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To solve the wave propagation problems of the Euler–Bernoulli beam in an unbounded domain efectively and efciently, a new
local artifcial boundary condition technology is proposed. It replaces the residual right-hand side of the truncated discrete
equation with an equivalent linear algebraic system. First, the equivalent Schrodinger equation is discussed. Its artifcial boundary
condition is obtained by frst rationalizing the Dirichlet-to-Neumann condition in the frequency domain with a Pade ap-
proximation and then inverse transforming each Pade term back into the time domain by introducing auxiliary degrees of
freedom. Frequency shifting is employed such that it performs better near a prescribed frequency. Ten, the artifcial boundary
condition of the fnite element Euler–Bernoulli beam is obtained by simple algebraic manipulations on that of the corresponding
Schrodinger equation. Tis method only makes local changes to the original truncated discrete dynamic system and thus is very
efcient and easy to use. Te accuracy of the proposed method can be improved by using more Pade terms and a proper shift
frequency. Te numerical example shows, with only a few additional degrees of freedom, the proposed artifcial boundary
condition efectively eliminates the spurious refection.Te idea of the proposed method can also be used in other dispersive wave
systems.

1. Introduction

To numerically solve partial diferential equations in an
infnitely large domain, it is common to truncate the domain
and introduce the artifcial boundary conditions (ABC) at
the truncation boundaries.Tere are rather extensive studies
on ABCs for PDEs such as the heat equation [1, 2], classical
Schrodinger equation [2–5], wave equation [6–9], and
Klein–Gordon equation [10–13]. Generally speaking, when
dealing with Cauchy problems of partial diferential equa-
tions, the exact ABCs are nonlocal in time, involving
temporal convolutions in their formulations. Te convo-
lutions often require a signifcant amount of computational
resources in application. Tus, modifcation schemes were
proposed to accelerate the convolution computation, and
many of them involve expressing the kernel as the sum of

exponential functions [14–17]. On the other hand, the ap-
proximate local ABCs are more efcient. Typical local ABC
techniques include Higdon-like condition [7, 12], perfectly
matched layer (PML) [6, 11], viscoelastic boundary [8, 9, 18],
and matching boundary condition [19–21]. In general, the
local ABCs are less accurate, and/or they include empirical
parameters.

Besides widely discussed second-order systems, higher
order systems were also discussed. In this study, we focus on
the fexible wave propagation on an infnitely long
Euler–Bernoulli beam, which is meaningful in multiscale
computation and civil engineering [22–24]. Tang proposed
an accurate ABC for the semidiscrete Euler beam system,
which expresses the defection at the truncated boundary as
the time convolution of its neighboring nodes’ defection
[25], i.e.,
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uN � θ ∗ uN−1 + η∗ uN−2,

uN−1 � θ ∗ uN−2 + η∗ uN−3.
􏼨 (1)

Tis method is time consuming due to the convolution
operation. Feng proposed a matching boundary condition
(MBC) by looking for an approximate linear relation among
the m+ 1 nodes near the truncated boundary [19]:

􏽘
m

j�0
ajztuN−j + 􏽘

m

j�0
bjuN−j � 0,

􏽘

m+1

j�1
ajztuN−j + 􏽘

m+1

j�1
bjuN−j � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

which is local in space and time and thus very efcient but
less accurate. Based on Tang’s work [25], Zheng expressed
the convolution kernel in equation (1) as the summation of
exponentials, i.e.,

θ(t) � 􏽘
∞

j�0
aj exp bjt􏼐 􏼑, (3)

where aj, bj are constant coefcients and thus simplify the
computation by using the recursive relation of the discrete
convolution of exponential function [26]. Te method is
accurate and efcient, but its implementation is tedious.

On the other hand, to the knowledge of the authors, the
previous ABCs for beams consider the fnite diference
method (FDM) only. Te ABC for the widely used fnite
element method (FEM) beam model is seldom discussed.
Te biggest diference between FEM and FDM beams is that
the former involves rotational degrees of freedom (DOF)
(e.g., [27, 28]). In this work, we propose a new ABC for FEM
Euler–Bernoulli beam, which is local, efcient, accurate, and
easy to implement. It is not a variant of existing ABCs in the
literature such as [19, 25, 26]. Te idea is to attach a carefully
designed mass-damper super element to the truncation end,
and ensuring it recovers the dynamics response of the re-
moved half infnite segment. A similar idea can be found in
literature [8, 9], in which the continued fraction technique is
employed to recover the dynamic response of a half infnitely
long waveguide. Te diference is that, in [8, 9], the auxiliary
DOFs are connected in series, but in this study, they are
connected in parallel.

Te rest of the paper is organized as follows: For sim-
plicity, we frst propose an ABC for the equivalent Schro-
dinger equation and discussed its performance in Section 2.
Ten, the ABC for the fnite element beam is derived by the
transform of the Schrodinger equation in Section 3. In

Section 4, a numerical example is given to test its perfor-
mance. Finally, there is a conclusion in Section 5.

2. ABC for Schrodinger Equation

2.1. FDM Discretization. Te normalized Euler–Bernoulli
equation in an unbounded domain can be written as

zxxxxu(x, t) + zttu(x, t) � q(x, t), −∞<x<∞,

u(x, 0) � φ0(x),

_u(x, 0) � φ1(x),

⎧⎪⎪⎨

⎪⎪⎩
(4)

where φ0(x), φ1(x) are the initial defection and initial
velocity, respectively, and q(x, t) is the distributed trans-
versal force per length. In this study, we always assume
φ0(x),φ1(x) and q(x, t) are compactly supported in the
spatial domain.

It is well-known that the Euler–Bernoulli equation is
closely related to the Schrodinger equation (25):

zxxu(x, t) + iztu(x, t) � p(x, t), −∞<x<∞,

u(x, 0) � φ0(x) + iϕ(x).
􏼨 (5)

In fact, the Schrodinger equation (5) is related to the
Euler–Bernoulli system equation (4) in the real domain.
Here, the source terms and the initial values of the two
equations should satisfy

zxxp(x, t) � q(x, t),

zxxϕ(x) � −φ1(x).
􏼨 (6)

If φ1(x) and q(x, t) are compactly supported, then by
employing proper integral constants in equation (6),
p(x, t),ϕ(x) are also compactly supported.

Tus, theoretically, the wave propagation can be simu-
lated by solving equation (5) rather than equation (4). In this
study, we frst derive the ABC of equation (5) and then that
of equation (4) by using some simple algebraic
transformation.

To numerically solve equation (5), the unbounded do-
main is truncated. Te bounded computation zone should
cover the support domains of φ0(x),φ1(x), and q(x, t).
Without loss of generality, only the treatment of the upper
boundary is considered. Although it is possible to build the
proposed ABC for the continuous equation (5), here we
consider the semidiscrete form such that we can see its
numerical implementation more clearly. By using a uniform
mesh size h, the last few rows/columns of the central dif-
ference approximation of truncated equation (5) can be
expressed as
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, (7)

where N is the last preserved node, which is assumed far
away from the supported domains of φ0(x),φ1(x) and
q(x, t). It can be seen equation (7) is not closed because the
right-hand side contains an unknown component
(uN+1 − uN)/h2 + iztuN/2.Tis entry refects the efect of the
removed part in the form of an additional source term. To
close equation (7), we still need a proper DtN condition that
represents the spatial diference zxuN as a function of uN.

2.2. Pade Approximation and New ABC. In the frequency
domain, it is not difcult to fnd such a DtN condition. By
considering the monochromatic right-going incident wave
u(x, t) � u∗ exp(ikx − iωt), where u∗ is the complex am-
plitude, one obtains

uN+1 − uN( 􏼁

h
2 +

iztuN

2
≈

zxuN

h
+

zxxuN

2
+

iztuN

2
􏼠 􏼡 �

i
��
ω

√

h
uN,

(8)

in which k is the wavenumber and ω is the angular fre-
quency. Te analytical dispersion relation of the
Euler–Bernoulli system ω � k2 has been used to get equation
(8). Te literature recommend that the dispersion relation
should be modifed for semidiscretized systems [19], i.e.,

ω � 4 sin2(kh/2)/h2. But that will make the following
progress more difcult.

To implement equation (8) in the time domain, we
rationalize it by employing the following Pade approxi-
mation [16]:

����
1 + s

√
≈ 1 + 􏽘

M

j�1

ajs

1 + bjs
,

in which

aj �
2

(2M + 1)
sin2

jπ
2M + 1

􏼒 􏼓,

bj � cos2
jπ

2M + 1
􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Here,M is the number of the Pade approximation terms,
and the right-hand side converges to the left when M ap-
proaches infnity. By letting s � ω/ω0 − 1 in equation (9), we
can express equation (8) as

zxuN

h
�

i
���ω0

√

h

���ω
ω0

􏽲

uN ≈
1
h

􏽘

M

j�0
fjuN, (10)
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f0 � i
���
ω0

√ 1
(2M + 1)

,
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���
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√ 2ω
(2M + 1) ω0 sin

2
(jπ/2M + 1) + ω cos2(jπ/2M + 1)􏼐 􏼑

, j> 0.
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(11)

Figure 1 demonstrates how the approximation performs
with diferent M and ω0. It can be seen that with a small M,
the approximation works good near ω � ω0. Tus, one can
choose a proper constant ω0 according to the frequency
spectrum of a specifed problem.

Now, we treat each term of the right-hand side of
equation (10) separately.Te f0 term does not contain ω and
thus can be transformed back into the time domain easily. As
for the fj(j> 0) term, we introduce an auxiliary variable vj

such that

fjuN

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

kj −kj

−kj kj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

uN
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⎤⎥⎥⎥⎥⎥⎦ −

0 0
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⎤⎥⎥⎥⎥⎥⎦

iωuN

iωvj
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⎤⎥⎥⎥⎥⎥⎦,
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2i

���ω0
√
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,
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���ω0
√
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(12)
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It is easy to verify that equation (12) equals to equation
(11) by eliminating vj in equation (12). Obviously, the time
domain form of equation (12) is

fjuN

0
􏼢 􏼣 �

kj −kj

−kj kj

⎡⎣ ⎤⎦
uN

vj

⎡⎣ ⎤⎦ +
0 0

0 cj

⎡⎣ ⎤⎦zt

uN

vj

⎡⎣ ⎤⎦. (13)

By replacing equation (11) with equation (13) in equa-
tion (10) and substituting the result into equation (7), one
can have the fnal dynamic equation with ABC implemented.

Te auxiliary DOF vj is introduced as additional unknowns
of the equation. From the second equation of equation (12),
we can see the additional DOFs are oscillating rather than
divergent for a given monochromatic incident wave.

As an example, the last few rows/columns of the fnal
algebraic equation for M � 2 are given as follows:
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Figure 1: Pade approximation of
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ω

√
by using (a) ω0 � 5; (b) ω0 � 10.
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Note that in the last few rows of equation (14) the source
term is zero, because we assumed node N is far away from
the support domain of q(x, t). But the right-hand side can be
nonzero in other rows if q(x, t) exists.

It can be seen the ABC implementation equals to par-
allelly attaching several algebraic systems to the last node of
the truncated system. Tis kind of matrix manipulation is
quite common in numerical methods and thus can be easily
implemented. Finally, equation (14) can be solved by using
the central fnite diference method in the time domain.

2.3. Refection Coefcient Analysis. For an ideal ABC, no
refection should occur at the truncation boundary.Tus, the
ratio between the artifcial refection wave amplitude and
incident wave amplitude can be used to assess the perfor-
mance of an ABC. After going through the proposed
method, it can be seen there are two error sources whichmay
cause artifcial refection for the proposed ABC. One is the
discretization error (equation (8)), which decreases with
decreasing mesh size and is not discussed here. Te other is

the Pade approximation (equation (10)), whose error esti-
mation is given by [16]:

EM(ω) �
i

��
ω

√

h
−
1
h

􏽘

M

j�0
fj �

i

h

2
��
ω

√
c
2M+1

1 + c
2M+1 ,

in which c �

����
ω/ω0

􏽰
− 1

����
ω/ω0

􏽰
+ 1

.

(15)

Obviously, it approaches zero when M approaches in-
fnity for any ω≥ 0 and vanishes automatically at ω � ω0.

Let the superposition of the incident and refection waves
near the ABC be

u(x, t) � u
∗ exp(i(kx − ωt)) + Ru∗ exp(i(−kx − ωt)),

(16)

where the absolute value of R is known as the refection
coefcient. By substituting equation (16) into equation (10),
one obtains that

ik exp(ikx) − ikR exp(−ikx) � 􏽘
M

j�0
fj exp(ikx) + 􏽘

M

j�0
fjR exp(ikx). (17)

Substituting the dispersion relation and equation (15)
into equation (17), it follows that

|R| �
EM

(2i
��
ω

√
/h) − EM

� c
2M+1

. (18)

It can be seen the refection coefcient approaches zero
when M increases for ω> 0. Besides, it converges fast near
ω � ω0 because c vanishes there.

Figure 2 depicts the refection coefcient. It shows that
for frequencies near ω � ω0, |R| is rather small even though
a small M is used. Te coefcient by matching boundary
condition (MBC) [19] is also shown for comparison. It can
be seen that by introducing the same number of additional
DOFs, the proposed method is more favorable when a single
wide frequency band is of interest, while the MBC performs
better for multiple narrow frequency bands. However, the
conclusion assumes that h is adequately small. If the step size

h gets larger, theMBCmay perform better because it is based
on the semidiscrete beam model.

3. ABC for FEM Euler Beams

3.1. FEM Discretization. As discussed before, the wave
propagation on an infnitely long Euler beam can be
simulated by solving the Schrodinger equation (5) with
FDM. A complex value sparse matrix solver is necessary
for this purpose. However, in mechanics, we prefer to
solve the problem by FEM with a real-value solver. Based
on previous discussions, here we consider the ABC of
FEM beam which contains both transversal and rotational
DOFs. When employing the classic 2-node Hermite beam
element and the consistent mass matrix, the element
equation of equilibrium for problem equation (4) is as
follows [27, 28]:
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. (19)

Here, θ, F, m are the slope angle, the transversal force,
and the concentrated couple, respectively. Te sign con-
ventions of the variables are shown in Figure 3.

After assembling equation (19) for the truncated Euler
beam, the last few rows/columns of the total equation are
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0
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mN
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Figure 2: Artifcial refection coefcient by using ω0 � 100(k0 � 10).
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Physically, FN, mN on the right-hand side are the time-
dependent force and the moment applied on the truncated
beam by the removed part.

3.2.ABCTransformation. Similar to the previous discussion,
the point is to fnd the relation between the additional source
terms FN, mN and DOFs on boundary uN, θN. Recalling that
the real part of the solution to the Schrodinger equation (5)
is related to the Euler–Bernoulli system equation (4), this can
be done by separating the real and imaginary parts of
equation (13). Noticing in equation (12) kj is pure imaginary,
it follows that

fjuN,re

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � i

kj −kj

−kj kj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

uN,im

vj,im

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ +

0 0

0 cj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦zt

uN,re

vj,re

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (21)

fjuN,im

0
􏼢 􏼣 �

1
i

kj −kj

−kj kj

􏼢 􏼣
uN,re

vj,re
􏼢 􏼣 +

0 0
0 cj

􏼢 􏼣zt

uN,im

vj,im
􏼢 􏼣. (22)

Here, the subscript re/im denotes the real or imaginary
part. From equation (5) and the mechanics of material, we
have

ztuN,im � zxxuN,re � mN,

zxtuN,im � zxxxuN,re � −FN.
(23)

By taking time derivative of equation (21) and
substituting equation (23), it follows that

fjztuN,re

0
􏼢 􏼣 � i

kj −kj

−kj kj

⎡⎣ ⎤⎦
mN

ztvj,im

⎡⎣ ⎤⎦ +
0 0

0 cj

⎡⎣ ⎤⎦ztt

uN,re

vj,re

⎡⎣ ⎤⎦, j � 1, 2, · · · , M,

in which 􏽘
M

j�0
fjztuN,re � zxtuN,re � ztθN,re.

(24)

Equation (24) gives the relation betweenmN and θN,re. In
the same way, the time derivative of equation (22) can be
written as

fjztuN,im

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

1
i

kj −kj

−kj kj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ zt

uN,re

vj,re

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ +

0 0

0 cj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ ztt

uN,im

vj,im

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, j � 1, 2, · · · M,

in which 􏽘
M

j�0
fjztuN,im � zxtuN,im � −FN.

(25)
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u = 0

Figure 3: Sign conventions of the beam element variables.
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Equation (25) gives the relation between FN and uN,re.
It can be seen there are totally 4M+ 2 equations in

equations (24) and (25) and (4M) + 4 variables, i.e., 2M
auxiliary variables (vj,re, vj,im), 2M intermediate variables
(fjztuN,re, fjztuN,im), and 4 variables which already exist in
Eq (20) (uN,re, θN,re, FN, mN). Note that uN,im at the right-

hand side of (25) has no contribution to the equation and
thus does not count. Tus, with the help of (24) and (25),
equation (20) is closed by introducing 2M additional vari-
ables (vj,re, vj,im, j � 1, 2..., M). As an example, the matrix
form of equations (24) and (25) forM� 2 is given as follows:

FN

mN

0

0

0

0
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�

−5 ���ω0
√ 0 0.61 ���ω0

√ 4.19 ���ω0
√ 0 0

0 −
5
���ω0

√ 0 0 0 0

0.61 ���ω0
√ 0 −0.61 ���ω0

√ 0 0 0

4.19 ���ω0
√ 0 0 −4.19 ���ω0

√ 0 0

0 −
5
���ω0

√ 0 0 −1 0

0 −
5
���ω0

√ 0 0 0 −1
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zt

uN

θN

v1,re

v2,re

v1,im

v2,im
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+

0 0 0 0 0 0

0 0 −
5.79
ω0

−
2.21
ω0

0 0

0 0 0 0
1.16

���ω0
√ 0

0 0 0 0 0
0.44

���ω0
√

0 0 −
7.68
ω0

−
2.21
ω0

0 0

0 0 −
5.79
ω0

−
2.32
ω0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ztt

uN

θN

v1,re

v2,re

v1,im

v2,im
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.

(26)

It can be easily assembled into the total equation of
equilibrium Eq. (20) by considering the matrices as the
damper/mass matrices of a supper element which attached
to the last node of the truncated FEM beam. All entries of the
matrices are real, and thus, a real-value solver can be used for
computation.

3.3. Dispersion Relation. Although the previous discussion
about the ABC does not really involve the mass matrix, here
for simulating the wave propagation on unbounded FEM
Euler beams, we recommend consistent mass matrix rather
than lumped mass matrix, because the former leads to
a more accurate dispersion relation.
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By assembling equations (19) of two successive beam
elements which have no external loads, one obtains
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h
2 0 0
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h
2
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h

−
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h
2
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0 0

−
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6
h
2

24
h
3 0 −

12
h
3

6
h
2

6
h
2

2
h

0
8
h

−
6
h
2

2
h

0 0 −
12
h
3 −

6
h
2
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3 −
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0 0
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2

2
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−
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h
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(27)

Te third and fourth equations in equation (27) are

13h
5

zttθn−1 − zttθn+1( 􏼁 + 54h
4

zttun−1 + zttun+1( 􏼁 + 312h
4
zttun

+ 2520h un+1 − un−1( 􏼁 − 5040 un−1 − 2un + un+1( 􏼁 � 0

− 3h
5

zttθn−1 + zttθn+1( 􏼁 + 8h
5
zttθn + 13h

4
zttun+1 − zttun−1( 􏼁

+ 840h θn−1 + θn+1 + 4θn( 􏼁 + 2520 un−1 − un+1( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

Te frst equation in equation (28) represents the shear
force equilibrium, and the second represents the bending
moment equilibrium. Unlike in FDM, each of the equations
in equation (28) will give an independent dispersion re-
lation, i.e.,

ω� ±
1
h
2
6

��
70

√ ����������������������
2 − 2 cos(kh) − kh sin(kh)

􏽰

��������������������������
156 + 54 cos(kh) + 13kh sin(kh)

􏽰 ,

ω� ±
1
h
2
2

���
210

√ �������������������������
(3 sin(kh) − kh(2 + cos(kh)))

􏽰

����������������������������
−13 sin(kh) + kh(−4 + 3 cos(kh))

􏽰 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

However, the two relations are compatible in an ap-
proximate manner. Te frst few terms of the Taylor series of
equation (29) near kh⟶ 0 are

ω� ±
1
h
2 (kh)

2
+

(kh)
6

1440
+ O (kh)

8
􏼐 􏼑􏼠 􏼡,

ω� ±
1
h
2 (kh)

2
+
11(kh)

6

10080
+ O (kh)

8
􏼐 􏼑􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(30)

It can be seen the error between the relation in equation
(30) and the analytical one (ω � k2) is O((kh)6), which is
good enough. Te lumped mass matrix will lead to a less
accurate relation. On the other hand, for the discrete
Schrodinger equation (7) and the FDM beam [19], the
diference between resulted dispersion relation
ω � 4 sin2(kh/2)/h2 and the analytical one is only O((kh)4).
As a result, the group velocity of the wave on the FEM beam
is closer to that of the analytical beam, and it is larger than
that of the FDM model/Schrodinger model.
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4. Numerical Example

To validate the proposed method, we consider the example
from Feng, 2021 [19].

Example 1. In equation (4), let the source term be
q(x, t) ≡ 0 and the initial values be

φ0(x) �

cos 12x

2
cos

πx

5
+ 1􏼒 􏼓, |x|≤ 5,

0, |x|> 5,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

φ1(x) � 0, −∞< x< +∞.

(31)

Te computation time domain is from 0 to 1.5.

Two proposed methods, i.e., the equivalent Schrodinger
equation way and the FEM way, are employed to save the
problem, with M � 3,

���ω0
√

� 10. Te ratio between the time
step and mesh size is fxed, i.e., τ � h/500 throughout the
example. First, we use the same setup as in literature [19], i.e.,
mesh size h � 0.05 and truncation boundary |x| � 20. Te
Newmark method (see e.g., [27, 28]) is employed for time
integration. Te MBC5 result from [19] and the fast con-
volution result from [26] are given for comparison.

Two reference solutions are also obtained by FDM.
Reference solution A employs a much larger domain but the
same step size (|x|< 500, h� 1/20) such that no wave reaches
the boundary, while reference solution B further employs
a smaller step size (|x|< 500, h� 1/320) and a higher internal
precision. Obviously, reference B is more convincing than
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Figure 4: Defection solutions of Example 1 at (a) t� 0.5; (b) t� 1.0; (c) t� 1.5.
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reference A, because it not only eliminates the boundary
efect as reference A does but also reduces the mesh size
efect.

Te solutions at diferent time points are shown in
Figure 4. From Figure 4(a), it can be seen the solutions fall
into two groups. Te waves of the FEM model and reference
B are similar, and they go faster than those of the other four
FDM models. Te MBC5 solution, the fast convolution
solution, and the Schrodinger solution are close to reference
A. As discussed before, this is because the FEM model has
a more accurate dispersion relation than FDM models and
thus a more accurate wave velocity when using the same step
size. Te same can be seen in Figure 4(b), except that the
Schrodinger model falls even behind.

In Figure 4(c), when the wave should have almost left the
computation domain, the wave amplitudes given by refer-
ence A, reference B, the fast convolution method, and the
FEM model are extremely small. Tis shows the FEM model
efectively suppresses the boundary refection, even though
only a few additional DOFs are introduced (M� 3). In this
example, the FEM model performs no worse than the fast
convolution method, but it is more efcient because the
latter uses a global ABC. However, for the same M, the
Schrodinger model leads to a signifcant artifcial refection.
Te MBC5 model performs better than the Schrodinger
model but worse than the others.

It is interesting that the FEM model performs much
better than the Schrodinger model for this example,
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Figure 5: Defection solutions of Example 1 by the Schrodinger model with (a) M� 3; (b) M� 30.
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Figure 6: L2-error of the solutions versus mesh size.
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considering the former ABC is derived from that of the
latter.Te reason is that they are both based on the analytical
dispersion relation (see equation (8)), and the FEMmodel is
more honest to the relation (see equation (30)). Since the
dispersion relation is accurate only when kh is infnitesimal,
to improve the performance of the Schrodinger model, one
should use a smaller h.

DiferentM and h are thus employed for the Schrodinger
model, and the solutions at t� 1.5 are given in Figure 5. It
can be seen that the result gradually converges to reference
B.With a smaller h, the left-going refection wave goes faster,
and its amplitude is smaller. But a greater M does not seem
to make any diference for this example.

Te performances of themodels are further quantifed by
the L2 norm of their diferences to reference B at t� 1.5. Te
errors are plotted against the mesh size h in Figure 6. Te
Schrodinger model shows a second-order convergence, for
bothM� 3 andM� 30. Te errors of FEM models are much
smaller, and again, the infuence ofM is not signifcant.With
decreasing mesh size, the errors frst drop dramatically and
then no longer change.We suggest that it is because the error
in each cycle has reached the limit of the double-precision
computation for small mesh sizes. Tus, we further employ
a high-precision computation (32 digits), as denoted by FEM
HP in Figure 6. In this condition when M� 3, the curve is
similar to that of the double-precision solution. However,
when a greater M (�30) is employed, a fourth-order con-
vergence can be observed, which is very encouraging. Tis is
because the time step is adequately small in this example,
and the cubic Hermite element is employed in FEM. If the
time step were large, a second-order convergence would be
noticed because the time integration scheme has a second-
order accuracy. In summary, Figure 6 shows the proposed
method can reduce the error to the machine precision level

with a small M, but for high-precision computation,
a greater M leads to an even better result.

To show the long-term performance of the proposed
method, we extend the simulation time to t � 10 and cal-
culate the total energy evolution in the computation
zone (|x|< 20). Obviously, the energy should gradually
drop to zero as the wave propagates out of the computation
zone. In FEM, the total energy is given by

E �
1
2
uTKtotu +

1
2
ztu

TMtotztu, (32)

where Ktot,Mtot,u are the total stifness matrix, the total
mass matrix, and the displacement vector of the preserved
beam part (not including auxiliary DOFs), respectively. Te
result for h� 0.05 is shown in Figure 7.

It can be seen at the early stage, the energy drops by the
proposed method match the reference one quite well. Ac-
tually, before t� 3, the proposed method performs best.
After that, the energy level has become very low (<1E-8), the
energy of the proposed model is higher than that of others. It
implies the artifcial refection wave is not eliminated per-
fectly after a long-time simulation. Tis may be because the
wave components whose frequencies are far away from ω0
cannot be efectively treated by our method (see Figure 2).
Using a greater M does not help much. In contrast, the
MBC5 method brings more refection energy when the main
waves frst reach the boundary, but after the wave goes forth
and back for several times in the interval, its fnal energy
level is lower. Tat is because of its good capability to absorb
waves with a frequency far away from ω0 (Figure 2). Te fast
convolution method leads to the lowest residual energy after
a long simulation time, but it performs worse than the
proposed method for the frst collision with the artifcial
boundary.
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Figure 7: Energy evolution in spatial domain (0, 20).
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5. Conclusion

In this study, we proposed a new ABC for an infnitely long
FEM Euler–Bernoulli beam which has rotational DOFs. In
the ABC, the infuence of the removed half infnite beam
segment is represented by the residual right-hand side, i.e.,
the unbalanced transversal force and moment at the
boundary. To close the equation, by Pade approximation, the
right-hand side is rewritten as the linear combination of the
DOFs at the truncation point, some introduced auxiliary
DOFs, and their time derivatives. Tis treatment equals to
parallelly attaching several dynamic systems to the truncated
system and thus is easy to be implemented in the frame
of FEM.

Te proposed method is local in both space and time
domains. Te modifcation to the original algebraic system
occurs only near the truncation points and has a quite low
rank comparing with the matrix size. Te time integration
scheme has no diference with that used in common dy-
namic systems, and no convolution is needed. Te attached
systems will automatically absorb the incoming waves. As
a result, the method almost costs no extra computation time.

Te error of the proposed ABC is controlled by both
mesh size and the number of terms used in Pade approx-
imation. If the goal accuracy is not very high, a few Pade
approximation terms and a proper mesh size are usually
enough. A higher accuracy can also be achieved by
employing a fner mesh and more approximation terms.
Even for the high accuracy condition, it is still more efcient
than the global ABCs.

An ABC for the Schrodinger equation is also proposed as
a byproduct. It is less appealing because it requires a very fne
mesh to efectively suppress the artifcial refection. How-
ever, it shows a second-order convergence as the mesh size
decreases.
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