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Deep learning has recently received extensive attention in the feld of rolling-bearing fault diagnosis owing to its powerful feature
expression capability. With the help of deep learning, we can fully extract the deep features hidden in the data, signifcantly
improving the accuracy and efciency of fault diagnosis. Despite this progress, deep learning still faces two outstanding problems.
(1) Each layer uses the same convolution kernel to extract features, making it difcult to adaptively select convolution kernels
based on the features of the input image, which limits the network’s adaptability to diferent input features and leads to weak
feature extraction. (2) Large number of parameters and long training time. To solve the above problems, this paper proposes an
integrated deep neural network that combines an improved selective kernel network (SKNet) with an enhanced Inception-
ResNet-v2, named SIR-CNN. First, based on the SKNet, a new three-branch SKNet was designed. Second, the new SKNet is
embedded into a depthwise separable convolution network such that the model can adaptively select convolution kernels of
diferent sizes during training. Furthermore, the convolution structure in the Inception-ResNet-v2 network was replaced by the
improved depthwise separable convolution network to achieve efective feature extraction. Finally, the time-frequencymaps of the
raw vibration signals are obtained through short-time Fourier transform (STFT) and then sent to the proposed SIR-CNN network
for experiments. Te experimental results show that the proposed SIR-CNN achieves superior performance compared to other
methods.

1. Introduction

Rolling bearings are widely used in nuclear energy, wind
power, aerospace, petrochemicals, electric power, and other
industrial felds [1]. With a series of advantages, such as high
precision, good substitutability, and low price, rolling
bearings are the core components of mechanical equipment,
especially rotating mechanical equipment [2]. However, as
the “joint” between the rotating and fxed parts, the oper-
ating conditions of rolling bearings inevitably change, owing
to the long-term efects of high temperature, high speed, and
a variety of alternating loads [3]. In addition, owing to
processing errors, poor lubrication, thermal fatigue, work
wear, and other factors, it is easy to develop faults in the
rolling element, inner race, outer race, and cage inside the

bearing [4]. According to statistics, 45%∼55% of mechanical
failures are caused by bearing failure [5]. When a rolling
bearing fails, it will afect the normal operation of other parts
of the equipment, causing a series of chain damage reactions,
even leading to serious consequences of machine damage
and human death. Terefore, the fault diagnosis of rolling
bearings is of great signifcance [6, 7].

Traditional bearing fault diagnosis methods include
noise analysis, acoustic diagnosis, temperature measure-
ments, oil flm resistance diagnosis, and vibration signal
analysis [8]. Among them, diagnostic technology based on
vibration signal analysis is applicable to rolling bearings
under various working conditions, which has the advantages
of obvious fault characteristics and high diagnostic accuracy
[9]. Terefore, it has been widely used for bearing fault
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diagnoses. More than 80% of the existing literature on
bearing fault diagnosis employs vibration signal-analysis
methods. Tis method usually uses manual approaches
such as the fast Fourier transform (FFT) [10], wavelet
transform (WT) [11], and empirical mode decomposition
(EMD) [12] to extract signal features and then uses a support
vector machine (SVM) [13], K-nearest neighbor (KNN) [14],
and BP neural network (BPNN) [15] to obtain diagnostic
results. However, these feature extraction methods rely on
expert experience and knowledge, which can easily in-
troduce artifcial errors and have poor generalization ability.
In addition, it is difcult to establish complex data-mapping
mechanisms for these shallow models; therefore, they have
certain limitations.

In recent years, deep learning has been widely used for
fault diagnosis [16, 17]. Compared to traditional bearing
fault diagnosis methods, deep learning does not require an
artifcial feature extraction process. Instead, it automatically
extracts the representative information and sensitive fea-
tures from the original data. It has a strong learning rep-
resentation ability and excellent recognition efect.
Terefore, it has several advantages in the feld of fault
diagnosis. For example, deep discriminative transfer
learning network (DDTLN) [18], maximum mean square
discrepancy (MMSD) [19], relationship transfer domain
generalization network (RTDGN) [20], convolutional neural
network (CNN) [21], recurrent neural network (RNN) [22],
generative adversarial networks (GAN) [23], autoencoder
(AE) [24], ResNet [25], etc. Among them, CNN, as a typical
deep learning model, has a strong feature extraction ability
due to its unique local connection, weight sharing, pooling
operation, and other characteristics; therefore, it has re-
ceived extensive attention from researchers [9, 16, 26, 27].

Generally, to improve the performance of a CNN, it is
necessary to stack convolutional layers continuously to
obtain deeper convolutional networks. However, as the
number of network layers increases, the number of pa-
rameters increases dramatically, and the computing re-
sources required are considerable. What is more terrible is
that when the number of layers is too large, the model is
prone to the problems of gradient disappearance and
overftting in the process of back propagation, making it
difcult for the model to converge, leading to a decline in the
identifcation accuracy [28].

To solve the above problems, Google proposed
Inception-ResNet [29], which not only solved the problems
of gradient vanishing and loss value increasing but also
deepened the network and achieved higher recognition
accuracy, receiving widespread attention from experts. For
example, Liu et al. [30] achieved transfer learning based on
the Inception-ResNet-v2 model by converting raw data into
RGB images. Li et al. [31] proposed a bearing fault diagnosis
method that combined fault signal spectrum images with the
Inception-ResNet-v2 model, achieving good classifcation
accuracy. To address the issue of important feature loss,
Jigyasu et al. [32] developed a two-dimensional (2D) image
dataset using time-frequency methods and utilized the In-
ception-ResNet-v2 model for efective feature extraction.
Deveci et al. [33] compared commonly used time-frequency

images in bearing fault detection and analyzed which time-
frequency methods can more clearly display fault features.
Peng et al. [34] replaced the convolution module in In-
ception-ResNet-v2 with depthwise separable convolution to
extract fault features under diferent receptive felds. Zheng
[35] improved the feature extraction layer in the Inception-
ResNet-v2 structure, improving the detection accuracy of
the network for small-scale targets. Liu et al. [36] proposed
a transfer learning method based on Inception-ResNet-v2.
By studying diferent methods for converting one-
dimensional (1D) signals into 2D graphics, the best
method for structural health monitoring was found. Song
et al. [37] reduced the computational complexity of the
model by segmenting the input image and replacing the
convolution module in Inception-ResNet with depthwise
separable convolution. Das et al. [38] introduced a multi-
model-integrated network based on Inception-ResNet-v2,
which achieved high accuracy. Kasireddy et al. [39] de-
veloped a binary classifcation model based on Inception-
ResNet-v2 and a small Inception-ResNet-v2 model. Meel
and Kumar Vishwakarma [40] proposed a multimodal fu-
sion model based on Inception-ResNet-v2, which achieved
high recognition accuracy through multiple fusions in the
early and late stages.

However, the abovementioned Inception-ResNet net-
work still has the following problems: (1) Tey are unable to
adaptively select convolution kernels according to image
features. (2) Te Inception-ResNet model has a large
number of parameters and a long training time. To solve
these problems, this study proposes an integrated deep
neural network that combines an improved selective kernel
network (SKNet) with an enhanced Inception-ResNet-v2.
Te main contributions of this study are as follows.

(1) Considering that Inception-ResNet-v2 usually has
three diferent sizes of convolutional kernels, such as
3× 3, 5× 5, and 7× 7, a new three-branch SKNet
(NewSKNet) is designed, so that the network can
adaptively select the important features extracted by
diferent sizes of convolutional kernels during the
training process;

(2) Embed NewSKNet into a depthwise separable con-
volution network. Ten, the improved depthwise
separable convolution network is used to replace the
convolutional structure in the Inception-ResNet-v2
network to reduce the parameters and thus shorten
the training time of the network;

(3) A new intelligent bearing fault diagnosis framework
built on NewSKNet and enhanced Inception-
ResNet-v2 is proposed.

Te remainder of this paper is arranged as follows:
Section 2 briefy introduces the main theoretical back-
ground, including the short-time Fourier transform (STFT),
Inception-ResNet-v2 network, and SKNet; Section 3 de-
scribes the proposed method in detail; in Section 4, two
datasets are used for experimental verifcation; Section 5
discusses the proposed method. Finally, the results and
future work are summarized in Section 6.
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2. Theoretical Background

2.1. Short-Time Fourier Transform (STFT). Te STFT can
obtain both time and frequency domain features of bearing
vibration signals, and the transformed 2D matrix is more
suitable for CNN processing [41]. Te essence of STFT is the
Fourier transform with a window, which is calculated by
multiplying a window function h(τ), and assuming that the
signal is smooth during the short interval of the analysis
window. Subsequently, h(τ) is shifted on the time axis to
obtain the spectrum of the entire time domain. Te STFT
was calculated as follows:

STFT(τ,ω) � 􏽚
+∞

−∞
x(τ)h(τ − ∆τ)e

− j2πωτdτ, (1)

where x(τ) is the input time domain signal and h(τ − ∆τ) is
the analysis window function. It can be seen that STFT is the
Fourier transformmade bymultiplying the input signal x(τ)

by a window function h(τ − ∆τ). Te variables τ and ω are
the time and frequency resolutions, respectively, and the
formula is as follows:

t �
Nsl − Now

Nww − Now
􏼢 􏼣, (2)

ω �

Np

2
+ 1, if Np is even,

Np + 1􏼐 􏼑

2
, if Np is odd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where Nsl is the sample length, Nww is the window width,
Now is the window overlap width, Np is the number of
points participating in the Fourier transform, and [] is the
rounding down function.

As can be seen from equation (2), the sample length
and window width afect the resolution in both the
time and frequency domains, thus afecting the trans-
formation efect of the STFT. Generally, the sample
length is selected based on the frst harmonic of the fault
characteristic frequency and the window width of the
STFT is selected based on the second harmonic. Te fault
characteristic frequency can be calculated using the
following formula:

fIR �
N

2
1 +

d1

d2
cos θ􏼠 􏼡f,

fOR �
N

2
1 −

d1

d2
cos θ􏼠 􏼡f,

fBR �
1
2

d2

d1
1 −

d1

d2
􏼠 􏼡

2

cos2 θ⎛⎝ ⎞⎠f,

(4)

where fIR and fOR are the frequencies of the rolling element
passing through the inner and outer races, respectively; fBR
is the rotation frequency of the rolling element; f � v/60 is
the rotation frequency of the inner race; v is the rotational
speed; d1 and d2 are the rolling element diameter and pitch

circle diameter, respectively; N is the number of balls; and θ
is the contact angle.

2.2. Inception-ResNet-v2. In 2016, Google introduced
ResNet to the Inception network, thus proposing the In-
ception-ResNet-v2. Te inception module extracts multi-
scale features from diferent receptive felds using
convolution kernels of diferent sizes in parallel computing.
Te introduction of the ResNet structure can avoid over-
ftting and network degradation problems caused by
deepening of the model layers.

Tis study is based on the Inception-ResNet-v2 model,
which is mainly composed of Stem, Inception-ResNet,
Reduction, Average pooling, Dropout, SoftMax, and other
modules, as shown in Figure 1. As can be seen, the original
pooling operation inside the inception is replaced with
a residual connection, which constitutes a new Inception-
ResNet module. Te Inception-ResNet module comprises
three types: A, B, and C. Teir structures are similar;
however, the size and number of convolution cores are
diferent. Te Stem module was used to preprocess the input
data to obtain a deeper network structure. Te Reduction
module was used to change the size of the feature map to
prevent bottlenecks. For the detailed structure of the
Inception-ResNet modules, refer to [29].

2.3. Selective Kernel Network (SKNet). In recent years,
studies on the mechanism of animal visual nerve action have
found that when cats look at objects of diferent sizes and
distances, the size of the receptive feld of their visual layer
neurons is not fxed but automatically adjusts with the size of
the stimulus. Terefore, when constructing a CNN, the size
of the convolution kernel should difer for diferent stimuli.
However, existing CNN models generally employ only one
type of convolutional kernel in the same layer and rarely
consider the role of multiple convolutional kernels.

To solve this problem, in 2019, Li et al. proposed SKNet
[42], as shown in Figure 2. Te network consisted of three
main steps: split, fuse, and selection. In the Split stage, the
input image is convolved by two kinds of convolution
kernels, 3× 3 and 5× 5, respectively; in the Fuse stage, the
features calculated in the Split stage are fused by the SoftMax
function; fnally, in the Select stage, the new feature map is
obtained according to the results of the diferent convolution
kernels.

3. Proposed Method

3.1. A New Selective Kernel Network (NewSKNet). Te In-
ception model can adapt to images of diferent scales by
adding multiple convolution kernels; however, the convo-
lution kernels of each layer have the same weight. Corre-
spondingly, the convolution kernel of SKNet difers in size
and parameter weight. In addition, they can be easily em-
bedded into other deep learning models.Terefore, based on
SKNet, we designed a new three-branch lightweight em-
bedded module called NewSKNet, as shown in Figure 3.
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For a given characteristic graph X ∈ RH×W×C, three
diferent convolution kernels, 3 × 3, 5 × 5, and 7 × 7, were
used for the calculation, and three characteristic graphs,
namely, U1 ∈ RH×W×C, U2 ∈ RH×W×C, and U3 ∈ RH×W×C,
are obtained. To enable the model to adjust the size of the
local receptive feld according to the size of the input feature
map, the “gate” is used to control the information passing
through the three convolution kernels. To achieve this goal,
element-wise summation was used to fuse the results of the
three convolution kernels.

U � U1 + U2 + U3. (5)

Te statistical information S ∈ RC of diferent channels
is then obtained by global average pooling (GAP), where the
statistical information of channel c is

Sc � FGAP Uc( 􏼁

�
1

H × W
􏽘

H

i�1
􏽘

W

j�1
Uc(i, j).

(6)

Furthermore, a compact feature map z ∈ Rd×1 is gen-
erated through a fully connected (FC) layer so that the
parameters in the network can be reduced, thus improving
computational efciency.
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Figure 1: Inception-ResNet-v2 model.
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Figure 2: SKNet model structure.
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Z � FFC(S) � R B WS( 􏼁( 􏼁, (7)

whereR is the ReLU activation function andB denotes the
batch normalization. Subsequently, Z is divided into three
branches using the SoftMax function.

a �
e
AZ

e
AZ

+ e
BZ

+ e
CZ,

b �
e
BZ

e
AZ

+ e
BZ

+ e
CZ,

c �
e

CZ

e
AZ

+ e
BZ

+ e
CZ,

(8)

where A, B, C ∈ Rc×d, a, b, c denote the convolution kernel
weights of U1, U2, and U3, respectively. We then obtain O1,
O2, and O3 through an element-wise product of the con-
volution kernel weights.

O1 � aU1,

O2 � bU2,

O3 � cU3.

(9)

Finally, the output of the characteristic graph can be
obtained by summation.

O � O1 + O2 + O3. (10)

3.2. Depth-Wise Separable Convolution Embedded in
NewSKNet. Depthwise separable convolution is a light-
weight network that includes depthwise convolution and
pointwise convolution [43]. In depthwise convolution, each
convolution kernel is responsible for one channel; that is,
each channel is calculated using only one convolution
kernel. Because this operation is an independent convolu-
tion operation for each channel, it does not efectively use
the feature information of diferent channels at the same
spatial location.Terefore, pointwise convolution is typically
used after depthwise convolution. Specifcally, it was used to

combine the obtained feature maps again to generate a new
feature map.

In this study, a depthwise separable convolutional net-
work embedded in NewSKNet is proposed, as shown in
Figure 4. First, the features of the input image are extracted
using 1 × 1, 3 × 3, and 5 × 5 convolution kernels. Ten, three
1 × 1 convolution kernels are used to merge the extracted
features. Finally, the NewSKNet proposed in Section 3.1 is
embedded into the model to further extract signifcant
features. Specifcally, after the depthwise separable convo-
lution network obtains the feature map and NewSKNet uses
three diferent convolution kernels to perform operations,
thereby obtaining three feature maps. Ten, the weighted
probability of each feature map was calculated using the
SoftMax function. Finally, the weighted probability with the
highest probability ranking was selected, and the weight was
multiplied with the corresponding characteristic graph to
obtain the fnal characteristic graph. Tus, after the
NewSKNet operation, feature maps with more features can
be selected for improved fault classifcation.

In a traditional CNN, a certain relationship exists
between the number of parameters in the network and the
number of feature maps, which can be calculated as
follows:

G(w−x)/l+1,(h−y)/l+1,m � 􏽘
x,y

Cx,y,z ∗Gw,h,z, (11)

where C is the convolution kernel, x, y, and z represent the
size of the convolution kernel and the number of channels; G
represents the input characteristic diagram with dimensions
as w, h, z; G represents the output characteristic diagram
with dimensions are (w − x)/l + 1, (h − y)/l + 1, m; 1 rep-
resents the step length; and m is the number of output
channels. Terefore, the number of parameters in the net-
work is R1 � x∗y∗ z∗m.

Te parameter formula of depthwise convolution is as
follows:

G(w−x)/l+1,(h−y)/l+1,z � 􏽘
x,y

Cx,y,z ∗Gw,h,z. (12)
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Figure 3: NewSKNet model structure.
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Te parameter formula of pointwise convolution is as
follows:

Gw,h,m � 􏽘
z,m

C1∗1∗m ∗Gw,h,z, (13)

where C is the convolution kernel; its size is 1∗ 1∗m; m is
the number of output channels. Te number of depthwise
convolution parameters is z∗x∗y and the number of
pointwise convolution parameters is m∗ z, so the number
of depthwise separable convolution parameters is
R2 � z∗ x∗y + m∗ z.

Terefore, the ratio of the number of parameters be-
tween depthwise separable convolution and traditional
convolution is as follows:

R2

R1
�

z∗x∗y + m∗ z

x∗y∗ z∗m

�
1
m

+
1

x∗y
.

(14)

From equation (14), it can be seen that the parameter
calculation of depthwise separable convolution is related to
the number of output channels and the size of the convo-
lution kernel used. For example, when the convolutional
kernel size is 3 × 3 and the number of output channels is 64,
depthwise separable convolution reduces the computational
complexity by about 8-9 times compared to traditional
convolution.

3.3. Te Proposed Fault Diagnosis Framework Based on SIR-
CNN. In fact, when the cat’s visual nerve is stimulated, the
size of its receptive feld is not fxed but automatically adjusts
with the change in stimulation. In contrast, in the CNN
model constructed by imitating the visual features of cats,
the weight of each layer of the convolution kernel is the
same, and the convolution kernel cannot be adaptively se-
lected according to the features of the input image.
Terefore, this study designed a novel bearing fault diagnosis
method based on the proposed SIR-CNN. Te core of the
diagnosis method is to design a new three-branch SKNet and
embed it into a depthwise separable convolution network.
Finally, the convolution structure in Inception-ResNet-v2 is
replaced by the improved depthwise separable network.

Te model can adaptively select a feature map with more
features in the training process and extract the multilayer
sensitive features in the input image. Te established fault
diagnosis method and its application process are shown in
Figure 5 and Table 1. Te implementation steps are sum-
marized as Figure 6 and Table 2.

4. Experimental Validation

To validate the efectiveness of the proposed fault diagnosis
method based on SIR-CNN, this section uses a compre-
hensive fault simulation test bench and the XJTU-SY bearing
dataset to conduct experiments. All experiments were
implemented on a PC with a Win 10 operating system, Core
i7 CPU, 2.9GHz, 16GB RAM, and RTX2060 GPU. Te
software used in the experiments was Python 3.7,
TensorFlow 2.3.

4.1. Case 1: Laboratory-Measured Dataset

4.1.1. Experiment Description and Data Acquisition. Te
HZXT-DS-001 comprehensive fault simulation test bench
can be used to simulate various fault types of rolling
bearings. As shown in Figure 7, the test bench was mainly
composed of a three-phase motor, acceleration sensor, eddy
current sensor, shaft, and coupling. In this experiment, EDM
technology was used to machine faults in diferent parts of
a rolling bearing (NSK6308). Two radial (X, Y) and one axial
(Z) vibration signals of the bearing were measured by three
accelerometers. Te sampling rate is 8192Hz and the
sampling time is 10 s. In this way, fve common health
conditions of rolling bearings were simulated: normal (NL),
rolling element failure (RF), inner race failure (IF), outer
race failure (OF), and cage failure (CF). Figure 8 shows a real
picture of the four types of failed bearings.

During the experiment, the motor drives the rotor to run
at 2600 r/min, 2800 r/min, 3000 r/min, and 3200 r/min and
then uses the data acquisition system (as shown in Figure 9)
to collect the vibration signals of the bearing in diferent
states, which are represented by A, B, C, and D, respectively,
as shown in Table 3. At each speed, it includes a rolling
element fault signal, cage fault signal, inner-race fault signal,
normal signal, and outer-race fault signal. Terefore, fve
diferent data samples were formed for each dataset, and
their time-domain and frequency-domain diagrams are
shown in Figure 10.

To fully utilize the powerful ability of the CNN model in
image processing, the 1D bearing vibration signal is con-
verted into a 2D time-frequency diagram through STFT, as
shown in Figure 11. Ten, the obtained time-frequency
graph was divided into training, validation, and testing
sets. Te training and validation sets were used to train the
proposed SIR-CNN and the testing set was used to verify the
trained model.

4.1.2. Diagnostic Results and Analysis. To explain the clas-
sifcation efect of the rolling bearing fault diagnosis method
based on SIR-CNN in more detail, the four datasets in

Input

1×1 1×1 1×1 3×3 3×3 3×3 5×5 5×5 5×5

1×1 Conv 1×1 Conv 1×1 Conv

NewSKNet

Output

Figure 4: Embedding NewSKNet into the depthwise separable
convolution model structure.
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Table 3 were used for the experiments, and the confusion
matrix was used to display the experimental results. Te
abscissa of the confusion matrix represents the predicted
category label and the ordinate represents the real category
label. Te number on the diagonal line indicates the number
of samples correctly classifed for each sample type. Te
larger the number, the better is the classifcation efect of the
model for this type of sample. Te number outside the

diagonal indicates the number of samples of one type in-
correctly identifed as another. Figure 12 shows the con-
fusion matrix of the proposed method for the four datasets.
Te diagnostic accuracies were 99.6%, 99.8%, 100%, and
99.2%, with the average diagnostic accuracy of the four
datasets at 99.65%.Tis shows that the proposed method has
a strong feature learning ability on the four datasets and
achieves a high classifcation accuracy.
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Figure 5: Flowchart of the fault diagnosis method based on SIR-CNN.

Table 1: Description of SIR-CNN model parameters.

Modules Blocks Operations and parameters
Stem — As in Figure 1

Depthwise separable convolution with NewSKNet

Branch_0 C � 1 × 1 − 3, S � 1 × 1, P� “same”; C � 1 × 1, S � 1 × 1, P � “valid”
Branch_1 C� 3 × 3 − 3, S� 1 × 1, P� “same”; C� 1 × 1, S� 1 × 1, P � “valid”
Branch_2 C � 5 × 5 − 3, S � 1 × 1, P� “same”; C � 1 × 1, S � 1 × 1, P � “valid”
NewSKNet As in Figure 3

Reduction A
Branch_0 C � 3 × 3 − 384, S � 2 × 2, P � “valid”
Branch_1 C � 1 × 1 − 256; 3 × 3 − 256; 3 × 3 − 384, S � 2 × 2, P � “valid”
Branch_2 Max P � 3 × 3, S � 2 × 2, P � “valid”

Depthwise separable convolution with NewSKNet

Branch_0 C � 1 × 1 − 3, S � 1 × 1, P� “same”; C � 1 × 1, S � 1 × 1, P � “valid”
Branch_1 C � 3 × 3 − 3, S 1 × 1, P � “same”; C � 1 × 1, S � 1 × 1, P � “valid”
Branch_2 C � 5 × 5 − 3, S � 1 × 1, P � “same”; C � 1 × 1, S � 1 × 1, P � “valid”
NewSKNet As in Figure 3

Reduction B

Branch_0 C � 1 × 1 − 256; 3 × 3 − 384, S � 2 × 2, P � “valid”
Branch_1 C � 1 × 1 − 256; 3 × 3 − 288, S � 2 × 2, P � “valid”
Branch_2 C � 1 × 1 − 256; 3 × 3 − 288; 3 × 3 − 320, S � 2 × 2, P � “valid”
Branch_3 Max P � 3 × 3, S � 2 × 2, P � “valid”

Depthwise separable convolution with NewSKNet

Branch_0 C � 1 × 1 − 3, S � 1 × 1, P � “same”; C � 1 × 1, S � 1 × 1, P � “valid”
Branch_1 C � 3 × 3 − 3, S � 1 × 1, P � “same”; C � 1 × 1, S � 1 × 1, P � “valid”
Branch_2 C � 5 × 5 − 3, S � 1 × 1, P � “same”; C � 1 × 1, S � 1 × 1, P � “valid”
NewSKNet As in Figure 3

Average pooling — 512×1
Dropout — Ratios 0.8
SoftMax — n_classes × 1
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4.1.3. Performance Comparison of Diferent Methods. To
further validate the advantages of the proposed method
compared with other methods, this section selects shallow
models, a conventional CNNmodel, and deep models based
on Inception were used for comparative experiments. (1)
Compared with shallow models. First, 15 features of the
vibration signal are extracted [44] and then input into the
SVM and BPNN for fault identifcation. Among them, the
kernel function of SVM adopts Gaussian radial basis
function (RBF), C � 10, gamma � 0.015. Te hidden layer
structure of BPNN is (32, 16), and the activation function
is ReLU. (2) Comparison with the conventional CNN.
Te specifc structural parameters were as follows:
Conv3×3

16 ⟶ Pooling2×2
16 ⟶ Conv3×3

32 ⟶ Pooling2×2
32 ⟶

Conv3×3
64⟶ Pooling2×2

64 ⟶ Conv3×3
64 ⟶ Pooling2×2

64 ⟶

FC100
1 ⟶ FC5

1, where Convm×m
n represents the convolu-

tional layer, with a kernel size of m × m and a quantity of
n; Poolingc×c

k represents the pooling layer, with a pooling
size of c × c and a quantity of k; FC represents the fully
connected layer (3) Compared to the deep model based
on inception. In this experiment, Inception-v4, In-
ception-ResNet-v2, Inception-ResNet-v2+SKNet, and
Inception-ResNet-v2+NewSKNet were used. Te sample
data in Table 3 are input into the model for iterative
training. To reduce the impact of randomness, each ex-
periment was conducted ten times.

As shown in Figure 13, the diagnosis accuracy of the
shallow networks (BPNN and SVM) is low. Tis is because
the BPNN and SVMneed tomanually extract features before
training. However, the method of manually extracting

Testing device

Vibrational signal acquisition

Data
acquisition

Obtain time-frequency maps by using STFT,
all samples are normalized into [0,1]

Validation set Training set Testing set

Training
SIR-CNN
model

Construct SIR-CNN and
initalize paremeters in it

Extract features of samples

Calculate the classifcation loss of the model

Optimize model recognition accuracy of the model

Accuracy > δ acc ?

Maximum epoch ?

Get the best model
and parameters

Output fault diagnosis results

Fault
diagnosis

Yes

No

Yes

No

Pooling each feature map to obtain global features

Calculate the weight probability of global
features through the sofmax function

Retain the top 30% weight probability
to obtain the fnal feature map

Figure 6: Fault diagnosis fowchart of SIR-CNN.
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features will miss some important information, which will
afect the recognition accuracy. Correspondingly, several
other methods have obtained high diagnostic accuracy,

among which the proposed SIR-CNN has the best classif-
cation performance. Tis is owing to the improved SKNet
embedded in the SIR-CNN model, which enables the model

Table 2: Pseudocode of our proposed method.

Algorithm: SIR-CNN
Requirement: Samples that have been preprocessed by STFT; learning rate: α; batch size: n;total training epoch: N; optimizer: Adam
While epoch≤max epoch:
While i≤ the total batch numbers:
(1) Extract features from the input image using three diferent convolution kernels: 3 × 3, 5 × 5, and 7 × 7;
(2) Tree feature maps are obtained: U1 ∈ RH×W×C, U2 ∈ RH×W×C, and U3 ∈ RH×W×C;
(3) Using equation (7) to fuse the results of three convolutional kernels;
(4) Calculate the statistical information for each channel using equation (8);
(5) Generate a compact feature map using equation (9);
(6) Calculate the weight probability of global features using equation (10);
(7) Retain the top 30% weight probability to obtain the fnal feature map;
(8) obtain the entire loss L;
(9) Update parameters in the network;
(10) i+� 1

end
epoch +� 1
end

Motor Coupling Acceleration sensor Shaf Eddy current sensor

Experimental bearingMass block

(a)

(b)

Figure 7: HZXT-DS-001 comprehensive fault simulation test bed. (a) Structural diagram of HZXT-DS-001. (b) Real picture of HZXT-DS-
001.

(a) (b) (c) (d)

Figure 8: Faulty bearing in four states. (a) Outer race failure. (b) Inner race failure. (c) Rolling element failure. (d) Cage failure.
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to automatically extract more important features during
training.

To verify the antinoise performance of the SIR-CNN,
Gaussian white noise with diferent signal-to-noise ratios
(SNR) was added to the bearing vibration signal to simulate
the actual working state of the bearing.Te SNR is defned as
follows:

SNR � 10 log10
Prawsignal

pnoisesignal
􏼠 􏼡, (15)

where Prawsignal and Pnoisesignal represent the powers of the
original vibration and noise signals, respectively.Te smaller
the SNR value, the stronger the noise interference. 70% of
the dataset with added noise was divided into training
samples, 20% into validation samples, and the remaining
10% as testing samples.

Figure 14 shows the average diagnostic accuracy of
the various methods under diferent SNR interferences.
With a continuous increase in noise, the fault diagnosis
accuracy of various methods also decreases corre-
spondingly. Te infuence of random noise on the
SIR-CNN model is relatively small, and its antinoise
performance tends to be stable. Te shallow models
(BPNN and SVM) are more susceptible to noise in-
terference. When SNR � −6 (dB), the diagnostic accuracy
was the lowest. Meanwhile, other methods are also af-
fected by random noise. In conclusion, compared with

other diagnostic methods, the SIR-CNN has the best
antinoise performance.

4.1.4. Comparison with Other Preprocessing Methods. In
order to obtain the optimal STFT, four diferent types of
window functions and window widths were used for
comparative analysis, and the experimental results are
shown in Figure 15. It can be seen that when the window
function is Hamming window and the window width is 64,
the recognition accuracy is the highest, reaching 99.91%.

Two data preprocessing methods, Wigner–Ville distri-
bution (WVD) and continuous wavelet transform (CWT),
are used to compare with STFT to verify the superiority of
STFT-based SIR-CNN. As shown in Figures 11 and 16, the
time-frequency map obtained by STFT contains the least
amount of information compared withWVD and CWT, and
some important fault features may be lost. However, it
reduces invalid noise and interference to some extent, and
the diferences between fault types are more obvious.
Correspondingly, the time-frequencymap obtained by CWT
retains more time-frequency information and therefore is
more susceptible to noise [42]. Te time-frequency map
generated by WVD is of low quality, with low similarity to
the original samples, and it is difcult to distinguish between
fault types, which increases the difculty of the model in
feature extraction.

Figure 17 shows the test results of three preprocessing
methods under diferent SNR. It can be seen that both CWT-

(a) (b)

Figure 9: Operating platform and data acquisition system. (a) PC platform. (b) Data acquisition system.

Table 3: Datasets constructed under diferent speed conditions.

Fault location Ball Cage Inner race None Outer race
Class label 0 1 2 3 4

Dataset A (2600 r/m)
Training set 700 700 700 700 700
Validation set 200 200 200 200 200
Testing set 100 100 100 100 100

Dataset B (2800 r/m)
Training set 700 700 700 700 700
Validation set 200 200 200 200 200
Testing set 100 100 100 100 100

Dataset C (3000 r/m)
Training set 700 700 700 700 700
Validation set 200 200 200 200 200
Testing set 100 100 100 100 100

Dataset D (3200 r/m)
Training set 700 700 700 700 700
Validation set 200 200 200 200 200
Testing set 100 100 100 100 100
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Figure 10: Frequency domain and time domain waveforms for fve diferent samples (dataset A). (a) Frequency domain diagram. (b) Time
domain diagram.

(a) (b) (c)
Figure 11: Continued.
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(d) (e)

Figure 11: Time-frequency diagram obtained by STFT (dataset A). (a) Roll element. (b) Cage. (c) Inner race. (d) Normal. (e) Outer race.
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Figure 12: Diagnostic results of the model under four datasets composed of diferent speeds. (a) Results for dataset A. (b) Results for dataset
B. (c) Results for dataset C. (d) Results for dataset D.
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SIRCNN and STFT-SIRCNN achieved high recognition
accuracy when the noise interference was relatively small.
However, as the noise interference increased, the recognition
accuracy of CWT-SIRCNN decreased signifcantly. Rela-
tively speaking, the impact of random noise on STFT-
SIRCNN was relatively small, and its noise resistance per-
formance tended to stabilize. Although WVD-SIRCNN is
not easily afected by noise interference, its overall recog-
nition accuracy is relatively low.

4.2. Case 2: Te XJTU-SY Bearing Dataset

4.2.1. Experimental Setup. To further validate the efec-
tiveness of the SIR-CNN algorithm and its fault diagnosis
framework proposed in this paper, this section conducted
experiments using the XJTU-SY bearing dataset [45]

provided by Xi’an Jiaotong University (XJTU) and the
Changxing Sumyoung Technology Co., Ltd. (SY). As shown
in Figure 18, the test rig consists of an AC motor, motor
speed controller, support bearing, horizontal accelerometer,
vertical accelerometer, and tested bearing. A total of three
types of working conditions were designed for the test: (1)
2100 rpm with a radial force of 12 kN; (2) 2250 rpm with
a radial force of 11 kN; and (3) 2400 rpm with a radial force
of 10 kN. Five bearings were used for each working con-
dition for the test, and pictures of the bearings with typical
types of failure are given in Figure 19, where it can be seen
that the causes of failure of the test bearings include inner
race wear, outer race wear, cage fracture, and outer race
fracture. In the test, two accelerometers were used to collect
the horizontal and vertical vibration signals of the test
bearings, respectively, with a sampling frequency of

Dataset A Dataset B Dataset C Dataset D
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Figure 13: Average diagnostic accuracy of various fault diagnosis methods under four datasets.
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Figure 14: Average diagnostic accuracy of various methods under random noise interference.
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Figure 15: Te classifcation accuracies of four window functions. (a) Hamming. (b) Blackman. (c) Hanning. (d) Rectangle.

IF OFNL

CWT

WVD

WVD

CWT

RF CF

Figure 16: Time-frequency maps generated by WVD and CWT (dataset A).
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25.6 kHz, a sampling interval of 1min, and a sampling
duration of 1.28 s each time.

In this experiment, the outer race dataset is selected in
Case 1, the inner race and cage dataset is selected in Case 2,
and the outer race, inner race, rolling body, and cage
composite fault dataset is selected in Case 3, which con-
stitutes the dataset of four fault types, namely, IR, OR, Cage,
and IBCO, as shown in Table 4.

Similarly, in order to fully utilize the powerful image
processing capabilities of CNNmodels, 1D bearing vibration
signals were converted into 2D time-frequency maps
through STFT, as shown in Figure 20. Ten, the obtained

time-frequency map is divided into training set, validation
set, and testing set. Te training set and validation set are
used to train the proposed SIR-CNN, while the testing set is
used to validate the trained model.

4.2.2. Diagnostic Results and Comparison. In order to further
verify the superiority of the proposed SIR-CNN model, seven
other models are selected for comparison experiments,
namely, STFT+CNN, STFT+ResNet, enhanced Inception-
ResNet-v2, RGB+Inception-ResNet-v2, SKNet+ Inception-v4,
SKNet+ Inception-ResNet-v2, and NewSKNet+ Inception-

WVD-SIRCNN
CWT-SIRCNN
STFT-SIRCNN

-5 -4 -3 -2 -1 0 1 2 3 4 5 6-6
Random interference noise of diferent degrees SNR (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 17: Diagnosis results under three preprocessing methods.
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Figure 18: XJTU-SY bearing test stand.
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ResNet-v2. Each method is experimented 10 times to take the
average value, and the results are shown in Table 5. It can be
seen that the diagnostic accuracies of the frst four models are
relatively low, while the two models SKNet+ Inception-v4 and
SKNet + Inception-ResNet-v2 improve their diagnostic
accuracies by at least 3.8% compared to the frst four
models due to the integration of SKNet. Overall, the
proposed SIR-CNN obtains the highest recognition ac-
curacy, with a 1.8% improvement in classifcation accu-
racy over NewSKNet + Inception-ResNet-v2 and a 12%
improvement over STFT + CNN.

In order to illustrate the classifcation details of the various
methods on diferent fault category samples in more detail, the
confusion matrix is used to show the experimental results.
Figure 21 shows the confusion matrices of the proposed
method and the other seven methods under the XJTU-SY
dataset, and it can be seen that the proposed SIR-CNNmethod
has a strong feature learning capability on each fault category
dataset, and a high classifcation accuracy is obtained.

In order to more intuitively analyze the diagnostic
performance of diferent methods under the XJTU-SY

dataset, the features extracted by the model are visualized
using t-SNE, and the results are shown in Figure 22. It can be
seen that the features extracted by STFT+CNN,
STFT+ResNet, enhanced Inception-ResNet-v2, and
RGB+ Inception-ResNet-v2 are all severely confounded;
SKNet + Inception-v4, SKNet + Inception-ResNet-v2, and
NewSKNet + Inception-ResNet-v2 extracted features are
also slightly aliased. In contrast, in the features extracted by
SIR-CNN, the samples of the same category are completely

(a) (b) (c) (d)

Figure 19: Pictures of bearings with typical failure types. (a) Inner race wear. (b) Outer race wear. (c) Cage fracture. (d) Outer race fracture.

Table 4: Description of the bearing dataset.

Fault location Inner race Outer race Cage
Inner race, ball,
cage, and outer

race
Dataset IR OR Cage IBCO
Training set 700 700 700 700
Validation set 200 200 200 200
Testing set 100 100 100 100

(a) (b) (c) (d)

Figure 20: Time-frequency diagram obtained by STFT. (a) IR. (b) OR. (c) Cage. (d) IBCO.

Table 5: Comparative performance of diferent methods.

Model Accuracy (%)
STFT+CNN [41] 87.9
STFT+ResNet [46] 89.7
Enhanced Inception-ResNet-v2 [34] 91.0
RGB+ Inception-ResNet-v2 [30] 92.5
SKNet + Inception-v4 [47] 96.3
SKNet + Inception-ResNet-v2 96.9
NewSKNet + Inception-ResNet-v2 98.1
SIR-CNN (ours) 99.9
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aggregated together, and the samples of diferent categories
are completely separated, which again indicates that the SIR-
CNN-based fault identifcation method has a more powerful
feature extraction capability and superior classifcation
performance.

4.2.3. Te Efectiveness of SIR-CNN. To further validate the
efectiveness of model improvement, we compared the
number of parameters, network training time, and network
testing time between the proposed SIR-CNN and the other
four networks. As shown in Table 6, it can be seen that the

proposed SIR-CNN has fewer network parameters, which is
consistent with the analysis of equation (14).We also noticed
that the number of parameters has an impact on the training
and testing times of the network.

Next, we also studied the combination efects of diferent
convolutional kernels. To limit the search space, we only
used four diferent convolutional kernels: 1 × 1, 3 × 3, 5 × 5,
and 7 × 7. If “NewSKNet” in Table 7 is checked, it means that
we use NewSKNet on the corresponding kernels checked in
the same row. Otherwise, we simply add the results of these
kernels as the output of the model. Te results in Table 7
indicate that when the designed NewSKNet is used, lower
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Figure 21: Te confusion matrix under XJTU-SY dataset. (a) STFT+CNN. (b) STFT+ResNet. (c) Enhanced Inception-ResNet-v2.
(d) RGB+ Inception-ResNet-v2. (e) SKNet + Inception-v4. (f ) SKNet + Inception-ResNet-v2. (g) NewSKNet + Inception-ResNet-v2.
(h) SIR-CNN (ours).
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Figure 22: Feature visualization. (a) STFT+CNN. (b) STFT+ResNet. (c) Enhanced Inception-ResNet-v2. (d) RGB+ Inception-ResNet-v2.
(e) SKNet + Inception-v4. (f ) SKNet + Inception-ResNet-v2. (g) NewSKNet + Inception-ResNet-v2. (h) SIR-CNN (ours).

Table 6: Comparison of parameter quantity and execution time.

Models Parameters (×106) Execution time to convergence (h) Execution time to on test set
(s)

Inception-v4 [29] 27.6 8.59 25
Inception-ResNet-v2 [34] 31.3 11.8 31
Inception-ResNet-v2 + SKNet 37.5 13.1 35
Inception-ResNet-v2 +NewSKNet 41.3 15.3 38
SIR-CNN (ours) 5.3 2.56 6

Table 7: Combination of diferent kernels.

1 × 1 3 × 3 5 × 5 7 × 7 NewSKNet Loss
√ √ √ 23.5
√ √ √ √ 2.4
√ √ √ 21.2
√ √ √ √ 2.3

√ √ √ 20.5
√ √ √ √ 1.4
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losses can be achieved, which is attributed to the use of
multiple convolutional kernels and the adaptive selection
mechanism between them. Due to the fact that lower losses
imply higher accuracy, this is consistent with the experi-
mental results mentioned above and further proves the
efectiveness of the model improvement.

5. Results and Discussion

As mentioned above, we know that feature extraction is
a crucial part in the fault diagnosis process, and its main role
is to extract fault-related information from the original
signal to match known fault templates to recognize the fault.
However, traditional deep learning methods are unable to
adaptively select convolutional kernels based on the features
of the input image, which results in weak extracted features.
In addition, the number of parameters of deep learning
models is very large, which usually requires a lot of time to
train the models. In order to solve these problems, this paper
skillfully fuses the multibranch SKNet, the depthwise sep-
arable convolution network and the improved Inception-
ResNet-v2 network, and the fused network can extract the
features in the input data more efectively and reduce the
parameters in the network. Tus, the accuracy of fault di-
agnosis can be improved and the speed of network con-
vergence can be accelerated.Te performance of the method
is verifed on two datasets. However, there are still some
potential problems, which need further improvement and
in-depth research.

At high bearing speeds, multiple faults may occur si-
multaneously or sequentially rather than a single fault.Tese
faults may be correlated or interact with each other, causing
the system to exhibit complex fault behavior. However, the
present model is tested on two datasets with single faults and
has some limitations.

From the empirical values in the literature, the number
of convolutional layers, the size of convolutional kernel, the
type and size of pooling, and the activation function all have
a signifcant impact on the performance of the model.
Terefore, how to choose the parameters of SIR-CNN is
a matter to be considered.

It should be noted that the data collected at industrial
sites usually contain real noise and are more complex, while
the noise data in this paper are modeled by adding Gaussian
white noise, which is somewhat diferent from the real
noise data.

Te testing of the model is done on two datasets; in the
next step of the research work, we need to collect more
datasets for further in-depth validation of the efectiveness of
the proposed method.

6. Conclusion

To solve the problem that existing intelligent fault diagnosis
methods cannot adaptively select the convolution kernel
according to diferent input images, which leads to weak
extracted features, this paper proposes an integrated deep
neural network, SIR-CNN, which combines proposed
NewSKNet and enhanced Inception-ResNet-v2. First, the

1D raw vibration signal is converted into 2D time-frequency
diagram using STFT. In this way, more time-frequency
features can be obtained, and the powerful image process-
ing capability of the CNN can be fully utilized. Ten, based
on SKNet, a new three-branch SKNet is designed, and the
designed NewSKNet is embedded in the depthwise separable
convolution network. Finally, the convolution structure in
Inception-ResNet-v2 was replaced by the improved
depthwise separable convolution network. Te performance
of the SIR-CNN was validated on open and measured
bearing datasets. Experiments show that the NewSKNet
designed in this study can adaptively select convolutional
kernels and extract more important signal features, thereby
greatly improving the diagnostic accuracy of the model. In
addition, as Inception-ResNet-v2 is a complex model with
numerous network parameters, we cleverly embed NewS-
KNet into a depthwise separable convolution and then re-
place the convolutional module in Inception-ResNet-v2 with
a depthwise separable convolution embedded with NewS-
KNet, which can signifcantly reduce the parameters in the
network and accelerate model ftting.

In the future, we plan to collect more datasets to validate
the model and consider introducing transfer learning into
the model to further validate the model on real
industrial data.
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