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Te vibration properties of the submerged sandwich cylindrical shell with a viscoelastic core are investigated in this paper.
Considering the acoustic-structure coupling, the analytical model of the submerged sandwich cylindrical shell that can handle
three medium conditions including fuid-flled, fuid-loaded, and fuid-flled and -loaded is derived based on the wave propagation
approach and the Flügge thin-shell theory. Te vibration properties of the sandwich cylindrical shell under diferent medium and
boundary conditions are analyzed, followed by a comparison of the damping efect of the constrained damping layer. Finally, an
analysis is conducted on the infuence of thicknesses of viscoelastic and constrained layers on vibration spectrum and natural
frequency under fuid-flled and -loaded conditions. An experimental platform was established to conduct relevant experiments.
Several important conclusions can be drawn.

1. Introduction

Constrained layer damping (CLD), which consists of
a viscoelastic damping layer and a metal-constrained layer,
provides an efective way to suppress undesirable me-
chanical vibration and wave propagation in diferent types
of structures, such as beams [1, 2], plates [3, 4], and shells
[5–7]. Te fundamental principle is that the vibrational
energy is dissipated during transmission through the vis-
coelastic damping material. Te cylindrical shells are
prevalent in underwater vehicles, the vibration of which
can be efectively controlled by designing CLD with ap-
propriate parameters [8]. Te cylindrical shell, in which the
vibration is controlled by a CLD, is referred to as a sand-
wich cylindrical shell. Te research primarily encompasses
two aspects: (1) the force-displacement relationship be-
tween the adjacent layers of the sandwich cylindrical shell
and (2) the acoustic-structure coupling between the shell
and the medium.

A clear comprehension of the impact of a CLD on the
vibration characteristics of cylindrical shells is of utmost
signifcance, which has attracted the attention of a growing
number of scholars. Ramesh and Ganesan [9] used the fnite
element method (FEM) to study the vibration and damping
characteristics of a sandwich cylindrical shell constrained by
an isotropic surface layer. Wang and Chen [10] employed
the FEM based on the discrete layer theory to derive the
equations of motion of the composite system and analyze the
sandwich cylindrical shell. Masti and Sainsbury [11] ex-
plored the use of a standof-layered viscoelastic damping
treatment for cylindrical shells requiring a minimal distri-
bution area and low added weight. Abdoun et al. [12]
adopted the FEM to study the forced-vibration response to
curved viscoelastic shells and laminated viscoelastic shells in
the frequency domain. Mohammadi and Sedaghati [13]
established the linear and nonlinear models based on the
FEM to study the damping characteristics of thin-core and
thick-core sandwich cylindrical shells and the infuences of
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incomplete binding between layers, and concluded that the
nonlinear model showed stronger damping characteristics
than the linear model, and the slip reduces the loss factor in
most modes.

Chen and Huang [14] studied the vibration response of
a sandwich cylindrical shell based on the assumed-mode
method and derived discrete equations of motion. Hu and
Huang [15] studied the frequency response and damping
efects of the sandwich cylindrical shells based on the
Donnell–Mushtari–Vlasov theory, and concluded that in-
creasing the thickness of the viscoelastic damping layer can
reduce the natural frequency and damping of the system.
Cao et al. [7] presented free vibration characteristics of
sandwich cylindrical shells. On the basis of Sanders’ thin-
shell theory, the governing equations for an orthogonal
anisotropic sandwich cylindrical shell were derived from
the wave propagation approach, and the vibration re-
sponses of a sandwich cylindrical shell were solved under
simply supported boundary conditions. Xiang et al. [16]
derived governing equations describing the vibration of
a sandwich cylindrical shell with a viscoelastic damping
layer under harmonic excitation based on the linear theories
of thin cylindrical shells and viscoelastic materials and
studied the vibration characteristics and damping efect of
the sandwich cylindrical shell. Based on Donnell’s hy-
pothesis, linear viscoelastic theory, and Hamiltonian
principle, Zheng et al. [17] introduced state vectors to
deduce the dynamic equations of a sandwich cylindrical
shell in the state space, and then studied the vibration of
a sandwich cylindrical shell with multiple viscoelastic
damping layers. Yang et al. [18] derived the governing
equations of a sandwich cylindrical shell based on frst-
order shear deformation theory and studied the infuences
of the layered scheme and structural geometric charac-
teristics on the natural frequency and loss factor. Molhtari
et al. [19] studied the vibration of sandwich cylindrical
shells using the Lagrange equation and Relilitz’s method,
and discussed the infuences of the parameters of the
constrained layer on the frequency and loss factor. Shahali
et al. [20] derived and solved Lagrange’s equations of
motion via the Rayleigh–Ritz method and studied the
natural frequency and damping behavior of three-layer
cylindrical shells with a viscoelastic core layer and func-
tionally graded face layers, considering the efects of some
geometrical and material parameters such as length-to-
radius ratio, functionally graded properties, radius and
thickness of viscoelastic layer on the natural frequency, and
loss factor of the system. Mokhtari et al. [19] and Permoon
et al. [21] studied the frequency and damping of sandwich
cylindrical and conical shells, respectively, containing
a fractional viscoelastic core and isotropic face layers.
Askarian et al. [22] studied the vibration of pipes conveying
fuid on a fractional viscoelastic foundation with general
boundary conditions, Shitikova and Ajarmah [23] focused
on the nonlinear vibrations of fractionally damped cylin-
ders under the additive combinational internal resonance,
and Permoon et al. [6] studied the nonlinear vibration of
fractional cylindrical shells. All the studies mentioned above
were performed in the air medium.

In the acoustic-structure coupling system underwater,
due to the existence of the surrounding medium, the su-
perposition of dry modes cannot meet the requirements.
Terefore, the infuences of the acoustic medium on the
vibration of the structuremust be introduced. At present, the
research on acoustic vibration of cylindrical shells in infnite
domains is extremely abundant, and major solving methods
such as the wave propagation method [24], mode super-
position method [25], transfer matrix method, energy
method [26], and fnite element coupled boundary element
method [27] have been formed. Wave propagation methods
expand the displacement into the form of a propagating
wave and solve it directly by substituting it into the gov-
erning equation.Te computational procedure is simple and
the computational accuracy is elevated. Te basic method
chosen in this paper is the wave propagation method. Junger
and Feit [25] were the frst to systematically elaborate the
interaction between acoustic and structure, and analyzed in
detail the acoustic radiation and acoustic scattering of plates
and shells based on the classical methods such as the modal
superposition method and Green function method. Fuller
and Fathy [28] established the dispersion equations of
liquid-flled cylindrical shells. Te dispersion properties of
a liquid-flled cylindrical shell and the energy carried by each
propagating wave were thoroughly investigated based on an
iterative technique in the complex plane. Ten, Fuller [29]
studied the input admittance of a liquid-flled cylindrical
shell under circumferential linear exciting force based on the
Fourier method, and further gave the admittance expression
under concentrated exciting force. Scott [30] used the Love
shell theory and the energy method to derive the dispersion
equations of the infnite-length underwater cylindrical shell,
and solved the dispersion equations based on the complex
plane iterative technique. Zhang et al. [24, 31, 32] studied the
natural vibration of the acoustic-structure coupling system
under various boundary conditions based on the wave
propagation approach, and compared results with the FEM
to verify the accuracy of the method. Guo [33] proposed an
approximate method to analyze the acoustic problem of
underwater cylindrical shells based on Donnell’s shell the-
ory. Te acoustic radiation properties are approximately
solved by the asymptotic expansion of the Hankel function.
Te comparison with the exact solution shows that the
approximationmethod is accurate and reliable. Lam and Loy
[26] studied the natural vibration characteristics of lami-
nated cylindrical shells based on the Love shell theory and
the energy method. Te energy functional equation is ob-
tained by introducing a beam function to ft the displace-
ment axial function of the structure, and then the natural
frequency is obtained using the Lebesgue method. Williams
[34] used infnite series solutions to study the acoustic ra-
diation characteristics of cylindrical shells. First, the velocity
potential function and the boundary conditions of the cy-
lindrical shell are expanded in terms of a series of diferent
characteristic functions. Te relation between the two types
of eigenfunctions is then obtained in terms of the velocity
continuity condition at the fuid-structure coupled interface.
Finally, the governing equation can be solved by a fnite
truncation of the infnite series. Laulagnet and Guyader [27]
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used the rigid sound barrier model to study the acoustic
radiation characteristics of fnite-length cylindrical shells in
light and heavy fuids. Te shell-fuid coupled governing
equations were obtained by combining Fourier transform
and Green’s function methods, and the efect of the relative
ratios of radiative loss factor and structural damping factor
on the modes was discussed.

In addition, there are two aspects of the analytical
method that have to be considered, which may afect the
accuracy of the analytical results. First, viscoelastic damping
belongs to polymer materials, and the dynamic properties of
damping materials are afected by various environments
such as temperature and frequency in practical engineering
applications. Bagley et al. [35–39] carried out some research
on viscoelastic materials. However, these factors are
neglected in both analytical and numerical methods, so the
AMs of sandwich structures containing viscoelastic mate-
rials have to be evaluated experimentally. Second, the simply
supported boundary condition of analytical methods is not
ideal for conventional boundaries in engineering applica-
tions. Qu et al. [40] improved the domain decomposition
method by introducing Chebyshev orthogonal polynomials
as admission functions to solve the vibration characteristics
of sandwich cylindrical shells. Trough a series of standard
Fourier series functions, Jin et al. [41] studied the vibration
characteristics of composite cylindrical shells under elastic
boundaries. In the experimental construction of this paper,
a simply supported boundary was approximated by an
elastic boundary.

In the present study, theoretical development is frst
carried out considering the acoustic-structure coupling
between the shell and the medium. An analytical method is
presented to investigate the vibration characteristics of
a sandwich cylindrical shell underwater based on the wave
propagation approach. Te confguration under in-
vestigation is a simple-supported sandwich cylindrical shell
underwater. Te studies are then conducted to investigate
the coupling characteristics of the confguration under three
medium conditions, including fuid-flled, fuid-loaded, and
fuid-flled and -loaded, providing some research results
related to vibration. Te comparative experiments are car-
ried out. Some parts of the present study have been pub-
lished in the previous preprint [42].

2. Description of Sandwich Cylindrical Shells

2.1. Analytical Model. Before establishing the analytical
model, the following two prerequisites should be proposed.
(a) Te displacements of three layers satisfy the continuity,
and the radial displacements of the three layers are assumed
to be equal. Te resulting imprecise estimates can be dis-
regarded [13]. (b) Te shear dissipation of energy for
sandwich cylindrical shells signifcantly surpasses the tensile
energy dissipation, thus justifying the neglect of tensile
deformations in the viscoelastic damping layer.

Te sandwich cylindrical shell (see Figure 1) under in-
vestigation consists of three components: a base layer (cy-
lindrical shell), a viscoelastic damping layer, and
a constrained layer. Te vibration of the base layer induces

shear strain within the viscoelastic damping layer, which
enables dissipation of energy and then efectively suppresses
vibrations. Te constrained layer is constructed from metal
material and laid on the outer surface of the viscoelastic
damping layer. Te sandwich cylindrical shell contains
a fuid referred to as flling fuid, while being surrounded by
another fuid referred to as surrounding free fuid. Te
medium conditions are shown in Table 1.

In the cylindrical coordinate system, the analytical model
is built as shown in Figure 1. Here, r, θ, and x represent
radial, circumferential, and axial coordinates, respectively.
Te thickness and mean radius are denoted by h and R,
respectively. Te density, Young’s modulus, shear modulus,
and Poisson’s ratio are denoted by ρ, E, G∗, and μ, re-
spectively. Te subscript i is added to these symbols to
discriminate the base layer (i � 1), the viscoelastic damping
layer (i � 2), and the constrained layer (i � 3). Te shell is
driven radially by a point force F located at (R1, θ0, x0) in the
cylindrical coordinate system (r, θ, x). Te force is harmonic
and has the time dependence of exp (−jωt), where ω is the
angular frequency, t is the time, and j is the square root of
−1. Te relationship between geometric variables can be
expressed as

R2 �
R1 + h1 + h2( 􏼁

2
,

R3 �
R1 + h1 + 2h2 + h3( 􏼁

2
.

(1)

Te length of the model in Figure 1 is fnite. Finite-shell
vibrations exhibit the spatial periodicity distributed along
the shell axis and have discrete axial wavenumber spectra.
Te fnite-shell wavenumbers for diferent boundary con-
ditions are shown in Table 2, where km is the axial wave-
number, m is the axial mode number (the number of half-
wavelength along the shell axis, m � 1, 2, 3 . . .), and L is the
shell length.

2.2. Experimental Model. An experimental model, corre-
sponding to the analytical one shown in Figure 1, is also
constructed (see Figure 2). Te geometric dimensions and
material parameters are provided in Tables 3 and 4.Te shell
is sealed by end-caps which are supported by two rods
passing through arranged holes on the end-cap. Each ring
end-cap features a small hole (not depicted in Figure 2) for
flling fuid into the shell. Te boundary condition at the
shell end can be considered as simply supported. In addition,
a shaker is attached to the shell and provided as a harmonic
point-force driver. Te forced-vibration experiments for the
experimental model are performed under three media
conditions as shown in Table 1. Te position of excitation is
(R1, 0, L/6). Accelerometers are deployed at three measuring
positions including position 1 (R3, π/2, 3L/4), position
2 (R3, π/4, L/2), and position 3 (R3, 0, L/3), respectively, as
shown in Figure 2.Te experimental platform is constructed
as shown in Figure 3, which contains a sandwich cylindrical
shell, shaker, sensors, and signal collector.
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3. Vibroacoustic Modeling

3.1. Governing Equation ofMotion. Te governing equations
for the motion of a sandwich cylindrical shell are derived in
this section considering the force-displacement relationship.
Te force and moment acting on the base and constrained
layers are described in detail as shown in Figures 4 and 5,
respectively.

Te axial and circumferential torsional displacements of
the base layer and the constrained layer can be expressed as

βxi � −
zw

zx
,

βθi � −
1
Ri

zw

zθ
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where βxi and βθi denote the axial and circumferential
torsional displacements, respectively. Te subscript i takes 1
for the base layer and 3 for the constrained layer.

Te axial and circumferential torsional displacements of
the viscoelastic damping layer can be expressed as

βx2 �
1
h2

u3 − u1 −
h1

2
βx1 −

h3

2
βx3􏼠 􏼡,

βθ2 �
1
h2

v3 − v1 −
h1

2
βθ1 −

h3

2
βθ3􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Shear strains of the viscoelastic damping layer can be
expressed as

cxz �
zw

zx
+ βx2 �

1
h2

u3 − u1( 􏼁 + cx

zw

zx
,

cθz �
1
R

zw

zθ
+ βθ2 �

1
h2

−
1

2R2
􏼠 􏼡v3 −

1
h2

+
1

2R2
􏼠 􏼡v1 + cθ

zw

zθ
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where cθ � h3/2h2R3 + h1/2h2R1 + h1/4R1R2 − h3/4R2R3 +

1/R2, cx � 1/2h2(h1 + 2h2 + h3).
Shear forces of the viscoelastic damping layer can be

expressed as

τxz � G
∗
2cxz � G

∗
2

1
h2

u3 − u1( 􏼁 + cx

zw

zx
􏼠 􏼡,

τθz � G
∗
2cθz � G

∗
2

1
h2

−
1

2R2
􏼠 􏼡v3 −

1
h2

+
1

2R2
􏼠 􏼡v1 + cθ

zw

zθ
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Te balance of forces of the base layer or the constrained
layer can be described as

zNxi

zx
+

1
Ri

zNxθi

zθ
+ τxz � ρihi

z
2
ui

zt
2 ,

1
Ri

zNθi

zθ
+

zNθxi

zx
−

zMθi

R
2
i zθ

+
zMxθi

Rizx
􏼠 􏼡 + τθz � ρihi

z
2
vi

zt
2 ,

zQxi

zx
+

1
Ri

zQθi

zθ
+

Nθi

Ri

� ρihi

z
2
w

zt
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Te balance of moments of the base layer or the con-
strained layer can be described as

r

x
O

Base layer

Constrained Layer Viscoelastic damping layer
Surrounding free fluid

Filling fluid

h1

R3

R2 R1

h2

h3 O

L

θ

Figure 1: Analytical model.

Table 1: Te medium conditions.

Case Description Inside shell Outside shell
1 Fluid-flled Water Air
2 Fluid-loaded Air Water
3 Fluid-flled and -loaded Water Water

Table 2: Wavenumbers for diferent boundary conditions.

Boundary conditions Wave numbers
Simply supported-simply supported (SS-SS) kmL � mπ
Clamped-free (C-F) kmL � (2m − 1)π/2
Clamped-clamped (C-C) kmL � (2m + 1)π/2
Clamped-simply supported (C-SS) kmL � (4m + 1)π/4

Figure 2: Experimental model.

Table 3: Te geometric dimensions.

Symbol L R1 h1 h2 h3

Value 900 200 1.9 1.2 0.9
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Table 4: Te material constants.

Base layer Stainless steel
Density (kg/m3) ρ1 7850 Young’s modulus (GPa) E1 210
Poisson’s ratio μ1 0.26 Loss factor η1 0.005

Viscoelastic damping layer Rubber
Density (kg/m3) ρ2 1350 Loss factor η2 0.8
Shear modulus (MPa) G∗2 87 — — —

Constrained layer Aluminum
Density (kg/m3) ρ3 2700 Loss factor η3 0.005
Young’s modulus (GPa) E3 70 Poisson’s ratio μ3 0.35

Fluid Water

Density (kg/m3) ρf 1000 Sound speed (m/s) cf 1500

Shaker

Accelerometer

Force sensor

Signal generator

Power amplifier

Signal collector Computer

Figure 3: Te experimental platform in the cistern.

θMxθ1

Mx1Qx1

Qθ1

Mθ1

Nθx1

Nxθ1Nx1

Nθ1

xZ

Mθx1

τθ2

τx2

Figure 4: Unit force and moment acting on the base layer.

θ

Qx2

Qθ1

τθ2

τx2

Z

Figure 5: Unit force and moment acting on the constrained layer.
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1
Ri

zMxθi

zy
+

zMxi

zx
− Qxi −

hi

2
τxz � 0,

zMxθi

zx
+

1
Ri

zMθi

zθ
− Qθi −

hi

2
τθz � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

By combining equations (6) and (7), we get

zNxi

zx
+

1
Ri

zNxθi

zθ
+ τxz � ρihi

z
2
ui

zt
2 ,

1
Ri

zNθi

zθ
+

zNθxi

zx
−

zMθi

R
2
i zθ

+
zMxθi

Rizx
􏼠 􏼡 + τθz � ρihi

z
2
vi

zt
2 ,

2z
2
Mxθi

Rizθzx
+

z
2
Mxi

zx
2 +

hi

2
zτxz

zx
+

1
R
2
i

z
2
Mθi

zθ2
+

hi

2Ri

zτθz

zθ

+
Nθi

Ri

� ρihi

z
2
w

zt
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Te stresses can be expressed as

Nxi � Ki

zui

zx
+ μ1

zvi

Rizθ
+ μi

w

Ri

􏼠 􏼡,

Nθi � Ki μi

zui

zx
+

w

Ri

+
zvi

Rizθ
􏼠 􏼡,

Nxθi � Ki

1 − μi

2
zvi

zx
+ μi

zui

zx
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Mxi � −Di

z
2
w

zx
2 + μi

z
2
w

R
2
i zθ2

− μi

zvi

R
2
i zθ

􏼠 􏼡,

Mθi � −Di μi

z
2
w

zθ2
−

zvi

R
2
i zθ

+ μi

z
2
w

zx
2􏼠 􏼡,

Mxθi � −Di

1 − μi

2
2z

2
w

Rizxzθ
−

zvi

Rizθ
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where Ki � Eihi/1 − μ2i , Di � Eih
3
i /12(1 − μ2i ).

Only shear strain should be considered for the visco-
elastic damping layer, the balance of which can be expressed
as

ρ2h2
z
2
w

zt
� −h2

zτxz

zx
+

zτθz

R2zθ
􏼠 􏼡. (11)

By combining equations (8)–(11), the governing equa-
tions of motion of the sandwich cylindrical shell can be
fnally obtained as

Q11 Q12 Q13 Q14 Q15

Q21 Q22 Q23 Q24 Q25

Q31 Q32 Q33 Q34 Q35

Q41 Q42 Q43 Q44 Q45

Q51 Q52 Q53 Q54 Q55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1

v1

u3

v3

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0

0

0

0

−q − f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where the elements of matrix [Q] are diferential operators
with values, which are described in the appendix based on
Flügge’s thin-shell theory. q denotes the acoustic pressure,
which is defned as the diference of the acoustic pressure
between the surrounding free fuid feld and the flling fuid
feld. f denotes the driving force. In addition, both q and f

are defned as positive inward.
In light of the modal superposition theory and wave

propagation approach, the displacements can be expressed
as a superposition of symmetric and antisymmetric modes as
follows:

u1(x, θ, t) � 􏽘
α,m,n

U1mn cos kmx sin nθ +
απ
2

􏼒 􏼓e
−jωt

,

v1(x, θ, t) � 􏽘
α,m,n

V1mn sin kmx cos nθ +
απ
2

􏼒 􏼓e
−jωt

,

u3(x, θ, t) � 􏽘
α,m,n

U3mn cos kmx sin nθ +
απ
2

􏼒 􏼓e
−jωt

,

v3(x, θ, t) � 􏽘
α,m,n

V3mn sin kmx cos nθ +
απ
2

􏼒 􏼓e
−jωt

,

w(x, θ, t) � 􏽘
α,m,n

Wmn sin kmx sin nθ +
απ
2

􏼒 􏼓e
−jωt

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where α � 0, 1; m � 1, 2, 3 . . .; and n � 0, 1, 2 . . ..
Substituting equation (13) into the left part of equation

(12) yields

[Q][Φ] � 􏽘
α,m,n

diag A
α
mn, B

α
mn, A

α
mn, B

α
mn, C

α
mn( 􏼁[S][Ψ],

(14)

where [Ψ] � U1mn V1mn U2mn V2mn Wmn􏼂 􏼃
T, Aα

mn � sin
(nθ + απ/2) cos kmx, Bα

mn � cos(nθ + απ/2) sin kmx, Cα
mn �

sin(nθ + απ/2) sin kmx.
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Te elements of matrix [S] are described as follows:

S11 � −K1 k2m +
1 − μ1
2R1

2 n
2

􏼠 􏼡 −
G∗2
h2

− ρ1h1ω
2
, S12 � K1

1 + μ1
2R1

kmn,

S13 �
G∗2
h2

, S14 � 0, S15 � K1
μ1
R1

km + G∗2 cxkm;

S21 � S12, S22 � −K1
n2

R2
1

+
1 − μ1
2

k2m􏼠 􏼡 − G∗2
1
h2

+
1

2R2
􏼠 􏼡 + ρ1h1ω

2
,

S23 � 0, S24 � G∗2
1
h2

−
1

2R2
􏼠 􏼡, S25 � −K1

n
R2
1

− G∗2 cθn;

S31 � S13, S32 � 0, S33 � −K3 k2m +
1 − μ3
2R3

2 n
2

􏼠 􏼡 −
G∗2
h2

+ ρ3h3ω
2
,

S34 � K3
1 + μ3
2R3

kmn, S35 � K3
μ3
R3

km − G2
∗cxkm;

S41 � 0, S42 � S24, S43 � S34,

S44 � −K3
n2

R3
2 +

1 − μ3
2

k2m􏼠 􏼡 − G2
∗ 1

h2
+

1
2R2

􏼠 􏼡 − ρ3h3ω
2
,

S45 � −K3
n
R3

2 − G2
∗cθn;

S51 � −S15, S52 � K1
μ1
R2
1

+ G∗2 cθ 1 +
h2
2R2

􏼠 􏼡n + D1
nk2m
R2
1

+ D1
n3

R4
1
,

S53 � S35, S54 � K3
μ1
R2
3

+ G∗2 cθ 1 +
h2
2R2

􏼠 􏼡n + D3
nk2m
R2
3

+ D3
n3

R4
3
,

S55 �
K1

R2
1

+
K3

R2
3

+ G∗2h2 c2xk
2
m + c2θn

2
􏼐 􏼑 + D1 k2m +

n2

R2
1

􏼠 􏼡

2

+ D3 k2m +
n2

R2
3

􏼠 􏼡

2

− ρ1h1 + ρ3h3( 􏼁ω2
.

(15)

3.2. Exciting Force. Te driving force f in equation (12) can
be expressed as

f �
F

R1
δ x − x0( 􏼁δ θ − θ0( 􏼁, (16)

where F denotes the amplitudes of exciting force and δ is the
Dirac delta function.

3.3. Acoustic Propagation in Fluid Field. Te propagation of
acoustic waves in a fuid feld can be expressed by the fol-
lowing Helmholtz equation:

z
2
pκ

zr
2 +

1
r

zpκ

zr
+
1
r
2

z
2
pκ

zθ2
+

z
2
pκ

zx
2 + k

2
0pκ � 0, (17)

where pκ(r, θ, x) expresses the acoustic pressure. Subscript κ
takes 1 for the flling fuid and 2 for the surrounding free
fuid. Te wavenumberis k0 � ω/cf,where cf denotes
sound speed.

According to the separation of variables method, the
acoustic pressure pκ(r, θ, x) in equation (17) can be
expressed as

pκ(r, θ, x) � 􏽘
α,m,n

Aκmnpκm(r)pκm(x) sin nθ +
απ
2

􏼒 􏼓.

(18)

Te Fourier integral transformation of equation (11)
yields the following equation:

􏽥pκ(r, θ, x) � 􏽘
α,m,n

Aκmnpκm(r)􏽥pκm(λ) sin nθ +
απ
2

􏼒 􏼓, (19)
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where 􏽥pκm(λ) �. Substituting equation (19) into equation
(17) yields the following n th-order Bessel’s equation:

d
2
pκm(r)

dr
2 +

1
r

dpκm(r)

dr
+ k

2
r −

n
2

r
2􏼠 􏼡pκm(r) � 0, (20)

where kr �

������

k
2
0 − λ2

􏽱

(k0 > λ)
������

λ2 − k
2
0

􏽱

(k0 < λ)

⎧⎪⎨

⎪⎩
. Equation (20) yields the

general solutions as follows:

pκm(r) �
aκJn krr( 􏼁 + bκYn krr( 􏼁 k0 > λ( 􏼁

cκIn krr( 􏼁 + dκKn krr( 􏼁 k0 < λ( 􏼁
.􏼨 (21)

3.4. Acoustic-Structure Coupling. According to the conti-
nuity of radial velocity at the fuid-shell interfaces, the
boundary conditions can be expressed (ignoring the
thickness of the shell) as

_w(r, θ, x) �
1

jωρf

zpκ

zr
􏼠 􏼡

r�R

, (22)

where the dot denotes the time derivative and

R �
R1 (κ � 1)

R3 (κ � 2)
􏼨 .

Te ffth equation of equation (13) yields the following
equation:

_w(r, θ, x)|r�R � 􏽘
α,m,n

_Wmn sin nθ +
απ
2

􏼒 􏼓fm(x), (23)

where _Wmn � −jωWmn, fm(x) �
sin kmx(0≤ x≤L)

0(x< 0, x>L)
􏼨 .

Te Fourier integral transform of equation (23) yields
the following equation:

􏽥_w(r, θ, λ)|r�R � 􏽘
α,m,n

_Wmn sin nθ +
απ
2

􏼒 􏼓􏽥fm(λ), (24)

where 􏽥fm(λ) � 􏽒
+∞
−∞ fm(x)e−jxdx.

Te defnite solution of acoustic pressure can be ob-
tained by combining the general solution equation (14) with
boundary conditions equation (24). After the inverse Fourier
integral transformation of the solutions, they can be
expressed as

pκ(r, θ, x) �
2ρfω

2
m

L
􏽘
α,m,n

sin nθ +
απ
2

􏼒 􏼓 􏽚
+∞

0

Gκ(r)Wmn�����

1 − β2
􏽱

Sm(β)

k
2
m − k

2
0β

2 dβ, (25)

where β � λ/k0, α � k0

�����

1 − β2
􏽱

.

Sm(β) �

− sin
k0L

2
β􏼠 􏼡 · sin k0β x −

L

2
􏼒 􏼓􏼔 􏼕(m � 2, 4, 6 . . .)

cos
k0L

2
β􏼠 􏼡 · cos k0β x −

L

2
􏼒 􏼓􏼔 􏼕(m � 1, 3, 5 . . .)

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

G1(r) �

J
(2)
n krr( 􏼁

k
2
rJ
′(2)
n krR( 􏼁

k0 > λ( 􏼁

In krr( 􏼁

k
2
rIn
′ krR( 􏼁

k0 < λ( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

,

G2(r) �

H
(2)
n krr( 􏼁

k
2
rH
′(2)
n krR( 􏼁

k0 > λ( 􏼁

Kn krr( 􏼁

k
2
rKn
′ krR( 􏼁

k0 < λ( 􏼁

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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Functions Jn and Yn are the Bessel’s functions of the frst
kind and second kind, respectively, In and Kn are the
modifed Bessel’s functions, and Hn is the Hankel’s function.
Te prime is added to these functions to denote diferen-
tiation with respect to r.

Te radiation impedance of acoustic-structure coupling
interaction can be defned as

ZIκ(R) � 2πRρfcf ·
4pmπ
εnk0L

2 􏽚
+∞

0

jGκ(αR)
�����

1 − β2
􏽱

Nqm(β)

Qqm(β)
dβ,

(27)

where

Qqm(β) � k
2
0β

2
− k

2
m􏼐 􏼑 k

2
0β

2
−

qπ
L

􏼒 􏼓
2

􏼢 􏼣,

Nqm(λ) �

sin2
k0L

2
λ, (q, m � 2, 4, 6 . . .),

∓j sin
k0L

2
λ cos

k0L

2
λ, (q≠m),

cos2
k0L

2
λ, (q, m � 1, 3, 5 . . .).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

3.5. Solution andDescription. Both sides of equation (12) are
multiplied by diag (Aα

qp, Bα
qp, Aα

qp, Bα
qp, Cα

qp) and then in-
tegrated along the inner and outer surfaces of the shell,
respectively, where p � 0, 1, 2, 3 . . . q � 1, 2, 3 . . . α � 0, 1. By
using orthogonality, the equation of motion in Fourier
integral form can be expressed as

􏽘
α,m,n

[Λ][S][Ψ] � −􏽢f − 􏽢q},􏽮 (29)

where

[Λ] �

πLδnpδmqdiag
1
εn

,
1
2
,
1
εn

,
1
2
,
1
εn

􏼠 􏼡, (α � 1),

πLδnpδmqdiag
1
2
,
1
εn

,
1
2
,
1
εn

,
1
2

􏼠 􏼡, (α � 0),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

􏽢f � 􏽘
α,p,q

F

R1
sin pθ0 +

απ
2

􏼒 􏼓 sin kqx0.

(30)

Due to the disparate fuid medium conditions on either
side of the shell (see Table 1), the acoustic pressure can be
categorized into the following three forms of expression:

(1) Case 1: 􏽢q � jω 􏽐
m,n

ZI1(R1)Wmn

(2) Case 2: 􏽢q � −jω 􏽐
m,n

ZI2(R3)Wmn

(3) Case 3: 􏽢q � −jω 􏽐
m,n

[ZI2(R3) − ZI1(R1)]Wmn

Te radial displacements (Wmn) can be obtained by
solving equation (32). Two parameters, related to the vi-
bration of the shell, are defned as follows:

(1) Te averaged quadratic velocity 〈V2
r〉 is as follows:

V
2
r􏽄 􏽅 �

ω2

2εn

􏽘
mn

WmnW
∗
mn, (31)

where the asterisk indicates complex conjugation
and εn is the Newman factor. Te total of the av-
eraged quadratic velocity is utilized to characterize
the intensity of vibrations within a specifc frequency
range, denoted by 〈V2

r〉total. In the following, both
〈V2

r〉 and 〈V2
r〉total are expressed in dB referenced to

2.5 × 10−17m2/s2.
(2) Te acceleration 〈Ar〉 is calculated as

Ar􏼊 􏼋 � −ω2
􏽘
mn

Wmn, (32)

where 〈Ar〉 is expressed in dB referenced to
1 × 10−6m/s2.

4. Calculation and Verification

Before calculating the radial displacement (Wmn) analytically,
the dissipation of structural energy should be introduced into
the abovementioned theory by treating Young’s modulus as
a complex quantity, namely, E⟶ E(1 − jη), and shear
modulus as another complex quantity, namely,
G∗ ⟶ G∗(1 − jη), where η denotes the loss factor. In ad-
dition, the number of modes used for structural displacement
is the main factor afecting the accuracy of the solution. In the
present case, a careful study of convergence was performed by
increasing the number of modes, leading to the following
choice: m � 1, 2, . . . , 10; n � 0, 1, . . . , 9. It should be pointed
out that the values of the natural frequencies are determined
from the peak locations of the forced response curves, instead
of solving the eigenvalue problem.

4.1. FreeVibration of the SandwichCylindrical Shell in theAir.
Te validity of the analytical model is verifed by comparing
the real part of the complex eigenvalues ω2 � ω2

0(1 + iη)

obtained from the standard characteristic equation of the
sandwich cylindrical shell with those obtained by the authors
in reference [16].Te geometry andmaterial constants of the
considered shell are provided as follows: h1 � h2 � h3 � 1
/3mm, L � R � 100mm, μ1 � μ3 � 0.3, E1 � E3 � 210GPa,
G2 � (8.582 + 2.985i)MPa, ρ1 � ρ3 � 7850 kg/m3, and
ρ2 � 1340 kg/m3.Te interior and exterior of the shell are air
medium.

Te results obtained from the present method and
reference [16] are presented in Table 5. Te vibration of the
cylindrical shell is axisymmetrical for n � 0. It is observed
that both sets of results demonstrate excellent agreement
with each other.
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4.2. Free Vibration of the Submerged Sandwich Cylindrical
Shell. To validate the precision of the present model for
vibration analysis of a submerged sandwich cylindrical shell,
the natural frequencies are computed by the fnite element
software COMSOL. Te geometric dimensions and material
parameters are shown in Tables 3 and 4. Te two ends of the
sandwich cylindrical shell adopt simply supported bound-
aries.Te comparison of natural frequencies of the sandwich
cylindrical shell is calculated under three medium condi-
tions as shown in Table 6. Obviously, the errors between
them are extremely low. Te analysis shows that the errors
are mainly due to the diferences between the nonlinear
materials of the FEM and the linear materials of the ana-
lytical method. Te dynamic properties of the damping
materials used in the FEM are afected by the frequency.

5. Results and Discussion

Te infuences of boundary conditions, medium conditions,
and parameters of the CLD on the vibration characteristics
of the sandwich cylindrical shell are primarily investigated in
this section. Te geometric dimensions and material pa-
rameters are shown in Tables 3 and 4.

5.1. Infuence of the Boundary Condition. Te four com-
monly encountered boundary conditions are considered in
the present study, as illustrated in Table 2. Te spectrum of
〈V2

r〉 under diferent boundary conditions is depicted in
Figure 6. Te medium condition is Case 3. In order to
conduct a more comprehensive analysis of the impact of
boundary conditions on the vibrational characteristics of
sandwich cylindrical shells, the corresponding 〈V2

r〉total
within the whole frequency range is presented in Table 7, and
the natural frequencies are illustrated in Figure 7.

Te total of the averaged quadratic velocity, as shown in
Table 7, is ranked in a descending order as C-F, C-SS, SS-SS,
and C-C. However, overall, the boundary conditions have
minimal impact on the total of the averaged quadratic ve-
locity with a variation range of approximately 0.74 dB within
frequencies below 1000Hz.

It can be observed from Figure 7 that the natural fre-
quency of the same mode follows a descending order from
C-C, C-SS, and SS-SS to C-F when both the circumferential
wave number and axial wave number are small. Conversely,

higher-order modes are minimally afected by boundary
conditions. Te analysis reveals that the stifness of the
system is infuenced by the boundary conditions, with
maximum rigidity and natural frequency observed when
both ends are fxed, which can be easily comprehended. In
other words, the sequence of system stifness under diferent
boundary conditions is C-C, C-SS, SS-SS, and C-F, re-
spectively, ultimately resulting in a variation in natural
frequency.

5.2. Infuence of the Medium Condition. Te spectrum of
〈V2

r〉 under diferent medium conditions (see Table 1) is
depicted in Figure 8, the corresponding 〈V2

r〉total within
whole frequency range is presented in Table 8, and the
natural frequencies are illustrated in Figure 9.

Figure 8 shows that under the infuence of the fuid, the
averaged quadratic velocity undergoes changes, leading to
alterations in both the magnitude of the resonance peaks and
natural frequencies. Notably, the spectrum curve of 〈V2

r〉

under Case 3 exhibits a signifcant leftward shift. In the
frequency range of 0–450Hz, the spectrum curve of 〈V2

r〉

under Case 1 and Case 2 aligns well. As the frequency in-
creases, the spectrum curve of 〈V2

r〉 of Case 1 shifts leftwards
with respect to that of Case 2, indicating a decrease in the
resonance frequency. According to Figure 9, the natural
frequencies of Case 2 at the low orders are basically the same
as those of Case 1 except n � 1, while those of Case 2 at the
high orders are slightly higher than those of Case 1. Table 8
shows that within the 1000Hz range, 〈V2

r〉total follows an
order from large to small: Case 3, Case 2, and Case 1. Te
variation of these two parameters is primarily ascribed to the
infuence exerted by the fuid.Te additional mass of a heavy
fuid (e.g., water) is generally considered to result in a re-
duction of natural frequency, whereas the additional
damping leads to a decrease in the amplitude of vibrations.

5.3. Infuence of the Constrained Layer Damping. In order to
investigate the efects of the CLD on the vibration control of
submerged sandwich cylindrical shells, the spectrum of
〈V2

r〉 with and without CLD under Case 3 is depicted in
Figure 10, the 〈V2

r〉total of which is calculated to be 92.41 dB
and 104.59 dB, respectively. Te diference between the
〈V2

r〉total amounts to 12.18 dB. Te results indicate that the
infuence of CLD on the vibration control of cylindrical
shells is notably signifcant. Obviously, the damping efect is
not ideal in the frequency bands of 0–150Hz and
550−650Hz, and except for these two frequency ranges the
damping efect is extremely excellent, and almost all of the
resonance peaks are signifcantly reduced.

5.4. Infuence of Tickness of the Viscoelastic Damping Layer.
In order to investigate the efects of the thickness of the
viscoelastic damping layer on the vibration characteristics of
submerged sandwich cylindrical shells, h2 is defned as
a ratio relative to h1, and all other geometric parameters
remained unchanged as indicated in Table 3. Te medium
condition involves fuid-flled and -loaded.

Table 5: Comparison of the results for the sandwich cylindrical shell.

m Reference [16] Present method
1 2.44E9 2.44E9
2 2.47E9 2.47E9
3 2.50E9 2.50E9
4 2.56E9 2.56E9
5 2.66E9 2.66E9
6 2.85E9 2.85E9
7 3.15E9 3.15E9
8 3.59E9 3.60E9
9 4.23E9 4.24E9
10 5.11E9 5.12E9
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Te spectrum of 〈V2
r〉 for diferent thicknesses of the

viscoelastic damping layer is depicted in Figure 11, and the
corresponding 〈V2

r〉total within the whole frequency range is
presented in Table 9. It can be found that the averaged
quadratic velocity decreases with the increase of thickness of
the viscoelastic damping layer obviously on the whole, which
can be primarily attributed to a thicker viscoelastic damping
layer that facilitates greater dissipation.Te results reveal the
natural frequencies for diferent thicknesses of the visco-
elastic damping layer, corresponding to various circum-
ferential wave numbers and longitudinal half-wave
numbers, which are depicted in Figures 12 and 13, re-
spectively. Altering the thickness of the viscoelastic damping
layer does not signifcantly afect the natural frequencies for
lower circumferential modes and higher longitudinal modes.
However, the natural frequency increases for both higher
circumferential modes and lower longitudinal modes with
the increasing thickness of the viscoelastic damping layer.

Te analysis reveals that the stifness of a sandwich structure
increases proportionally with the thickness of the visco-
elastic damping layer, while the natural frequency decreases
inversely with the stifness. Moreover, the stifness varies in
diferent modes. Specifcally, a larger number of circum-
ferential modes or a smaller number of longitudinal modes
results in more signifcant alterations in stifness. Conse-
quently, the natural frequency undergoes corresponding
modifcations.

To sum up, increasing the thickness of the viscoelastic
damping layer enhances the damping properties of the
composite structure in higher circumferential modes and
lower longitudinal modes.

5.5. Infuence ofTickness of the Constrained Layer. In order
to investigate the efects of the thickness of the constrained
layer on the vibration characteristics of submerged sandwich

Table 6: Comparison of the natural frequencies for the sandwich cylindrical shell.

m
Case 1 Case 2 Case 3

Present method FEM Present method FEM Present method FEM
1 150.2 151.2 336.1 334.1 243.7 241.7
2 461.5 460.3 782.7 781.1 558.3 555.6
3 776.1 774.5 1133.6 1132.2 783.8 781.8
4 1043.4 1040.1 1367.9 1363.7 954.3 952.4
5 1265.6 1261.2 1558.2 1555.0 1103.9 1101.9
6 1453.7 1450.1 1737.5 1734.3 1227.1 1223.1
7 1617.6 1613.6 1856.3 1854.3 1342.6 1340.4
8 1763.9 1761.2 1993.8 1993.1 1446.0 1444.6
9 1897.0 1892.5 2099.4 2095.2 1540.6 1540.0
10 2020.2 2017.2 2205.0 2201.0 1635.2 1632.1
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Figure 6: Averaged quadratic velocity under diferent boundary conditions.

Table 7: Te total of the averaged quadratic velocity under diferent boundary conditions.

Boundary condition C-C (dB) SS-SS (dB) C-SS (dB) C-F (dB)
〈V2

r〉total 92.10 92.41 92.45 92.84
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cylindrical shells, h3 is defned as a ratio relative to h1, and all
other geometric parameters remained unchanged as in-
dicated in Table 3. Te medium condition involves fuid-
flled and -loaded.

Te spectrum of 〈V2
r〉 for diferent thicknesses of the

constrained layer is depicted in Figure 14, and the corre-
sponding 〈V2

r〉total within the whole frequency range is
presented in Table 10. It can be found that the averaged
quadratic velocity decreases with the increase of thickness of
the constrained layer obviously. Te analysis indicates that
increasing the thickness of the constrained layer can in-
troduce additional damping efects to the base, thereby
exerting a vibration control infuence. Te natural fre-
quencies for diferent thicknesses of the constrained layer,
corresponding to various circumferential wave numbers and
half-wave longitudinal wave numbers, are depicted in Fig-
ures 15 and 16, respectively. Increasing the thickness of the
constrained layer enhances the damping properties of the
composite structure. It can be observed that the natural
frequency increases with the increasing thickness of the

constrained layer, which is especially evident in higher
modes. Te analysis reveals that the stifness of a sandwich
structure increases proportionally with thickness of the
constrained layer, while the natural frequency decreases
inversely with the stifness. Similarly, the stifness varies in
diferent modes. Specifcally, a larger number of circum-
ferential or longitudinal modes results in more signifcant
alterations in stifness.

6. Experiment and Analysis

6.1. Analytical and Experimental Results. Te analytical and
experimental results of the acceleration level at measuring
position 3 are shown in Figures 17–19, respectively. Te
trends of the two spectral curves are essentially identical,
with a satisfactory concurrence in the low-frequency range.
Particularly, the resonance frequency in the low-frequency
band is nearly identical.

By comparing the results, the analysis shows that the
errors are mainly due to the following reasons:
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Figure 7: Natural frequency under diferent boundary conditions. (a) n� 1. (b) n� 2. (c) n� 3. (d) n� 4.
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(1) Te geometric parameters of the analytical and ex-
perimental models are difcult to be completely
consistent. In contrast to the analytical model, the
experimental model has an end-cap at each end,
which results in a diference in natural frequencies.

(2) Te boundary conditions of the analytical model are
arduous to be identical to those of the experimental
model. Experimentally, the simple-supported con-
dition for the experimental model is not ideal, but
the one for the analytical model is ideal in physical
defnitions.

(3) Under the current experimental conditions, it is
almost impossible for the material parameters of the
analytical and experimental models to be exactly the
same. Te shear modulus of rubber materials is
characterized by frequency variability, while ideal
materials are used in the analytical model, which
leads to errors in the analytical results. As the fre-
quency increases, the nonlinear changes in the
damping properties of the elastic material become
more and more pronounced, resulting in a tendency
to make larger errors.

6.2. Experimental Analysis of the Vibration Control. To
further analyze the efect of the CLD on the vibration control
of the sandwich cylindrical shell, the experimental accel-
eration of the measuring position 3 with and without CLD is
measured under three medium conditions.Figures 20–22
depict the acceleration of the position 3 to describe the

efect of the CLD on the vibrational properties of the cy-
lindrical shell under the three medium conditions. Te
following conclusions can be drawn from these fgures:

(1) Te constrained damping layer efectively controls
the vibration of the cylindrical shell, and most of the
resonant peaks are eliminated.

(2) Te damping efect is not ideal within 150Hz, but the
damping efect is extremely excellent when it is larger
than 200Hz, and practically all formats are elimi-
nated, which is consistent with the abovementioned
theoretical analysis.

(3) Te damping efects under Case 2 (fuid-loaded) and
Case 3 (fuid-flled and -loaded) are similar and
evidently stronger than that under Case 1 (fuid-
flled). We can assume that the CLD has a noticeable
damping efect in the whole frequency range.

From Table 11, we may state the following:

(1) Te total vibration-level diference can reach above
5 dB in the frequency range of 1000Hz under three
medium conditions.

(2) Te total vibration levels of the cylindrical shell
without CLD are Case 1 (fuid-flled), Case 2 (fuid-
loaded), and Case 3 (fuid-flled and -loaded) in
order from large to small.

(3) Te damping efects under Case 2 (fuid-loaded) and
Case 3 (fuid-flled and -loaded) are similar and
defnitely stronger than that under Case 1 (fuid-
flled).

To sum up, the analytical method presented in this
paper is highly accurate and can directly refect the
physical relationship between excitation and response,
which is of great signifcance for the optimization and
design of various parameters of a sandwich cylindrical
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Figure 8: Averaged quadratic velocity under diferent medium conditions.

Table 8:Te total of the averaged quadratic velocity under diferent
medium conditions.

Case 1 (dB) 2 (dB) 3 (dB)
〈V2

r〉total 96.17 95.49 92.41
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Figure 9: Natural frequency under diferent medium conditions. (a) n� 1. (b) n� 2. (c) n� 3. (d) n� 4.
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Figure 10: Averaged quadratic velocity with and without the constrained layer damping.
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Figure 11: Averaged quadratic velocity for diferent h2/h1.

Table 9: Te total of the averaged quadratic velocity for diferent h2/h1.

h2/h1 0.5 (dB) 1 (dB) 2 (dB) 3 (dB)

〈V2
r〉total 92.93 90.64 88.14 86.36
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Figure 12: Natural frequency for diferent h2/h1. (a) m� 1. (b) m� 2.
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Figure 13: Natural frequency for diferent h2/h1. (a) n� 5. (b) n� 6.
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Figure 14: Averaged quadratic velocity for diferent h3/h1.

Table 10: Te total of the averaged quadratic velocity for diferent h3/h1.

h3/h1 0.5 (dB) 1 (dB) 2 (dB) 3 (dB)

〈V2
r〉total 92.58 89.13 86.09 83.19
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Figure 15: Natural frequency for diferent h3/h1. (a) m� 1. (b) m� 2.
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Figure 16: Natural frequency for diferent h3/h1. (a) n� 3. (b) n� 4.
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Figure 17: Acceleration under fuid-flled.
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Figure 18: Acceleration under fuid-loaded.
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Figure 20: Damping efects under fuid-flled.
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Figure 21: Damping efects under fuid-loaded.
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Figure 19: Acceleration under fuid-flled and -loaded.
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shell. Moreover, the CLD has a pronounced damping
efect on a cylindrical shell under three medium condi-
tions, which is a technically feasible approach in
engineering.

7. Conclusion

An analytical model on the vibration of a point-driven
sandwich cylindrical shell was proposed from the view-
point of acoustic-structure coupling. Te related experi-
ments were performed. According to the reported results
in this paper, the following conclusions can be drawn:

(1) On the basis of the relationship between force and
displacement, an analytical model of sandwich cy-
lindrical shells involving three medium conditions
including fuid-flled, fuid-loaded, and fuid-flled
and -loaded was proposed and verifed.

(2) Te rigidity of the system can be infuenced by the
boundary conditions. As the rigidity increases, so
does the natural frequency. Te stifness of the
system, under diferent boundary conditions (C-C,
C-SS, SS-SS, and C-F), follows a descending order.
Tus, this variation follows the same law in terms of
natural frequency.

(3) Te loading efect of the fuid medium mitigates the
averaged quadratic velocity and natural frequencies
of the cylindrical shell. Te loading efect exhibits
a gradient of intensity, ranging from fuid-flled and
-loaded, fuid-loaded, to fuid-flled.

(4) Increasing the thickness of the viscoelastic damping
layer enhances the damping properties of the
composite structure in higher circumferential modes
and lower longitudinal modes. Increasing the
thickness of the constrained layer enhances the
damping properties of the composite structure,
which is especially evident in higher modes.

(5) Both theoretical and experimental results un-
equivocally demonstrate that the CLD has a pro-
nounced damping efect on the cylindrical shell
under three medium conditions, which is a techni-
cally feasible approach in engineering.

From the engineering point of view, the results presented
in this paper are of strong reference for the study of vibration
control in submerged sandwich cylindrical shells.

Appendix

Matrix [Q] in equation (12).
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Figure 22: Damping efects under fuid-flled and -loaded.

Table 11: Te total acceleration level obtained by the experiment under three medium conditions.

Case Without CLD (dB) With CLD (dB) Diference (dB)
1 173.6 167.9 5.7
2 173.2 165.8 7.4
3 171.9 163.8 8.1
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Matrix [Q] in equation (12).

Shock and Vibration 21



εn �
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