plates of diferent shooting
arrays and applied software platform integration to imple-
ment multiobjective optimization of the parameterized
model. Based on the multiobjective optimization theory of
the genetic algorithm, Zhou [5] studied the optimization
space and efectiveness of the antirecoil device under the
simultaneous consideration of the structure of multiple
working conditions and overall integration. Jia [6] used the
Ansys Workbench fnite element engineering technology
simulation platform to carry out the structural lightweight
design and material lightweight design on the seat plate.
Wang et al. [7] used the optimization method of the
lightweight composite material layer to carry out the
lightweight design of the mortar seat plate. Ge et al. [8] used
carbon fber reinforced resin matrix composite materials as
the main body of the seat plate to absorb recoil energy
through large deformation dispersion.

In fact, the ultimate goal of composite structure opti-
mization is to specify a layer structure for each design area.
When regions are designed independently, conficting layup
angles may occur, resulting in the fbers no longer being
continuous. Stress concentrations near the region bound-
aries due to the cut-of of the force transmission paths can
afect structural safety and workmanship. To this end,
certain rules are used to transform the independently
designed layers of each area into designs that meet fber
continuity constraints. Stodieck et al. [9] introduced the
concepts of design variable zones and sublaminates for the
fber continuity design of composite materials. Irisarri et al.
[10] used a shared-layer blending model to achieve fber
continuity adjustment in adjacent regions after obtaining the
number of layers in each region for each fber angle.
Kristinsdottir et al. [11] introduced a method where each
layer originates from a critical or thickest region and can
continuously cover any number of adjacent regions. Yang
et al. [12] introduced the concept of ply drop sequence (PDS)
into the design of multiregion composite laminates. He used
genetic algorithm (GA) with special operators and coding
methods for PDS-based hybrid optimization, which ensures
that the design is fully hybridized during the GA iteration
process.

At the same time, the optimization problem of com-
posite materials often has multiple objective functions, and
the solution of these objective functions often requires time-
consuming simulation calculations. Te vast majority of

optimization algorithms currently employed are multi-
objective optimization algorithms based on various surro-
gate models [13], such as polynomial response surface (PRS)
[14], radial basis function (RBF) [15], and Dou et al.’s [16]
support vector regression (SVR). [17]. For diferent types of
optimization problems, diferent surrogate model methods
have their own advantages and disadvantages and exhibit
varying performance in model accuracy, optimization ef-
ciency, and robustness. A fuzzy clustering algorithm based
on a single alternative model was tested using a synthetic
dataset by Shi et al. and the membership of the data and the
weights of the surrogate model were obtained [18]. Ariyarit
et al. adopted a multifdelity optimization technique that
exploits the efcient global optimization capability of a hy-
brid agent model to solve helicopter blade design problems.
Tis model uses the Kriging method to construct local
deviations and uses radial basis functions to construct the
global model. Te optimization results were compared with
those of the ordinary Kriging method and the co-Kriging
method, and the best solution was obtained [19]. Sun et al.
studied the construction method of a mixed substitution
model based on second-order polynomial response surface
models (PRSMs), radial basis functions (RBFs), and Kriging
lattice substitution models for the multiparameter optimi-
zation problem involved in the pulse jet cleaning process of
bag flters [20]. Liu et al. proposed a new alternative model
PC-GK-SBL, which combines polynomial chaotic expansion
(PCE) and Gaussian kernel (GK), under the sparse Bayesian
learning (SBL) framework, signifcantly improving com-
putational efciency [21]. Denimal et al. combined the
Kriging form with generalized polynomial chaos to predict
friction-induced instability with interval and probability
uncertainties [22]. Li et al. proposed a global optimization
algorithm based on the adaptive weighted hybrid surrogate
(GOA-AWHS) model. In each iteration, a hybrid model
based on the Kriging method and RBF is constructed by
adaptively selecting weight coefcients. Ten, the prediction
target, root mean square error, and distance parameter are
optimized to generate Pareto boundaries. Finally, further
selecting data points at the Pareto frontier can yield multiple
promising optimal solutions [23]. Similar research has also
shown that a hybrid surrogate model (HSM) is used to
improve the RDO efciency of partially ribbed shells [24].
Zerpa et al. [25] used polynomial regression surrogate (PRS),
radial basic function (RBF), and KRG surrogate models to
obtain a mixed surrogate model by linearly stacking them
with a certain weight factor and applied it to the optimi-
zation of ternary composite fooding oil recovery programs.
Goel et al. [26] proposed a heuristic weight factor calculation
method, where the weight coefcients are determined by the
prediction sum of squares (PRESS) calculated from the test
samples. Zhang et al. [27] combined two weight factor
calculation methods to balance the global search ability and
local exploration ability of optimization methods. Long et al.
[28] proposed a multiresponse weighted adaptive sampling
(MWAS) method based on a hybrid surrogate model to
improve the ftting accuracy and optimization efciency of
the surrogate model and applied it to the multiobjective
lightweight design of car seats.
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Terefore, the abovementionedmethods have signifcant
application value, but in previous studies, relevant methods
have not been introduced into the multiobjective optimi-
zation research of mortar composite material seat plates. In
this context, this article conducted research on the opti-
mization of mortar composite material seat plates based on
a multiobjective optimization algorithm by using a hybrid
surrogate model. Te structure of this article is shown in
Figure 1.

First, the preparatory work includes the establishment of
a fnite element model for composite material seat plates. A
fber continuity model based on the dropout sequence is used
to solve the problems in the inherent continuity class design
method of composite material layer fbers. A preliminary
verifcation of the model is carried out through modal ex-
periments. Second, the BP neural network surrogate model
and the Kriging surrogate model were established, and a hy-
brid surrogate model method based on the Chebyshev com-
bination pattern was adopted. Te application of the hybrid
surrogatemodel method based on the Chebyshev combination
pattern, the augmented Tchebychef-assisted ensemble sur-
rogate multiobjective optimization (ATAESMO)method [29],
was considered for solution. Trough testing the feasibility of
the method, the optimization efciency and robustness of the
algorithm were improved. Ten, the abovementioned models
and methods were applied to study the optimization of layer
thickness under multiobjective matching of composite ma-
terial seat plates. Te weight of the seat plates was minimized
while meeting the design requirements of strength, de-
formation, and shooting stability. Te research results indicate
that the research ideas and methods in this article have good
results in the lightweight of mortars and have certain reference
value for improving the maneuverability of mortars.

2. Preliminary

2.1. Description of Laminated Structure of Multiregion
Composite Materials. In addition to the fber continuity
criterion, the layup of composite materials also needs to
follow the general principles [30] and the load-bearing
characteristics of the seat plate. Te layup method of
(+45°/−45°/0°/90°/−45°/+45°) is preliminarily selected. In
these layers, the 0° layer mainly bears axial loads; the ±45°
layer mainly ensures the shear modulus of the material
model to improve the stability and impact resistance of the
structure and reduce the stress concentration; and the 90°
layer mainly bears lateral loads to control the Poisson
efect [31].

At present, in order to improve the manufacturability of
multiregion composite laminated structures and reduce
stress concentration in the structure, certain rules are
generally set in advance during the layer design process.
Tey would help to guide the appearance of fber continuity
layers, avoid inefcient search, and improve the design efect
of the layer. Te biggest limitation of the commonly used
classic-guided continuity model lies in its strict layer
dropping rules, which make the model concise and efcient
in design. Adopting loose dropout rules can certainly expand
the feasible design space, but determining the next dropout

position poses difculties for the implementation of the
rules. Terefore, the sequence of dropouts is the key to
defning a continuity model. Tis article adopts a fber
continuity model based on dropout sequences, combines
dropout sequences that defne dropout rules with classical-
guided continuity models, and achieves the description of
multiregion layered structures under loose dropout rules.

Te construction method of layer dropping sequence is
as follows: we suppose that there are laminated plates withN
layers in the structure, where each single layer corresponds
to a unique positive integer representing its position in the
thickness direction of the laminated plate. For example,
from top to bottom, each single layer can be numbered
sequentially with the numbers from 1 toN. After numbering,
we put the number corresponding to the frst interrupted
single layer when the thickness becomes smaller into the
leftmost end of the layer loss sequence. Ten, we put the
number of subsequent interrupted single layers into the layer
loss sequence in turn (just to the right of the previous
number), until the last number is placed into the rightmost
end of the layer loss sequence [32]. In this way, the specifc
layer loss rules can be obtained by simply reading the layer
loss sequence from left to right. Figure 2 lists two layer loss
sequences.

Te threemain areas of the composite material seat plate,
the main plate, the conical basin, and the back plate are
represented by A, B, and C, respectively, as shown in Fig-
ure 3. Assuming that the number of plies of the three
laminates is 3, 4, and 2, respectively, a positive integer se-
quence (123456) is used to represent the positions of the six
single layers in the thickness direction (from top to bottom)
in the wizard, respectively. For the four single layers in B,
their ply angles correspond to four single layers in the
wizard, which means that two single layers should be deleted
from the wizard with a thickness of six layers. By using the
layer dropping rules defned by the layer dropping sequence,
the single layer interrupted from the wizard can be de-
termined. Assuming that the layer dropping sequence is
(312654), the positions of the two single layers to be deleted
in the wizard are 3 and 1, respectively, and the corre-
sponding ply angles are −45°, 90° and 45°, respectively. After
eliminating these two layers from the wizard, the remaining
layer order is (45 0 0 90), which is also the layer structure of
plate B. Similarly, after deleting the 3# and 6# plies (i.e.,
0° and 90° plies) in turn, the ply structures of plate A and
plate C are (45 −45 90) and (45 −45), respectively.

2.2. Finite Element Model of Composite Material Seat Plate.
As a weapon system, the most important component of
a mortar is the launch system, which is composed of a recoil
part (barrel and tail, loading mechanism, seat plate, and
surrounding soil), an aiming part (high and low aircraft,
directional aircraft, and sight glass), and a frame part. When
a mortar is fred, the pressure of gunpowder gas acts on the
bottom of the gun chamber to push the recoil part to recoil
along the load transmission path. Te fring load is trans-
mitted to the tail of the gun through the barrel and then to
the ground through the seat plate. Based on the topology
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optimization results of the seat plate and the structural
characteristics of the trapezoidal pyramid seat plate, the
load-bearing skeleton of the main plate, conical basin, and
back plate in the seat plate is designed, which is still made of
the titanium alloy material [33]. A coordinate system is
established at the center point of the barrel muzzle: the x-axis
is perpendicular to the barrel ground plane, the y-axis is the
axis direction of the mortar barrel, and the z-axis is de-
termined according to the right-hand spiral rule; a co-
ordinate system 2 is established at the center position of the
seat plate in the mortar: the axis is horizontal and transverse,
the axis is vertical and downward, and the axis is horizontal
and longitudinal. Te established dynamic model of
a mortar coupled with composite material seat plate and soil
is shown in Figure 4.

2.3. Modal Analysis and Experimental Study of Composite
Material Seat Plate. To preliminarily verify the reliability of
the model, a modal testing system was used to conduct
modal tests on the composite material seat plate, as shown in
Figure 5. In order to ensure that the free boundary condi-
tions of the calculated and experimental modes are

consistent, the suspension method is used in the experi-
mental mode analysis to simulate the free boundary. Te
composite material seat plate belongs to the welded structure
of titanium alloy and carbon fber and has good linear
dynamic characteristics, so hammering excitation is adop-
ted. According to simulation calculations, it can be seen that
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Figure 2: Te schematic diagrams of layer dropping sequences: (a) 2 1 4 3 and (b) 3 2 1 4.
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Objective: To improve the maneuverability of the system while meeting the strength and shooting stability of the mortar
base plate.
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the seat plate is subjected to the maximum force around the
joint. Test points are arranged in such areas for easy mea-
surement and identifcation. A total of 16 excitation points
are arranged in the experiment.

After multiple tests, signals from 16 points were collected
and frequency domain ftting analysis was performed on the
data using the PolyLSCF modal identifcation method.
Under SUM function identifcation, various modal pa-
rameters were obtained, and the vibration mode was esti-
mated by using the least squares frequency domain method.
In the simulation calculation, free boundary conditions are
set to obtain the frequency comparison between the frst 5
modal calculation modes and experimental modes of the
composite material seat plate, as shown in Table 1.

According to Table 1, the maximum absolute error
between the calculated natural frequency value and the
experimental value is 3.42%. Te reason for the error is, on
the one hand, that the material properties used in the cal-
culation mode assume that the structure is uniform and
dense, without pores and cracks, which is diferent from the
actual object. Additionally, the composite material seat plate
has an anisotropic material structure, which can bring errors
to the calculation. On the other hand, due to the infuence of
environmental and equipment factors, especially the noise
interference during the testing process, relative errors can
also be generated. However, the overall relative error is less
than 5%, which is within an acceptable range. It can be
considered that the two have a good consistency, and the
established fnite element analysis model has a good
accuracy.

3. Multiobjective Optimization Method for the
Mixed Surrogate Model

3.1.Hybrid SurrogateModel. Directly adopting complex and
high-precision original simulation models leads to a signif-
icant increase in single calculation costs and computational
complexity, making it difcult to obtain optimization results
within an acceptable range of calculation costs. Terefore,
using a surrogate model with high computational efciency

to replace a complex high-precision simulation model is
a widely accepted and efective solution. We set
x � (x1, x2, · · · , xn)T as an n-dimensional input variable, and
y is the output variable. For N sets of training sample data
X � (x1, x2, · · · , xN)T, its corresponding target response
value is Y � (y1, y2, · · ·, yN)T. By using diferent surrogate
model functions, the relationship between input variable x

and output y response can be approximated as follows [34]:

y � f(x) + ε, (1)

where ε is the random error of approximation f(x) to y.

3.1.1. BP (Backpropagation) Neural Network Surrogate
Model. BP neural networks are generally composed of input
layer, hidden layer, and output layer, as shown in Figure 6.

Before using the BP neural network for prediction, it is
necessary to frst conduct network training, which mainly
includes the steps shown in Figure 7.

Step 1. Te number of input layer nodes n, hidden layer
nodes h, and output layer nodes m are determined. Te
weights between the input layer and the hidden layer wji, the
weights between the hidden layer and the output layer θj, the
hidden layer threshold, and the output layer threshold θk are
initialized. Te appropriate learning rate η and activation
function are selected.

Step 2. Forward propagation calculation: in this step, the
input information is processed layer by layer from the input
layer through the hidden layer and then transmitted to the
output layer.Te state of each layer’s neurons only afects the
state of the next layer’s neurons.

Step 3. Error calculation: the error between the predicted
output yk and the expected output tk of the neural network
output layer is calculated.

Step 4. Te weights and thresholds of the output layer and
hidden layer are updated.

Step 5. We determine whether the prediction accuracy of
the neural network surrogate model meets the requirements.
If it does not meet the requirements, then Steps 2 to 4 are
repeated.

From the abovementioned training steps, it can be seen
that the BP neural network adjusts the network weight and
threshold to reduce the error of the network’s prediction
output along the gradient direction until it reaches the
expected prediction accuracy or the number of iterations
exceeds the set value.

3.1.2. Kriging Surrogate Model. TeKriging surrogate model
is an interpolation model whose interpolation result is de-
fned as a linear weighting of the response values of the
known sample function.

Coordinate
System 1

Coordinate
System 2

Barrel

Seat Plate

Soil

Legs

x

Z
Y

X

y

z

Figure 4: Te coupling model of mortar composite material seat
plate and soil.

Shock and Vibration 5
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Terefore, as long as the expression of the weighted
coefcient ω can be given, the performance estimation value
of any design scheme in the design space can be obtained. In
order to calculate the weighting coefcients, the Kriging
model introduces statistical assumptions by treating the
unknown function as a specifc implementation of
a Gaussian static stochastic process. Tis static random
process is defned as follows:

Y(x) � β0 + Z(x), (3)

where β0 is an unknown constant, also known as the global
trend model, representing the mathematical expected value
of Y(x) and Z(x) represents a static random process with
a mean of zero and a variance of σ2. At diferent locations in
the design space, these random variables have a certain
degree of correlation (or covariance). Te covariance can be
expressed as follows:

Cov Z(x), Z x′(   � σ2R x, x′( , (4)

where R(x, x′) is the “correlation function” (only related to
spatial distance), and it is equal to 1 when the distance is
zero; when the distance is infnite, it is equal to 0; the
correlation decreases with increasing distance. Based on the
abovementioned assumptions, the Kriging model searches
for the optimal weighting coefcient ω by minimizing the
mean square deviation ŷ(x) as

MSE[ŷ(x)] � E ωT
YS − Y(x) 

2
 . (5)

Tis satisfes the following interpolation conditions (or
unbiased conditions):

E 
n

i�1
ω(i)

Y x
(i)

 ⎡⎣ ⎤⎦ � E[Y(x)]. (6)

By using the Lagrange multiplier method, it can be
proven through derivation that the optimal weighting co-
efcient ω is given by the following linear equation system:



n
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(7)

where i � 1, 2, · · · , n and μ is the Lagrange multiplier.

3.1.3. Hybrid Surrogate Model. Under the premise of
selecting a suitable single surrogate model as its subsurrogate
model, determining the hybrid strategy, that is, determining
the weight coefcients through efective calculation
methods, is the key to the modeling process of the hybrid

Conical basin

Back plate

Test Line
Main plate

(a) (b)

Figure 5: Te modal test: (a) the testing ground and (b) the test interface.

Table 1: Te comparison of frequencies between calculated and experimental modes.

Order Experimental modal values
(Hz)

Calculated
modal values (Hz) Relative error (%)

1st 679.97 660.07 −2.93
2nd 692.62 689.47 −0.45
3rd 714.57 702.14 −1.74
4th 749.30 723.69 −3.42
5th 851.29 827.08 −2.84

Input layer

Hidden layer

Output layer y2y1

H2 Hh

wji

wkj

Hh-1

ym-1 ym

xn-1 xn

H1

x2x1

Figure 6: Te schematic diagram of BP neural network topology
structure.
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surrogate model. By combining multiobjective EI criteria for
multiobjective optimization [35], the predicted values of
multiple surrogate models are used as objective vectors.
Although the distribution of predicted values of multiple
surrogate models may be uneven, the degree to which it
approximates the optimal predicted values of multiple
surrogate models is very high [36]. Te formula is expressed
as follows:

yi(x) � max1≤j≤m λj · fi(x)  + λmin 

m

j�1
λj · fi(x), (8)

where yi(x) represents the predicted value of the i-th ob-
jective function; m represents the number of surrogate
models; j represents the predicted value of the j-th surrogate
model at point x; and min is the minimum value of the
weight coefcient. Te BP neural network surrogate model
and the Kriging surrogate model selected in this article are
combined to predict the objective function value.Te weight
of each subsurrogate model in the mixed surrogate model
will be calculated according to the following equation:

λi �
E

−1
i


m
i�1E

−1
i

, (9)

where Ei is the approximate capability evaluation value of
the subagent model and we selected the root mean square
error (RMSE) as E.

3.2.OptimizationAlgorithm. To address the time-consuming
multiobjective optimization design problem and improve
the optimization efciency of the multiobjective EGO al-
gorithm, this article adopts the ATAESMO algorithm, whose
main process is shown in Figure 8.

First, we determine the objective function based on the
initial sample set. Ten, we establish BP neural network
surrogate models, Kriging surrogate models, and their
hybrid surrogate model to evaluate the accuracy of the
hybrid surrogate model of the two surrogate models.
Ten, based on the expected volume improvement for-
mula, the current optimal solution is obtained, and the
sampling points are updated to determine whether the
iteration stop criteria are met. If not, then the updated
sampling points will be added to the established surrogate
model [37, 38]. At present, the multiobjective improve-
ment function that has been extensively studied is the
hypervolume improvement function, and the single ob-
jective expected improvement (EI) criterion is extended to
the multiobjective EI criterion combined with surrogate
model methods to optimize multiobjective optimization
problems. Te multiobjective EI criterion is used to
measure the improvement value of the unknown point X
on the current nondominated frontier solution, expressed
by the following formula [39]:

Ih(X) � H(S∪X) − H(S), (10)

where S represents the current nondominated frontier and
H represents the hypervolume index of the nondominated
frontier. Te physical meaning of the hypervolume index is
the volume of a closed area composed of a nondominant
front and a reference point, which is defned as follows:

H(S) � volume y ∈ R丨S≺y≺r , (11)

where r is the reference point specifed by the user and must
be dominated by all nondominated frontier solutions. Te
formula for calculating the expected volume improvement is
as follows:

Network initialization

Forward propagation
calculation

Error calculation

Update of weights and thresholds
for output and hidden layers

Does the prediction
accuracy meet the

requirements?
End

YesNo
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Figure 7: Te BP neural network training process.
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S � 
u1

l1

· · · 
um

lm

I y1, · · · , ym , P(  · ϕ y1, · · · , ym ( dy1 · · · dym. (12)

We decompose formula (12) into three terms, namely,
Q1, Q2, and Q3:

Q1 � 
u1

l1

· · · 
um

lm



m

j�1
vj − yj  · ϕ y1, · · · , ym ( dy1 · · · dym

� 
m

j�1
Ψ vj, u1, μj, σj  − Ψ vj, lj, μj, σj  .

(13)

Te integration formula for the edge normal distribution
function is as follows:

Ψ(a, b, μ, σ) � σϕ
b − μ
σ

  +(a − μ)Φ
b − μ
σ

 . (14)

Terefore,

Q2 � 
u1

l1

· · · 
um

lm



m

j�1
vj − yj  · ϕ y1, · · · , ym ( dy1 · · · dym

� 
m

j�1
vj − uj  Φ

uj − μj

σj

  −Φ
lj − μj

σj

  ,

Q3 � 
u1

l1

· · · 
um

lm



m

j�1
Vol(S) · ϕ y1, · · · , ym ( dy1 · · · dym

� Vol(S) 
m

j�1
Φ

uj − μj

σj

  −Φ
lj − μj

σj

  .

(15)

3.3. Numerical Experiments. Before applying the above-
mentioned algorithms and hybrid surrogate models to the
research object of this article, we compare the ATAESMO

algorithm with the Tompson sampling efcient multi-
objective optimization (TSEMO) algorithm and the single
surrogate multiobjective optimization (SSMO) algorithm.

Initial sample set,
determination of objective function

Evaluate the accuracy of a hybrid
surrogate model for two surrogate

models

Obtain the current optimal solution based
on the expected volume improvement
formula and update the sample points

Meet the iteration
stop criteria?

Final design

Add updated sample points

Establishing a BP
neural network
surrogate model

Establishing a
Kriging surrogate

model

Yes
No

Figure 8: Te fow of the ATAESMO algorithm.
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Te TSEMO algorithm establishes a surrogate model based
on the Gaussian regression process spectral sampling
method and predicts optimization problems. Ten, the
NSGA-II algorithm is used to optimize the surrogate model
and obtain a set of candidate sample points. Tis algorithm
can maximize the optimization of hypervolume improve-
ment and select the next set of optimal solutions. Tis
process continues until the algorithm reaches the pre-
determined maximum number of samples/iterations. Te
SSMO algorithm usually only applies a single surrogate
model, and other optimization processes are consistent with
the ATAESMO algorithm.

Taking the test of a function with a target number of 2 as
an example, three benchmark test functions with relatively
good performances, ZDT1, ZDT2, and ZDT3, were selected
to test the optimization efciency of the ATAESMO algo-
rithm. Te dimensions of the three objective functions were
10, 6, and 10, respectively, all of which had strong non-
linearity, and the true nondominant solution of the selected
test function was known [40].

In order to compare the optimization efciency of op-
timization algorithms, reference [29] in this article selects the
hypervolume index and the inverted generational distance
(IGD) index to measure the fnal approximate nondominated
frontier solution. Assuming that the true nondominated
frontier of the problem is P, and the approximate non-
dominated frontier obtained by the multiobjective optimi-
zation algorithm is P, then the IGD calculation formula is

IGD �
p∈P∗d(p, P)

P
∗


, (16)

where d is the minimum value of all Euler distances from
point P to the nondominated approximation frontier point
P. Only when the approximate nondominated frontier is
very close to the real nondominated frontier and does not
miss any part of the real nondominated frontier solution, the
IGD index will be relatively small. Te larger the hyper-
volume index value that approximates the nondominant
front, the smaller the IGD index value, indicating a higher
quality. Table 2 presents the statistical values of the
hypervolume index and IGD index obtained by optimizing
and iterating the three test functions through three opti-
mization algorithms.

From Table 2, it can be seen that for the IGD index, the
ATAESMO optimization method has the smallest mean and
square diference values among the three algorithms, in-
dicating that the ATAESMO algorithm fnds the best ap-
proximate nondominated frontier solution. For the
hypervolume index, the mean and square diference are the
smallest, and it can also obtain the approximate non-
dominated frontier solution with the best accuracy since it
has been obtained before. Terefore, as shown in Figure 9,
the ATAESMO algorithm is already in approximate com-
plete convergence and has good optimization performance
in handling multiobjective optimization problems.

4. Optimization Process and Result Analysis

4.1. Optimization Process

4.1.1. Mathematical Model. During the fring process, the
movement of the mortar is roughly divided into the ac-
celeration recoil phase, deceleration recoil phase, and re-
entry phase. To ensure the shooting accuracy of mortars, it is
required that the muzzle vibration state, namely, the lateral
displacement, longitudinal displacement, lateral angular
displacement, and longitudinal angular displacement of the
reference point at the muzzle center, remains within a small
range. Tis is a typical multiobjective optimization problem,
whose mathematical model established for the optimization
problem of composite material seat plates under multiple
working conditions and multiobjective conditions can be
described as

miny � f(x) � f1(x), f2(x) ,

x � t1, t2, t3 
T
, t

l
i ≤ ti ≤ t

u
i , i � 1, 2, 3

Smax′ ≤ Smax, R> 1,

(17)

where, t1, t2, and t3 correspond to the composite material
layer thickness of the main plate, conical basin, and back
plate, respectively, and tl

i and tu
i represent the upper and

lower limits of the constrained design variables, taking 5mm
and 20mm, respectively. Due to the main focus being on the
contradiction between seat plate mobility and shooting
stability, f1(x) andf2(x), respectively, represent the efects
of corresponding mass and muzzle vibration of the seat
plate. Smax′ represents the maximum stress value of the
composite material seat plate based on multiobjective op-
timization under multiple working conditions. Smax repre-
sents the maximum stress value of the titanium alloy seat
plate, with a calculated value of 446MPa, which represents
the strength ratio of composite laminates expressed as

R �
σmax,i

σi

, (18)

where σmax,i(i � 1, 2, 3) represents the intensity vector and
σi represents the applied stress vector.

Te aggregation of shooting stability targets is repre-
sented as follows:

f x2(  �

��������

U
2
x + U

2
z

U
2
x0 + U

2
z0




+

��������

θ2x + θ2z
θ2x0 + θ2z0




, (19)

where Ux represents the lateral displacement of the muzzle,
θx represents the lateral angular displacement, Uz represents
the longitudinal displacement, θz represents the longitudinal
angular displacement, and 0 represents the initial value.

Taking a typical medium hard soil working condition as
an example, the characteristic parameters of the calculation
are listed in Table 3.
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Table 2: Te comparison of hypervolume index and IGD index for test functions.

Test function Algorithm
IGD Hypervolume

Mean value Square diference Mean value Square diference

ZDT1
TSEMO 0.0112 0.0125 0.0001 0
SSMO 2.0709 0.3521 0.0113 0.0003

ATAESMO 0.0063 0.0032 0.0001 0.0001

ZDT2
TSEMO 0.0002 0.0001 0.0007 0.0016
SSMO 1.7108 0.3896 0.0142 0.0027

ATAESMO 0.003 0.0013 0.0006 0.0001

ZDT3
TSEMO 0.0191 0.0102 0.0005 0.0005
SSMO 1.7288 0.3601 0.0126 0.001

ATAESMO 0.0073 0.0033 0.0002 0.0001

True value
TSEMO

SSMO
ATAESMO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

f 2 
(x

)

0.70.6 1.10.90.4 0.8–0.1 1.00.0 0.50.1 0.30.2
f1 (x)

(a)
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TSEMO

SSMO
ATAESMO
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3.5

4.0

4.5

f 2 
(x

)

0.70.6 1.10.90.4 0.8–0.1 1.00.0 0.50.1 0.30.2
f1 (x)

(b)
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SSMO
ATAESMO
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2.0
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3.0

3.5

4.0

f 2 
(x

)

1.10.80.7 1.00.4 0.90.60.0–0.1 0.50.1 0.30.2
f1 (x)

(c)

Figure 9: Te approximate and true nondominated frontier solutions of the three algorithms: (a) test function is ZDT1, (b) test function is
ZDT2, and (c) test function is ZDT3.
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4.1.2. Optimization Processes. Te optimization process is
shown in Figure 10. First, we construct a training sample
database. Using the optimal Latin hypercube method for
experimental design, in addition to the selected three design
variables, three operating conditions are needed to be added
as variables to the experimental factors. Terefore, during
the experimental design, there were a total of 4 factors,
including 3 quantitative factors and 1 qualitative factor. 80
sets of training samples were output and substituted into the
fnite element model of the composite material seat plate full
gun for calculation, resulting in the values of each objective.

Second, a hybrid surrogate model is constructed by
integrating the BP neural network surrogate model and the
Kriging surrogate model. Te accuracy of each surrogate
model is evaluated, and the fnal objective function surrogate
model is obtained through the Chebyshev combination
method for model validation and credibility evaluation.

Ten, the ATAESMO multiobjective optimization al-
gorithm is used to solve the optimization problem. We
calculate the dynamic response of the optimization solution
and determine whether the optimization converges. If it does
not converge, then we add the current optimal solution as
a new sample point to the sample database, add the updated
sample points, and solve the optimization problem again
until convergence.

Finally, considering the material characteristics of
composite laminates, we determine whether they have failed.
If the composite laminates fail, then the optimization cal-
culation will be performed again. If the composite laminates
do not fail, then the optimization will be completed.

4.2. Quality of Seat Plate. After iterative calculation, the
Pareto optimal solution set obtained is shown in Figure 11.
From the Pareto solution set, it can be seen that the smaller
the mass of the seat plate, the greater the muzzle disturbance.
We then analyze the optimization objectives and select the
design variables corresponding to the optimal solution.

Te comparison of relevant numerical values before and
after the optimization of composite materials in the main plate,
conical basin, and back plate regions is shown in Table 4.

After optimization, the composite layer thickness of the
main plate and conical basin decreased, while the composite
layer thickness of the back plate increased. Tis is because
the main plate does not directly bear the impact load, and
although the conical basin is connected to the socket, the
main force is still borne by the titanium alloy skeleton of the
socket and composite material. Terefore, the stress on the
composite material in the main plate and conical basin is
relatively small. Te back of the seat plate interacts with the
soil, and the composite material in the back plate has
a relatively large area, resulting in a relatively large overall
stress. Overall, the optimization results of composite ma-
terial layer thickness are basically consistent with the stress
situation of the mortar seat plate. After design optimization,

the mass of the composite material seat plate is 55.76 kg,
which is 18.43% less than the 68.36 kg titanium alloy seat
plate. Te lightweight design efect is obvious.

4.3. Stress and Deformation of Seat Plate. We set the fring
direction angle of themortar to 0° and the fring height angle to
85°, calculate the dynamic response of the optimized composite
material seat plate, and compare the maximum stress and
maximum deformation of the titanium alloy seat plate under
the same working conditions with the obtained stress and
deformation nephogram, as shown in Figures 12 and 13.

As can be seen from the fgure, the force transmission
path of the composite material seat plate is clearly displayed,
and the use of a layer dropping sequence layer layingmethod
can efectively handle the transition area of the curved
surface. Te stress in the central area of the composite
material seat plate is relatively dispersed, with few stress
concentration points, and mainly exists at the connection
between the titanium alloy skeleton of themain plate and the
composite laminated plate. Te maximum deformation of
the composite material seat plate mainly occurs in the area of
the composite material in the mortar and conical basin,
indicating that strong impact loads have a signifcant impact
on the deformation of the center and surrounding areas of
the composite material seat plate and have high re-
quirements for the connection between the titanium alloy
skeleton and the composite material layer in the composite
material seat plate.

Comparing the stress and deformation of the two seat
plates, it can be seen that the maximum stress of the
composite material seat plate increases by about 5.6%
compared to the maximum stress of the titanium alloy seat
plate, while the maximum deformation decreases by about
5.9%. Tis indicates that as the material decreases, the
structural strength will indeed be afected, but within the
design range and compared to the benefts of weight re-
duction, it is acceptable. Moreover, the areas with signifcant
stress and deformation in the composite material seat plate
are mainly concentrated near the anchorage, while the forces
in other areas are more uniform than those in the titanium
alloy seat plate, providing a good research foundation for
further optimization of the structure.

4.4. Gun Mouth Vibration. To test the fring stability of
mortars using composite material seat plates, the muzzle
vibration of composite material seat plates and titanium
alloy seat plates was calculated under the same working
conditions. Ux, Uz, θx, and θz are shown in Figure 14.

Te moment when the projectile exits the muzzle
corresponds to the abscissa of 8.3ms, marked with a ver-
tical dashed line in the fgure. Te variation is measured by
the diference between the corresponding distance between

Table 3: Te parameters of soil working conditions.

Elastic modulus (MPa) Poisson’s ratio Density (kg/m3) Friction angle (°) Yield stress ratio
100 0.29 2000 8.0 0.9
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the composite material seat plate and the titanium alloy seat
plate from the center position (the muzzle does not vi-
brate). It can be seen that the variation trend of the muzzle
vibration of the two types of seat plates has good consis-
tency, and their variation patterns are relatively similar.Te
diference in the vibration amount when exiting the muzzle
is controlled within a small range. Tis indicates that

although the composite material seat plate reduces weight,
it does not signifcantly increase the vibration of the mortar
muzzle. Optimization research on the composite material
seat plate is benefcial for reducing the muzzle vibration
under comprehensive working conditions, creating fa-
vorable conditions for improving the accuracy level of
mortar fring.

Is the composite
laminates failed?

Experimental design based on Latin
hypercube design

Call the dynamic model and calculate the
dynamic response

Data normalization processing
Build an approximate

surrogate model based on
BP neural network method

Is the model
trustworthy?

Optimized hybrid
surrogate model

Multi objective optimization
calculation to obtain

comprehensive optimal solution

Calculate the dynamic response
of the optimized solutionConvergence?

Use the current optimal solution as a
new sample point

End

Building a
training sample

database

Verify optimization solution
Yes

No

Yes

No

Yes

No

Start

Initial sample set

Evaluate the accuracy of
each surrogate model

Get the final objective function
surrogate model through

Chebyshev combination method

Calculate the uncertainty of the
surrogate model

Figure 10: Te optimization process.
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Figure 11: Set of Pareto solution.
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Table 4: Te comparison of numerical values before and after optimization.

Region Main plate Conical basin Back plate
Before optimization (mm) 7.0 7.0 7.0
After optimization (mm) 6.5 6.4 9.3

S, Mises
SNEG, (fraction = -1.0)
(Avg: 75%)

+3.405e+02
+3.121e+02
+2.837e+02
+2.554e+02
+2.270e+02
+1.986e+02
+1.702e+02
+1.419e+02
+1.135e+02
+8.512e+01
+5.675e+01
+2.837e+01
+3.815e-06

(a)

(Avg: 75%)

S, Mises
SNEG, (fraction = -1.0)

+3.223e+02
+2.954e+02
+2.686e+02
+2.417e+02
+2.149e+02
+1.881e+02
+1.612e+02
+1.344e+02
+1.075e+02
+8.071e+01
+5.387e+01
+2.703e+01
+1.924e-01

(b)

Figure 12: Te comparison of stress nephogram: (a) the optimized composite material seat plate and (b) the titanium alloy seat plate.

U, Magnitude
+4.022e+00
+3.821e+00
+3.620e+00
+3.419e+00
+3.218e+00
+3.017e+00
+2.816e+00
+2.615e+00
+2.414e+00
+2.213e+00
+2.012e+00
+1.811e+00
+1.610e+00

(a)

U, Magnitude
+4.271e+00
+4.136e+00
+4.002e+00
+3.868e+00
+3.734e+00
+3.599e+00
+3.465e+00
+3.331e+00
+3.196e+00
+3.062e+00
+2.928e+00
+2.793e+00
+2.659e+00

(b)

Figure 13:Te comparison of deformation nephogram: (a) the optimized composite material seat plate and (b) the titanium alloy seat plate.
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Figure 14: Continued.
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5. Conclusion

Mortars, due to their unique operational advantages, will
still play a signifcant role in future wars. In order to achieve
the lightweight design goal of mortars, a composite material
was used to optimize the structure of the seat plate, which
accounts for a large proportion of mortars. Te main
conclusions of this study are as follows: [41].

(1) Te use of a fber continuity model based on dropout
sequence can help solve the problems in the inherent
continuity class design method of composite lami-
nates, improve the manufacturability of multiregion
composite laminates, reduce stress concentration in
the structure, and improve the design efect of
laminates.

(2) Establishing an accurate fnite element model of
composite material seat plates is a prerequisite for
research. Modal experiments are conducted by
simulating free boundaries through suspension, and
the PolyLSCF modal identifcation method is used to
perform frequency domain ftting analysis on the
data. Under SUM function identifcation, various
modal parameters are obtained. Comparing the
experimental mode with the calculated mode can
help verify the accuracy of the fnite element model.

(3) Adopting a hybrid surrogate model method based on
the Chebyshev combination pattern can not only
save computational costs but also take into account
the predictive characteristics of multiple surrogate
models, improving the computational accuracy of
the model. By comparing and optimizing the quality,
stress, deformation, and shooting stability of the
front and rear seat plates, the research results show
that this method is feasible and can help achieve the
best match between the maneuverability and
structural performance of the seat plates. It has
a signifcant reference value for multiobjective

optimization and lightweight design of mortar seat
plates.
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