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When the thickness of a structure is reduced to decrease weight, it may experience structural vibration and disturbance.Te use of
passive patches is efective in addressing this issue when the loss factor is small or when space and weight are restricted. Te
greatest attenuation occurs when passive patches are used across the entire coverage area. However, passive patches of reasonable
size must be afxed to ensure that they are efective in terms of cost and design. In this paper, the sum of squares’ value for the
bending mode shape is used to determine the location of a small passive patch to achieve vibration damping for multiple modes.
Under the condition of forced vibration, the modal contribution of each mode is obtained. Using this contribution as a weight, the
optimal position of the passive patch is determined as the maximum value obtained in the form of a linear combinationmultiplied
by the curvature of the beam. Simulation and experiment were used to test the efcacy of the location determined for passive
patches. It was determined that, depending on the location of the passive patch, the peak amplitude at the natural frequency of
each mode decreased signifcantly, validating the efectiveness of the design method.

1. Introduction

1.1. Research Background. In cases where resonance cannot
be avoided in models with low loss factors, viscoelastic
materials such as rubber are used to reduce mechanical
vibration or noise. Passive patches are used when the
structure to be designed has weight or space limitations.
Tey are currently being used in a variety of felds such as the
aerospace, marine, construction, and automotive felds [1].
To achieve a light weight, the thickness of the structures is
reduced, and the damping efect of passive patches can be
clearly observed. Te passive patch also has a simple
structure and is cost-efective. Additionally, research on
beam structure analysis prior to patch application is being
actively conducted. Baran et al. [2] investigate the infuence
of the Adomian decomposition method (ADM) and

diferential transform method (DTM) on the free vibration
of Timoshenko beams and analyse the efects on variables
such as axial compressive load and ground reaction force by
considering boundary conditions. Te results of DTM and
ADM show excellent agreement, utilizing the dynamic
stifness method (DSM) to verify the mode shapes and
highlighting its applicability to free vibration of beam as-
sembly structures resting on a viscoelastic basis. Addition-
ally, the natural frequencies and harmonic response of the
cracked frame were analysed using the transfer matrix
method (TMM), single variable shear deformation theory
(SVSDT), and Timoshenko beam theory, and it was shown
that TMM can be used for simple and efcient analysis [3–5].

Te application of passive patches is divided into two
categories: constrained attenuation with elastic restraint and
viscoelastic layers and nonconstrained attenuation with only
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viscoelastic layers. In general, the damping efect of the
constrained damping technique is large. In this technique,
the vibration energy dissipation due to the shear de-
formation of the viscoelastic layer induces attenuation [6].
Te technique provides the greatest attenuation when used
over the entire range. However, a passive patch of a rea-
sonable size is more efective in terms of cost and design.
Hence, the patch position is mainly determined by con-
sidering the mode with a large contribution. However, in
order to achieve great efciency using minimal passive
patches, vibration analysis must be done to determine patch
locations where vibration attenuation for various modes can
be obtained.

Passive patches can achieve attenuation efects over
a wide frequency range. Although a good attenuation efect
can be obtained in the high-frequency band, the attenuation
performance is insufcient in the low-frequency band.
Various methods, including the Rayleigh–Ritz method, have
been investigated for modeling passive patch viscoelastic
materials [7, 8]. In addition, various methods have been
studied for modeling viscoelastic materials used in passive
patches. Tese include an approach for modeling passive
patches for plates and beams using the Rayleigh–Ritz
method to estimate the natural frequencies and loss co-
efcients quickly [9–13]. Modeling of harmonic excitations
is proposed when a passive patch and an active patch are
installed [14]. In such a case, it is necessary to optimize the
position of a small passive patch before applying the active
patch. In the case of passive patches, the result is afected not
only by the position of the patch’s bending shape function
but also by the loss factor of the viscoelastic layer, the shear
coefcient, thickness, length, elastic modulus and thickness
of the lower object to be controlled, and the length of the
passive patch [13]. Tus, the efects of the previous pa-
rameters on the design of passive patches have been studied
[13, 15, 16].

To optimize the position of a passive patch, Zheng et al.
minimized the length and position of the patch by using
a genetic algorithm based on the penalty function method
[17, 18]. Lei and Zheng have optimized the passive patch
location through topological optimization of the penaliza-
tion model [19, 20], and Fang has used the level set method
[21]. Araujo et al. performed optimization using the Feasible
Arc Interior Point Algorithm (FAIPA) to derive the max-
imum loss factor [22]. El Hafdi et al. optimized patch lo-
cation and improved algorithm convergence through
genetic algorithms and Latin Hypercube Sampling (LHS)
algorithms [23]. Askar et al. used a genetic algorithm to
optimize the position of the circular aluminium patch [24].
Te literature review indicates that various algorithms have
been used to optimize the position of the passive patch.
However, a simple and quick design method is required to
determine the optimal position of a passive patch in real
industrial felds.

1.2. Objectives. In this paper, a method to optimize the
position of a passive patch with a certain length and
thickness is introduced to 1D structures, especially for use

with cantilevered beams. First, the method of obtaining the
frequency response, natural frequency, and mode loss co-
efcient is described, which is based on the analytical model
for beams with passive patches expressed by complex
stifness. Next, the change in the natural frequency and the
loss factor for each mode of the passive patch of a certain
length are examined.

Although the position of the passive patch can be de-
termined using the above method, it would be simpler to use
the beam shape function. Considering the wide frequency
range, the sum of squares using the bending shape function
of the beam is obtained together with the modal contri-
bution by the specifc excitation range. Subsequently, the
position of the appropriate patch is determined and then
verifed through experiments using the predicted results.

Tis paper is organized as follows. Section 2 describes the
approximate model of the existing passive patch, and Section
3 analyses and explains the characteristics of the passive
patch through simulation. Ten, the optimal position of the
passive patch is determined by using the sum of squares of
the proposed bending shape function, and the performance
of the designed passive patch is analysed. Finally, Section 4
discusses conclusions and future plans.

2. Modeling

2.1. Beam with a Patch. A cantilever beam model with
a passive patch is shown in Figure 1.

In a thin Euler beam of fxed length L, a passive patch of
short beam shape with length Lx consisting of a viscoelastic
layer and a confning layer is attached at position xp. Dis-
turbance acts in the form of harmonic function at position
xd, which has 5 cm from fxed point, where the length L of
the beam is assumed to be sufciently longer than the width
Ly of the beam. As the beam is thin, the deformation in the
thickness direction is neglected and the material of the beam
is assumed to be isotropic, homogeneous, and linear elastic
with the same properties in all directions.

Here, the lower beam is defned as layer 3, the visco-
elastic layer as layer 2, and the constraint layer as layer 1.
Figure 2 shows the deformation due to bending of each layer.
Te subscript denotes the layer number, w is the transverse
displacement, u is the longitudinal displacement, ψ is the
rotation angle, and c is the shear angle.

2.2. Displacement Vector. Te motion of each layer was
investigated by Kung and Singh [5, 6]. Te displacement
vector r representing the motion of each layer is defned as
the following equation (1). Te superscript p represents the
number of the layers.
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Te displacement vector r is assumed to be temporally
and spatially continuous. It is assumed that the lateral
displacement w in layers 1 and 2 is equal to the displacement
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w in the lower layer. As the shear rate of layers 1 and 3 is
larger than that of layer 2 (Gp

2 ≪ G
p
1 , G

p
3 ), the shear angle is

assumed to be negligible (c1, c3≪ c2) as shown in Figure 2,
which is much smaller than the viscoelastic layer. Terefore,
the total angle of rotation at layers 1 and 3 is equal to the
partial diferential of the bend (ψ1 � ψ3 � zw/zx). Te ro-
tation angle in layer 2 is defned as ψ2 � zw/zx − c2, which is
the diference between the partial derivative of the bend and
the shear angle.

Let us assume that the bending displacement w in the
orthogonal coordinate z direction at an arbitrary position
xon the vibrating beam can be expressed by the sum of the
terms multiplied by the shape function ϕw,k(x) of the k-th
mode and the weighting function qk(t) as follows. Te
continuous system has infnite degrees of freedom, but this
problem hasN degrees of freedom if it is sufcient to consider
it as a linear combination of the product of the N shape
functions and the weighting factors. At this time, the lateral
displacement w is expressed by the following equation (2):
w(x, t) � ϕw,1(x)q1(t) + ϕw,2(x)q2(t) + · · · + ϕw,N(x)qN(t)

� 
N

k�1
ϕw,k(x)qk(t) � Φwq(t) � Φwqe

jωt
.

(2)

Here, qk is a weighting function for each mode. Both the
disturbance and the response are assumed to be a harmonic
function of a certain size. Φw is a shape function vector of

size 1 × N and q is a weight vector of size N × 1. Trough
these two functions, the shape function S can be organized as
follows:

Φw(x) � ϕw,1(x), . . . ϕw,k(x) . . . ϕw,N(x) ,

q(t) � q1(t), q2(t), . . . , qk(t), . . . , qN(t) 
T

,

S � ΦwΦuΦψ 
T

� S1 · · · Sk · · · SN .

(3)

2.3. Mass Matrix and Stifness Matrix. In the case of inertia
matrix H, it is a matrix derived in the process of defning the
mass matrix. First of all, kinetic energy is defned by shape
function and weight as follows:

T �
1
2



N

k�1


N

j�1
qkqj  ϕw,k(x)ϕw,j(x)dm �

1
2



N

k�1


N

j�1
mkjqkqj.

(4)

In this equation, the generalized mass is
mkj �  ϕw,k(x, y)ϕw,j(x, y)dm and the integration is per-
formed over the bin length. If it is a plate of ρ with
a thickness of h in a continuous system made up of in-
fnitesimal masses, it can be expressed as dm � ρbhdx. For
the rotational displacement ψ(x, t), the infnitesimal mass is
dm � ρ(bh3/12)dx and the generalized mass using in-
tegration can be expressed as follows:
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Figure 2: Before and after deformation of passive patch structure.
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Figure 1: Cantilever beam with passive patch.
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mw,kj �  ϕw,k(x)ϕw,j(x)ρbhdx,

mψ,kj �  ϕψ,k(x)ϕψ,j(x)ρb
h
3

12
 dx.

(5)

Using the shape function vector, the mass matrix can be
expressed as shown, and the inertia matrix H is defned
based on this equation:

Mw � ΦT
w(x)Φw(x)ρbhdx, (6)

Mu � ΦT
u (x)Φu(x)ρbhdx, (7)

Mψ � ΦT
ψ(x)Φψ(x)ρ

bh
3

12
 dx. (8)

Te mass matrix M of size n × n is in the form of a su-
perposed mass matrix using the inertia matrix H and the
shape function matrix S of size 3 × N.

M �  STHSdx. (9)

Here, the inertia matrix H is expressed by equation (10).

H � ρb
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. (10)

Tus, the kinetic energy of equation (11) is fnally
expressed as follows. Te relationship between the dis-
placement vector r and the generalized displacement
vector q can be expressed with the matrix of shape functions
S(x) [9].

T �
1
2

 _rTH_rdx �
1
2

_qT
(t)  

A
ST

(x)HS(x)dx _q(t) �
1
2

_qT
(t)M _q(t). (11)

In the case of strain energy (potential energy), the dis-
placement is restored by the deformation in the vibrating beam
and converted into motion. In the case of a linear elastic body,
the energy is expressed as the product of the force and the
strain, such that Ui � (1/2)Fiui. Te value
U � 

n
i�1Ui � (1/2)Fiui added by the energy density to the

entire beam becomes the total strain energy of the beam. Te
integral of each energy density equation is integrated over the
length, and the displacement vector r is summarized as follows:
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Here, the diferential operator D and the elasticity
matrix E are as follows [9]:
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Equation (6) is summarized as follows through equation
(2):

U � 
L

1
2
(Dr)TE(Dr)dx � 

L

1
2
(DS(x)q(t))

TE(DS(x)q(t))dx

�
1
2
qT

(t)
L
(DS(x))

TE(DS(x))dx q(t) �
1
2
qT

(t)Kq(t).

(14)

Here, the stifness matrix K is as follows:

K � 
L
(DS(x))

TE(DS(x))dx. (15)

For each layer, both the mass matrix and the inertia
matrix are added to obtain the kinetic energy and strain
energy of the whole, and the integral range corresponds to
the length of each layer. Te mass matrixM and the stifness
matrix K for the entire layer are defned as follows:

M � 

Np

p�1


Lp

SpT1 Hp
1S

p
1 + SpT2 Hp

2S
p
2 dx + 

L
ST
3H3S3dx,
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T
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2 

T
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2 DSp
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+ 
L
DS3( 

TE3 DS3( dx.

(17)

By substituting equation (17) into equations (11) and
(14), the kinetic energy and strain energy for the whole
system are calculated.
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2.4. Approximation. When an object is assumed to have N
vibration modes, its degree of freedom is N. Since the beam
with several passive patches has a multiple number of
subparts including base layer, adhesives, and patches, the
total degree of freedom would be increased by the multiple
of part numbers. Terefore, to simplify the problem, it is
necessary to reduce the degree of freedom for calculation.

Here, it is assumed that the motion of the passive patch is
determined with respect to the bending shape function of the
base layer. First, in the case of the base layer, the Euler beam
is fxed on one side. For the beam, the eigenvalue can be
analytically calculated through the characteristic equation
and then the normalized shape function can be obtained.

ϕw,k �
1

������������


Lx

0 ϕw,k 
2
dx

 cos hβkx − cos βkx −
sin hβkl − sin βkl

cos hβkl + cos βkl
sin hβkx − sin βkx(  ,

cos h βkL( cos βkL(  � −1, k � 1, 2, 3, · · · .

(18)

For the remaining shape functions, the Rayleigh–Ritz
method using strain energy can be expressed as a linear
combination of the permissible function satisfying the
boundary condition, or the natural frequency can be ap-
proximated without solving the complex eigenvalue prob-
lem through the weak-core hypothesis.

First, the relationship of motion between layers is
considered a weak-core assumption, [21] is applied as the
modulus of elasticity of the middle viscoelastic layer, it is
smaller than that of the beam, and the constraint layer in the
structure of the laminated layer in which the axial load is
applied. Te longitudinal displacement of layer 1 and layer 3
has the following relationship:

E
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p
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p
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p
�
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E
p
1h

p
1 1 − ]3( 

2
 

, p � 1, . . . , Np.

(19)

Integrating equation (19) with x yields the following:

ϕu1,k � −e
pϕu3,k + d

p

k , (20)

where d
p

k is a constant for indicating the relationship of the
shape function. Next, the longitudinal displacement u1, u3
and the rotational angle ψ1,ψ3 in layer 2 can be expressed
using the longitudinal displacement u2 and the rotational
angle ψ2 of layers 1 and 3. Te relationship is represented in
Figure 3. For each passive patch, the shape function for each
mode can be expressed as equations (21) and (22):

ϕu2,k �
1
2

ϕu3,k −
h3

2
ϕψ3,k  + ϕu1,k +

h1

2
ϕψ1,k  , (21)

ϕψ2,k �
1
h

q
2

  ϕu3,k −
h3

2
ϕψxz3,k  − ϕu1,k +

h1

2
ϕψ1,k  .

(22)

2.5. Natural Frequency and Loss Factor. Te natural fre-
quency and mode loss factor for each mode can be obtained
from the strain energy and kinetic energy obtained previously.
First, the loss factor is expressed as complex stifness in the
stifness matrix.Te complex modulus of elasticity is expressed

as E∗ � E(1 + jη). Here, ∗ denotes a complex value. In the
case of the viscoelastic layer, the shear factor and the loss factor
η depend on the frequency.Terefore, the modulus of elasticity
is expressed as E∗2(ω). Te total strain energy and kinetic
energy written in complex stifness are as follows:

U
∗

�
1
2
qT

(t)K∗(ω)q(t), T �
1
2

_qT
(t)M _q(t). (23)

At this time, as the response is assumed to be a harmonic
response, the complex eigenvalue problem in free oscillation
can be written as follows:

K∗(ω) − ω2M q � 0, λ∗k � M− 1K∗. (24)

In this case, as the stifness matrix has a frequency
dependent characteristic, the eigenvalue converges through
iterative calculation. In equation (24), λ∗k represents the
complex eigenvalue. Te natural frequency and loss co-
efcient can be defned from the complex eigenvalue λ∗k .

2.6. Forced Vibration by Disturbance. When the disturbance
is applied to a point of the beam, it is assumed that only the
bending is generated and the disturbance vectorQ is defned
as follows:
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Q � 
L
F(x)Φw(x)dx, (25)

where F represents the magnitude of the disturbance for
each mode. Tis is nonconservative and is added to the right
side of the equation of motion in equation (24). At this point,
by calculating the weight vector q, the displacement of the
beam can be calculated, and the displacement of the
remaining layers is also determined.

q � K∗(ω) − ω2M 
− 1
Q. (26)

When disturbance in the form of harmonic function acts
on a point xd, F(x, t) is expressed as follows:

F(x, t) � Fδ x − xd( e
j(ωt+θ)

. (27)

Ten, the disturbance vector Q is calculated, and
equation (26) is summarized as follows:

q � K∗(ω) − ω2M 
− 1

FΦw xd( e
jθ

. (28)

Here, the Fourier transform can be taken to calculate the
frequency response.

H(ω) � 

∞

−∞

q(t)e
− jωt

dt � K∗(ω) − ω2M 
− 1

FΦw xd( e
jθ

.

(29)

3. Simulation and Experiment

3.1. Loss Coefcient Variation. First, simulation was per-
formed on the length of a passive patch in order to check
how the loss of each mode changes depending on the po-
sition of the passive patch. Te material, properties, and
shape of the lower beam and passive patches were de-
termined as shown in Table 1, with reference to the vis-
coelastic layer used in Plattenburg et al. [12].

Te natural frequencies calculated for beams without
passive patches are given in Table 2. Te frst target is the
vibration attenuation for the fve modes of the beam, with
the patch designed to attenuate vibrations of 0–1000 [Hz].
Te length L of the beam will be normalized, and other
parameters will be expressed for the length of the beam. Te
normalized mode shape of the lateral vibration of the
cantilever beam is shown in Figure 4. As the shape function
does not change even when the patch is attached, the design
of the patch depends on the mode shape [25].

When the mode shape of the beam is viewed, the shortest
distance between nodes is mode 5 and the distance corre-
sponds to a normalized length of 0.2. Terefore, the nor-
malized length corresponding to 1/2 of the distance between
nodes is determined as 0.1.

Tis condition enables the simulation of the manner in
which the loss factor for each mode is afected by the po-
sition of the patch. Te position of the patch has a fnite
length, so it shows when the position changes from 0.01 to
0.95 from the normalization position of 0.05. Figure 5 shows
the second derivative of themode shapes. For eachmode, the
correlation between the magnitude of the second-order
diferential absolute value |z2w/zx2| of the normalized
bend shape and the loss factor can be observed by plotting
these on the graph simultaneously.

In Figure 6, the loss factor for the 1st and 2nd modes
and the curvature of the beam are shown for example.
Similar trends have been observed for 3rd, 4th, and 5th
modes as well. It is confrmed that the magnitude of the
absolute value of the second derivative w″ of the mode
shape is proportional to the magnitude of the second
derivative w″. Te second-order derivative w″ of the mode
shape is the curvature κ of the beam, and the larger the
size, the more efective the attenuation of the passive
patch. Te reason is that the larger the curvature κ of the
beam, the greater the magnitude of the moment acting on
the beam. Further, the strain on the beam surface in-
creases and afects the motion of the patch. When the
curvature κ is seen, the fxed part of the beam has the
largest value. However, as it is difcult to attach a patch
having a fnite length to the fxed portion, it is excluded
from the attachment position of the passive patch.

Figures 7 and 8 show the variation of the natural fre-
quency according to the position of the passive patch.
Additionally, Table 3 summarizes the natural frequency
changes according to the patch location. It is observed that
the value of the natural frequency changes greatly as the
degree of the mode increases. In addition, when the passive
patch is installed near the fxed end, the natural frequency is
observed to be high in all modes, whereas when it is attached
near the free end, it is confrmed that the natural frequency is
lowered.

3.2. Optimal Patch Location. Te infuence of the curvature
of the beam was confrmed. Tus, the values for the cur-
vature of the beam are utilized to design the patch. Te
position xd in the beam does not change the mode shape.

Constraining Layer

Viscoelastic Core

Base Layer

u1
ψ1

ψ2

ψ3

u2

u3

Figure 3: Motion relationship of each layer.
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However, the contribution of each mode changes. As the
mode contribution Γk of each mode represents the degree of
contribution of the mode and the attenuation across the
beam is aimed at all the frequency bands, the mode con-
tribution is determined only by the exciter, and unlike the
weight vector q defned above, it is defned as in equation
(30). If a frequency band is mainly used, the mode con-
tribution should be estimated considering only the modes
within the frequency band.

Γk �


L
F(x)ϕw,k(x)dx


N
k�1L

F(x)ϕw,k(x)dx
. (30)

If the value of the excitation magnitude F(x) is
a constant probability in the range of 0.05 to 0.1, the modal
contribution for each mode is calculated as given in
Table 4.

For mode contribution, mode 4 and mode 5 are large.
Each mode contribution is weighted and multiplied by the
second derivative ϕ″w,k of the mode shape to be squared and
then added. Ss denotes the sum of squares.

w
″
ss(x, f) � 

N

k�1
ϕ″w,k(x)Γk 

2
. (31)

Using the mode contributions calculated in Table 4 and
the values in Figure 5, the sum of squares of the shape
functions can be plotted as shown in Figure 9. In this case,
the position of the passive patch can be selected as 0.19, 0.41,
0.59, 0.82 except for the normalized positions 0 and 1 given
the length of the patch is fnite. However, as the size is largest
at 0.82, the optimum patch position is determined to be 0.82.
In order to compare the efect of the patch position, two
cases of passive patches with the normalized length of 0.82

Table 1: Te physical properties and shape of each layer.

Constrained Viscoelastic layer Beam Unit
Material Aluminium Adhesive Steel
Modulus of elasticity 69 × 103 6.2 + 2.2 × 10− 2f[Hz] 190 × 103 MPa
Density 2730 730 7870 kg/m3

Poisson Ratio 0.33 0.4 0.3
Loss factor 0.005 1.25 − 3.7 × 10− 4f[Hz] 0.0013
Tickness 0.8 1.14 3 mm
Length 40 40 400 mm

Table 2: Natural frequency of beam.

Unit: (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Natural frequency 14.9 93.3 261.2 511.7 845.9
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Figure 4: Five mode shapes of beam.
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and the low value of 0.5 are compared to predict the per-
formance of the passive patch by simulation. In this case, 0.5
is selected because passive patches cannot be installed in the
case of 0.08.

3.3. Simulation of Attenuation Performance. Te passive
patch attenuation performance at the two selected positions
is simulated by the loss factor and the reduced peak size.
First, loss factors for each mode at two locations are com-
pared. Te loss factors at each location are given in Table 5.

Next, the frequency spectrum predicted from 0 to
1000Hz at the observation point is shown. Te observation
point was selected as the normalization position of 0.375.

Figure 10 shows the simulation of the accelerance from
equation (29) for undamped beams and passive patches in
two selected cases. Te loss tends to be the same as the
result of the loss factor, and it can be confrmed that the
peak size is 0.82 at the resonance frequency except for mode
2. In addition, it is confrmed that a large attenuation is
invoked in modes 3, 4, and 5 when a passive patch is at-
tached at a position of 0.82. In the case of the natural
frequency, it is confrmed that the stifness and the mass of
the system are changed by attaching the passive patch, and
the natural frequency is decreased accordingly. Tat is, it
can be seen that the efect of mass is greater than that of
stifness. Te natural frequency does not drop much, but if
the excitation at that frequency is large, the passive patch
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Figure 5: Te second derivative of the beam’s fve mode shapes.
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should be avoided. Te size of the reduced peak produced
by attaching the passive patch is given in Table 6. Te data
written in the table indicates the decibel size before at-
tachment and at position 2 and the reduction amount at the
resonance frequency corresponding to each mode.
Terefore, the frequencies at the compared peaks are all
diferent.

In Table 6, the reduction of the peak is compared with
the resonance frequency in one mode, and it is confrmed
that attenuation is large when the loss coefcient is large,
except for mode 1 (with the patch at 0.82). In Figure 10, it
can be observed that mode 1 has relatively small amplitude
compared to the other modes and the amplitude level in the
time domain is not much afected to those modes. However,
if one passive patch is compared with the other modes, the
loss factor is not necessarily large and the peak decrease is
not always large.

3.4. Experimental Validation. Next, the efect of the position
of the passive patch in the two selected cases was verifed by
experiments. Figure 11 shows the experimental equipment.
An accelerometer is mounted on a thin beam fxed to the
vise, and an impact hammer is used to generate the impulse.
Te signal from the accelerometer is received from the data
collector and displayed on the monitor through signal
processing. Te sampling frequency is 2000Hz, observed
from 0Hz to 1000Hz in total, and the frequency resolution is
0.1Hz.

Figure 12 shows the position of the beam on the beam
and the observation position of the response. In the case of
excitation, it is assumed that a constant probability distri-
bution is applied in the range of the normalization length of
0.1. Terefore, the excitation position is divided into three
parts, and averaging is performed. Figure 13 shows the
attached passive patch.

Figure 14 shows the acceleration measured by the ac-
celerometer. In this case, it is possible to observe that
a diferent peak appears from the simulation. Tis is because
the length is longer than 10 times the width, but other modes
such as twist have also appeared in the region above 250Hz.
If the same results with simulation need to be obtained
through the experiment, the system should be modelled by
a thin plate model. In addition, the clearly appeared modes
besides bending modes are because of the contact condition
of beam and vise, which is an incomplete supporting con-
dition exciting other structures such as vise, vibration table,
etc. Te yellow circles indicate the bending mode, and it is
confrmed that the frst to ffth modes are displayed in order.
As with the simulation, it is confrmed that the natural
frequency of each mode is reduced by attaching the
passive patch.

Also, Table 7 lists the peak magnitude at resonance
frequency in decibels for each mode and the attenuation
performance when attached at the normalization position of
0.5 compared to the normalization position of 0.8 for mode 1
and mode 2. However, for modes 3, 4, and 5, it is confrmed
that the passive patch attached to 0.82 shows much better
attenuation performance. As the mode contribution is large

Table 4: Mode contributions for each mode.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode
contribution 0.02 0.12 0.30 0.53 0.78
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Figure 9: Calculated wss
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Table 3: Natural frequency change according to patch location.

Peak (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Without patch 15 93 261 512 848
Located in 0.5 15 91 260 504 838
Change 0.00% −2.15% −0.38% −1.56% −1.18%
Located in 0.82 15 93 260 507 839
Change 0.00% 0.00% −0.38% −0.98% −1.06%

Table 5: Loss factor for each mode.

Patch location Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
0.82 0.0002 0.0010 0.0028 0.0042 0.0032
0.5 0.0015 0.0025 0.0002 0.0030 0.0009
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Figure 10: Accelerance of nonattenuated and attenuated beams
(simulation).
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in modes 3, 4, and 5, it is targeted mainly at the high modes,
and the result is also the result of the experiment. In mode 4,
it is confrmed that large attenuation occurs. Tis is because
the resonance frequency of the twist mode near 500Hz,
which is the resonance frequency of mode 4, is reduced by
about 30Hz with the passive patch attachment.

Figure 15 compares the peak-to-peak values obtained
through experiments and simulations. For the positions of
each passive patch, the experiment and the simulation are
similar in the remaining areas except for mode 1 and there is
a larger decrease in the value of the peak in the experiment.
Tis is presumably because the passive patch reduces not
only the bending mode but also the other modes. Further, in
mode 1, the attenuation in the simulation was large. In the
experiment, the resonance frequency of mode 1, which is
a small signal, is not well represented by the noise. Figure 16
shows the correlation between the loss factor and attenu-
ation levels in dB scale obtained from simulation and ex-
periment, which obviously shows the same trend except for
mode 1 from the simulation.

Figure 17 shows the frequency spectrum on a linear
scale. Tis metric can be used to determine the RMS value
for measuring the overall vibration attenuation, and its value
is given in Table 8. Comparing the case where the passive
patch is not attached and the case where the passive patch is
attached at 0.5 position, it is confrmed that the vibration of
about 27% is totally reduced.

In addition, it is confrmed that the size of the RMS is
further reduced to 41.9% when it is attached to the nor-
malization position 0.82. Amplitude attenuation occurs not
only in bending but in other modes as well. When the peak
and RMS size are reduced, the design of the passive patch is
considered appropriate.

Table 6: Peak-to-peak of each mode for manual patching in
both cases.

Peak (dB) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
W/o patch −6.16 24.53 33.33 25.39 43.7
With 0.5 −25.87 8.394 30.5 14.01 39.09
Change 19.71↓ 16.136↓ 2.83↓ 11.38↓ 4.61↓
With 0.82 −34.69 20.12 22.7 12.82 33.2
Change 28.53↓ 4.41↓ 10.63↓ 12.57↓ 10.5↓
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Data Acquisition
Device Impact Hammer

Figure 11: Experimental equipment confguration and labels.
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Figure 12: Excitation and measurement positions.
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Figure 13: Attached passive patch.
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of passive patch.

Table 7: Peak-to-peak and size reduction for eachmode formanual
patching in both cases.

Peak (dB) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
W/o patch −2.72 26.15 35.52 27.21 30.67
With 0.5 −9.13 12.67 29.61 10.58 27.02
Change 6.41↓ 13.48↓ 5.91↓ 16.63↓ 6.23↓
With 0.82 −9.02 18.64 19.52 8.26 22.51
Change 6.3↓ 7.51↓ 16↓ 18.95↓ 10.74↓
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Figure 16: Correlation analysis with patch at (a) 0.5 and (b) 0.82.
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4. Conclusion

To optimize the position of the passive patch, the sum of
squares of the bend shape and the position of the passive
patch are used. Further, the efect of the passive patch is
verifed by using the existing passive patch model.

First, the model expression of the passive patch is ex-
amined. Te relationship between the passive patch and the
beam is investigated in detail, and the loss coefcient and the
frequency spectrum due to the natural frequency and the
forced vibration in the presence of several passive patches
are numerically simulated.

Next, in order to determine the position of the passive
patch, the change in the loss coefcient and natural fre-
quency according to the position is examined. It is con-
frmed that the loss factor is dependent on the curvature
which is the second derivative of the bending mode shape.
Te position of the passive patch is determined through the
sum of squares value expressed as a linear combination of
mode shape and mode contribution. Passive patches of
constant length and thickness are designed in this way.
Weighting is applied to the case where the mode contri-
bution is large so that the attenuation efect is enhanced in
a mode in which a large response is expected. It is confrmed
that the natural frequency is lowered for each mode due to
the passive patch changing the vibration system.

In order to verify the performance of the positionally
determined passive patch, two cases are compared. It is
assumed that one passive patch is designed to have a con-
stant length on one cantilevered beam. In this case, the
passive patch attenuates the overall vibration, and the peak-
to-peak value also decreases regardless of position. However,
it can be seen that the size of the response is greatly reduced
in the case of the passive patch, determined by obtaining the
sum of squares using the shape function. Experiments were
conducted to verify the efectiveness of passive patches.
Experimental results show that the frequency response in
mode 1 is small and difcult to observe. Because the ex-
periment involves a three-dimensional mode of vibration,
other peaks also appear, which is diferent from the simu-
lation. Te attenuation efect on the bending of the passive
patch was not accurately observed, while the natural fre-
quency was shifted by the passive mode such as the
twist mode.

Future research should investigate applying the passive
patch design method to the actual vibration system by the
excitation force of various frequency spectrums. In this
study, a certain size is assumed and used to verify the
damping efect using the proposed method considering the
mode shape and frequency of the actual model.

In addition, it is necessary to study the optimization
method of the position design in installing passive patches as
well as active patches using the piezoelectric element. Passive
patches are efective at high frequencies, so weights can be
applied to achieve optimal vibration damping along with
active patches.

Te passive patch location design method proposed in
this paper is expected to contribute to the improvement of
the practical application of passive patches without the need
for complicated processes. In addition, if applied to real
machine systems with active control, this method will
contribute to the research corpus on the topic of next
generation vibration reduction systems.

Data Availability

Te data presented in this study are available on request
from the corresponding author.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the 2023 Yeungnam University
Research Grant (223A380081) and by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2022R1F1A1076089).

References

[1] M. D. Rao, “Recent applications of viscoelastic damping for
noise control in automobiles and commercial airplanes,”
Journal of Sound and Vibration, vol. 262, no. 3, pp. 457–474,
2003.

[2] B. Baran, Y. Yesilce, and S. Catal, “Free vibrations of axial-
loaded beams resting on viscoelastic foundation using
Adomian decomposition method and diferential trans-
formation,” Engineering Science and Technology, an In-
ternational Journal, vol. 73, no. 2, pp. 109–121, 2020.

[3] B. Bozyigit, Y. Yesilce, and M. Abdel Wahab, “Single variable
shear deformation theory for free vibration and harmonic
response of frames on fexible foundation,” Engineering
Structures, vol. 208, Article ID 110268, 2020.

[4] B. Baran, Y. Yesilce, and M. Abdel Wahab, “Transfer matrix
formulations and single variable shear deformation theory for
crack detection in beam-like structures,” Structural Engi-
neering and Mechanics, vol. 73, no. 2, pp. 109–121, 2020.

[5] B. Baran, Y. Yesilce, andM. AbdelWahab, “Free vibration and
harmonic response of cracked frames using a single variable
shear deformation theory,” Structural Engineering and Me-
chanics, vol. 74, no. 1, pp. 33–54, 2020.

[6] L. Irazu and M. J. Elejabarrieta, “Te infuence of viscoelastic
flm thickness on the dynamic characteristics of thin sandwich
structures,” Composite Structures, vol. 134, pp. 421–428, 2015.

[7] A. Benjeddou, “Advances in hybrid active-passive vibration
and noise control via piezoelectric and viscoelastic con-
strained layer treatments,” Journal of Vibration and Control,
vol. 7, no. 4, pp. 565–602, 2001.

Table 8: RMS reduction for manual patching in both cases.

RMS Total
Before attachment 9.62
With 0.5 7.04
Change 2.58 (26.8%↓)
With 0.82 5.59
Change 4.03 (41.9%↓)

Shock and Vibration 13



[8] M. A. Trindade and A. Benjeddou, “Hybrid active-passive
damping treatments using viscoelastic and piezoelectric
materials: review and assessment,” Journal of Vibration and
Control, vol. 8, no. 6, pp. 699–745, 2002.

[9] A. K. Lall, N. T. Asnani, and B. C. Nakra, “Damping analysis
of partially covered sandwich beams,” Journal of Sound and
Vibration, vol. 123, no. 2, pp. 247–259, 1988.

[10] A. K. Lall, N. T. Asnani, and B. C. Nakra, “Vibration and
damping analysis of rectangular plate with partially covered
con-strained viscoelastic layer,” Journal of Vibration and
Acoustics, vol. 109, no. 3, pp. 241–247, 1987.

[11] S. W. Kung and R. Singh, “Vibration analysis of beams with
multiple constrained layer damping patches,” Journal of
Sound and Vibration, vol. 212, no. 5, pp. 781–805, 1998.

[12] S. W. Kung and R. Singh, “Complex eigensolutions of rect-
angular plates with damping patches,” Journal of Sound and
Vibration, vol. 216, no. 1, pp. 1–28, 1998.

[13] S. W. Kung and R. Singh, “Development of approximate
methods for the analysis of patch damping design concepts,”
Journal of Sound and Vibration, vol. 219, no. 5, pp. 785–812,
1999.

[14] J. Plattenburg, J. T. Dreyer, and R. Singh, “Active and passive
damping patches on a thin rectangular plate: a refned ana-
lytical model with experimental validation,” Journal of Sound
and Vibration, vol. 353, no. 29, pp. 75–95, 2015.

[15] S. Tian, Z. Xu, Q. Wu, and C. Qin, “Dimensionless analysis of
segmented constrained layer damping treatments with modal
strain energy method,” Shock and Vibration, vol. 2016, Article
ID 8969062, 16 pages, 2016.

[16] B. Khalf and A. Ross, “Infuence of partial constrained layer
damping on the bending wave propagation in an impacted
viscoelastic sandwich,” International Journal of Solids and
Structures, vol. 50, no. 25-26, pp. 4133–4144, 2013.

[17] H. Zheng, C. Cai, and X. M. Tan, “Optimization of partial
constrained layer damping treatment for vibrational energy
minimization of vibrating beams,” Computers and Structures,
vol. 82, no. 29-30, pp. 2493–2507, 2004.

[18] H. Zheng, C. Cai, G. S. H. Pau, and G. R. Liu, “Minimizing
vibration response of cylindrical shells through layout opti-
mization of passive constrained layer damping treatments,”
Journal of Sound and Vibration, vol. 279, no. 3-5, pp. 739–756,
2005.

[19] Y. Lei, W. Zheng, Q. Huang, and C. Li, “Topology optimi-
zation of passive constrained layer damping on plates with
respect to noise control,” Advanced Materials Research,
vol. 774-776, pp. 3–6, 2013.

[20] W. Zheng, Y. Lei, S. Li, and Q. Huang, “Topology optimi-
zation of passive constrained layer damping with partial
coverage on plate,” Shock and Vibration, vol. 20, no. 2,
pp. 199–211, 2013.

[21] Z. Fang, “Topology optimization approach of constrained
layer damping layout using level set method,” International
Congress on Sound and Vibration, vol. 18, 2014.
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