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Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic
losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg
production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high
frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel
genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive
humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently
available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicat-
ing the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV
vaccines, includingDNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested inmany studies
to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional
structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the
characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore
the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.

1. Infectious Bronchitis

Infectious bronchitis (IB) is an acute viral disease of chickens
that causes devastating economic losses in the poultry indus-
try worldwide [1]. All ages of chickens are susceptible to
infection. IB has a short incubation period ranging from 16
to 48 hr. It is extremely contagious and can spread very rap-
idly from the infected chickens to the entire flock, both
directly by aerosol and indirectly by mechanical means [2].

Depending on the organ/system affected and the tropism of
the infecting strain, IB is manifested clinically in three major
forms, namely, respiratory, renal, and reproductive. Respira-
tory signs are characterized by nasal discharge, lacrimation
(Figure 1(a)), sneezing, cough, tracheal rales, and gasping [2].
Mortality is usually low but can reach 20%–30% when second-
ary bacterial complications by Escherichia coli andmycoplasma
occur [3]. On necropsy, congested trachea with serous,

catarrhal, or caseous exudate could be found. Accumulated
caseous exudate could form a caseous plug at the tracheal
bifurcation leading to asphyxia, which is the main cause of
death (Figure 1(b)). When a secondary bacterial infection
occurs, caseous pericarditis, perihepatitis, and air saculitis are
usually observed [3].

Renal signs caused by nephropathogenic IBV strains,
such as 4/91, B1648, Aus T, QX-like, and TW are character-
ized by depression, ruffled feathers, excessive water intake,
and wet, whitish droppings with a high amount of ureates
[4–13]. In infected young chickens, mortality can reach
20%–25% [12, 13] and increases up to 1% weekly in case
of urolithiasis [3]. Some managemental factors such as cold
stress, high dietary protein or calcium, and elevated water
hardness can exacerbate the nephropathogenic effect of IBV
[4, 14]. Older chickens are more resistant to the nephro-
pathogenic effect of IBV [9, 15–17]. On necropsy, pale,
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marbled, and swollen kidneys with the tubules and ureters
distended with ureates are commonly observed (Figure 1(c))
[6, 12, 13, 18, 19].

In layers, marked decline in egg production is observed
[20, 21]. The produced eggs are of inferior quality; pale, soft-
shelled, rough-shelled, shell-less, small sized, and/or mis-
shapen (Figure 2(a)) [22]. The internal quality of the produced
eggs is also affected, with eggs exhibiting watery albumin with
no clear demarcation between the thick and thin albumin
[22]. The extent of production decline can vary from mild
to as much as 70% based on the stage of lay at infection,
the infecting strain, and the immune status [2, 23]. QX-type
IBV was shown to induce more pathogenic changes in the
oviduct in laying stage compared to the Mass-type IBV [24].
When young chicks are infected with IBV, permanent dam-
age of the oviduct occurs resulting in failure of production
when the chickens come into maturity (false layers) [25, 26].

On necropsy, chickens consequently show cystic oviduct
(Figure 2(b)) [10, 21, 22, 25–28]. Egg peritonitis is also seen
due to the shortness and narrowing of the oviduct leading to
internal laying [3, 22].

2. Infectious Bronchitis Virus

2.1. Viral Genome and Proteins. Infectious bronchitis virus
(IBV) belongs to group 3 of the coronavirus genus in the
Coronaviridae family. IBV is an enveloped virus of about
120 nm in diameter and possesses large club-shaped spikes
of about 20 nm in length [29] (Figure 3(a)). The genome of
IBV is a single-stranded, positive-sense RNA of approxi-
mately 27.6 Kb comprising as many as 13 open reading
frames (ORFs) in the order 5′-UTR-1a-1b-S-3a-3b-E-M-4b-
4c-5a-5b-N-6b-UTR-Poly(A)tail-3′ (Figure 3(b)). Gene 1, the
replicase gene, extends for about two-thirds of the viral

ðaÞ ðbÞ ðcÞ
FIGURE 1: Clinicopathology of infectious bronchitis in broilers. (a) Lachrymation; (b) caseous exudate forming a plug at the tracheal
bifurcation; and (c) pale, swollen kidney with renal tubules filled with ureates.

ðaÞ ðbÞ
FIGURE 2: Clinicopathology of infectious bronchitis in layers. (a) Deformed eggs including soft shell, thin shell, and shell-less eggs; (b) cystic
oviduct.
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genome and is composed of ORFs 1a and 1b [30]. Gene 1
encodes for polyproteins pp1a and pp1ab that are autoproteo-
lytically processed into 15 nonstructural proteins (nsp2–nsp16)
involved in viral genome replication and transcription. Some of
these nonstructural proteins have the ability to suppress both
innate and adapted immune responses (reviewed in Peng et al.
[31]). The replicase gene is also shown to be a determinant of
viral virulence [32–34].

The remaining one-third of the viral genome encodes
four structural proteins: spike (S), envelope (E), membrane
(M), and nucleocapsid (N), interspersed by as many as seven
accessory proteins: 3a, 3b, 4b, 4c, 5a, 5b, and 6b (Figure 3(b)).
These accessory proteins are not essential for viral replication
[35, 36]. However, they have been suggested to play a role in
antagonizing the host innate immunity and contribute to
viral pathogenicity [31, 37, 38]. It has been shown that dele-
tion of the accessory genes 3a, 3b, 5a, and/or 5b in IBV
resulted in mutant viruses with attenuated characteristics
[39, 40]. Zhao et al. [41] further demonstrated a greater effect
of protein 3b on pathogenicity than protein 3a. In addition,
the virulent YN strain became attenuated after replacement
of the 5a accessory protein with that of the attenuated aYN
strain [42]. The protein 5a also plays an important role in
virus–host interaction [43].

The S protein is a highly glycosylated type I transmem-
brane glycoprotein presented as a trimer on the surface of the
virion particles. The molecular mass of the S protein mono-
mer before glycosylation is about 128 kDa, which increases to
about 200 kDa after it obtains extensive N-linked glycosyla-
tion in the endoplasmic reticulum (ER) [44]. The S glyco-
protein is the major immunogenic protein eliciting the
protective immune responses. The S protein is cleaved
post-translationally into S1 and S2 subunits. The S1 subunit
(∼520 aa) is the aminoterminal part forming the globular
head, while the S2 subunit (∼625 aa) is the carboxyl-terminal
part forming the stalk domain anchored in the viral mem-
brane [45]. The S1 subunit is the most variable part and is
responsible for the viral attachment, tissue tropism, and
induction of serotype-specific antibodies as it harbors the
receptor binding domains (RBD) and the major serotype-
specific neutralizing epitopes. The greatest diversity of the
S1 nucleotide sequence is mostly found within three key
hypervariable regions (HVRs): HVR1 (amino acid residues
38–67) and HVR2 (amino acid residues 91–141) in the N-
terminal domain (NTD), and HVR3 (amino acid residues
274–387) in the C-terminal domain (CTD) [46, 47]. Both
NTD and CTD of the S1 subunit have been proposed to be
associated with receptor binding [48]. The S1-NTD binds to
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FIGURE 3: Schematic diagram of infectious bronchitis virus. (a) Virus structure and (b) virus genome. Replicase gene composed of ORFs 1a
and 1b is shown in gray; genes encoding for structural proteins S, E, M, and N are shown in orange; genes encoding for the accessory proteins
3a, 3b, 4b, 4c, 5a, 5b, and 6b are shown in blue. 5′ and 3′ untranslated regions (UTR) are shown in black; A(n) denotes the poly-A tail.
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α-2,3 linked sialic acid receptors on chicken respiratory epi-
thelia [49]. Bouwman et al. [50] showed that amino acids in
HVR2 of QX-RBD are critical for receptor binding. The S1-
CTD harbors two extended loops in its core structure, which
function as receptor-binding motifs (RBMs) and have been
shown to interact with an unidentified receptor [48]. The
spike neutralizing epitopes are highly conformation-
dependent that are formed by the interplay between S1 and
S2 subunits [51]. The S2 subunit is a highly conserved part
formed primarily by the heptad repeat regions, HRP1 and
HRP2, and a fusion peptide that is responsible mainly for the
viral entry and membrane fusion [48]. Research has shown
that the S2 subunit is responsible for viral adaptation to
various cell lines [52–58]. The S2 subunit also contains
some minor neutralizing epitopes and contributes to the
avidity and specificity of virus attachment, and thus viral
host range [51]. In addition, the S protein has been shown
to play a role in determining the pathogenicity of IBV [42].

The M protein is the most abundant viral structural pro-
tein embedded in the viral envelope and is usually observed
as a dimer. The molecular mass of the M monomer is
25–30 kDa [29]. The E protein, also named small envelop
protein, is the less abundant protein in the viral envelope
of 8–12 kDa [59]. The E protein is critical for viral infectivity.
The M and E proteins are essential for the assembly and viral
budding from the ER [29]. The M and E proteins have been
shown to be sufficient for the production of virus-like parti-
cles [60].

The N protein is an internal phosphoprotein that pre-
sents as monomers (45–50 kDa) that bind to the viral geno-
mic RNA, forming the helical nucleocapsid structure. The N
protein plays a crucial role in viral replication and assembly
[29] and has been reported to play a key role in cellular
immunity due to the presence of cytotoxic T lymphocyte
(CTL)-inducing epitopes located at its carboxylic terminus
[61–63]. B-cell epitopes are also reported in N protein [64].

2.2. Classification of IBV Strains. Classification of IBV strains
is useful for implementation of control strategies for IB.
Knowledge of specific serotypes/genotypes circulating in
each geographical region can enable determination of the
epidemiology and evolution of IBV strains circulating in
the field.

Genotyping of IBV strains has been established based on
the nucleotide sequences of the S1 gene using reverse
transcriptase-polymerase chain reaction (RT-PCR) followed
by DNA sequencing [65] (Figure 4(b)) or restriction enzyme
fragment length polymorphism [66]. RT-PCR using genotype-
specific primers can be used for detection and differentiation of
IBV genotypes [67–73]. To standardize IBV genotype clas-
sification, Valastro et al. [74] strongly recommended using
the whole S1 gene for phylogenetic analysis. Interestingly,
phylogenetic analysis using partial S1 gene sequence,
including HVRs 1 and 2 and HVR3, may produce inconsis-
tent clusters compared to full S1 gene sequence, owning the
risk of misclassification.

S/S1 gene sequencing
Phylogenetic analysis

Virus neutralization test (VNT)
Hemagglutination inhibition (HI)

S/S1 gene

In vivo crossprotection study

Vaccination Challenge

Classification of IBV strains

Serotypes Genotypes Protectotypes(a) (b) (c)

T G A C

FIGURE 4: Classification of infectious bronchitis virus (IBV) strains into: (a) serotypes, using virus neutralization test and/or hemagglutination
inhibition assays; (b) genotypes, using S or S1 gene sequencing and phylogenetic analysis; and (c) protectotypes, using in vivo crossprotection studies.
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IBV strains have been classified into serotypes based on the
antigenicity of the S protein using virus neutralization (VN) or
hemagglutination inhibition (HI) assays (Figure 4(a)). Two
IBV strains are considered of the same serotype when the
two-way heterologous neutralization titers differ less than
20-fold from the homologous titers in both directions [75].

Classification of IBV strains into protectotypes or immu-
notypes is primarily based on in vivo crossprotection studies
(Figure 4(c)). This classification system gives reliable infor-
mation about the efficacy of IBV vaccines. IBV strains that
provide protection against each other are of the same pro-
tectotype. Such crossprotection is presumably due to some
common epitopes shared between different genotypes or
serotypes [76, 77]. The immunological aspects related to
protectotypes are further discussed in the immunity of IBV
section.

Unfortunately, the correlation between genotypes (S1
amino acid identity) and serotypes (VN), and protectotypes
(in vivo crossprotection) is not consistent. Generally, IBV
strains belonging to the same serotype show more than
95% amino acid identity in the S1 subunit [78], while IBV
strains of different serotypes show less than 85% amino acid
identity in the S1 subunit [67, 79]. However, some IBV
strains, defined to be of the same serotype by VN, commonly
differed by about 20%–25% amino acid identity and some-
times, by up to 48% amino acid identity. Moreover, strains
showing 97% amino acid identity were classified by VN to be
of different serotypes [80]. That is because as few as 2%–3%
difference of amino acids within the three HVRs in the S1
subunit, specifically those involved in formation of the neu-
tralizing epitopes, can change the serotype and hence the
level of crossprotection [80, 81]. This explains why some
IBV strains with a very high homology of S1 protein
(96%–98%) provided limited crossprotection [76], whereas
some other IBV strains with a lower homology may show a
higher level of crossprotection [82, 83]. For example, Mas-
sachusetts and Connecticut strains of IBV are clustered
within the same genotype (GI-1), but they were identified
as different serotypes (antigenically different), that is, they do
not crossneutralize [84]. Similarly, Massachusetts and
Beaudette strains of IBV are clustered within the same geno-
type (GI-1) with more than 96% aa identity in their S1 genes.
However, antibodies raised against the Beaudette strain were
unable to neutralize the Massachusetts strain in vitro using
VN, or provide protection in challenged chickens [85]. Con-
versely, a Japanese JP-III vaccine sharing 83.1% amino acid
identity with the Japanese QX-like JP/ZK-B7/2020 strain
showed more than 2.0 VN titer and provided high protection
against challenge in SPF chickens [86]. Therefore, serotyp-
ing, and genotyping should be carried out together for accu-
rate classification outcomes [87].

2.3. Diversity and Evolution. Several serotypes and genotypes
of IBV have been reported worldwide [1, 84]. The diversity of
IBV serotypes is mainly attributed to the variability of the S
protein. The S1 subunit has shown amino acid differences
ranging from 20% to 50% between IBV strains [83, 88]. Like
most RNA viruses, mutations and genetic recombination are

the major events responsible for the diversity and evolution
of avian coronavirus IBV. Mutations are generated during
viral replication due to the lack of a proofreading mechanism
of the viral RNA polymerase [89]. Being a fast-replicating
virus with a short generation time and a large RNA genome,
IBV is prone to acquiring mutations and accommodating
genetic recombination. Because of the relevance of the S
protein for the virus immunological escape, genetic drift
directed toward the S protein is suggested to be the most
relevant feature driving the viral adaptive evolution for sur-
vival. Genetic recombination has been reported in corona-
viruses including IBV [90–92]. The unique discontinuous
transcription mechanism of coronaviruses favors the gener-
ation of recombinants resulting from the random template
switching mechanism of the viral polymerase [93–95]. When
two different IBV strains infect the same cell, the generation
of recombinant viruses is very likely to occur, leading to the
emergence of new variants [96]. These new variants are
mostly distinct from the parental strains and can often
escape the pre-existing immunity, inducing outbreaks in vac-
cinated flocks [97–99].

Some regions in the viral genome, called recombination
hot spots, have been reported for a higher incidence of
recombination events. These regions encode for nsp2,
nsp3, nsp16, and the S glycoprotein [100]. Because the non-
structural proteins encoded by the ORF 1ab are associated
with viral pathogenicity, the emergent IBV strains with
recombinant nonstructural proteins could be of altered path-
ogenicity and increased virulence. On the contrary, genetic
recombination could also lead to the emergence of low viru-
lence variants [90, 101]. As the S protein is a determinant of
viral tropism and contains the major neutralizing epitopes,
recombination in the S protein could lead to the generation
of not only a new serotype, but also a new virus of altered
tropism and host specificity. This was documented for the
turkey coronavirus (TCoV) that was suggested to have
emerged by replacement of the S protein in IBV with a yet
unknown sequence, probably from another avian coronavi-
rus [102]. This study revealed that both IBV and TCoV
showed more than 86% full-genome nucleotide similarity
while the S protein of both viruses showed less than 36%
nucleotide similarity, with potential recombination break-
points at the upstream and the 3′ end of the S gene. Recently,
recombination events between IBV and TCoV have also
been recorded [103, 104]. In addition, recombination of S
genes from different genotypes also could result in the emer-
gence of new genotypes/lineages [105].

Due to the high mutation rate, coronaviruses including
IBV usually exist as a mixture of subpopulations within an
isolate or a vaccine [106–111]. It has been reported that the
invading vaccine population is subjected to positive selective
pressure according to the microenvironment of distinctive
host tissues to select the fittest population [112]. Selective
pressure could also be exerted using live-attenuated IBV
vaccines that provide partial protection and thus allow
some viruses to replicate and persist in the vaccinated flocks.
This could result in further adaptation and evolution to
escape immunity [113–116], leading to a faster evolutionary
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rate [117, 118]. For example, the IBV GA98 was suggested to
have emerged under the immune selection pressure exerted
by the use of the DE072 vaccine, and showed fast evolution-
ary and mutation rates of 2.5% and 1.5% per year, respec-
tively, in the HVR [116] compared to 0.3%–0.6% mutation
rate per year for the 793/B genotype in the absence of vaccine
use [119]. Under experimental conditions, Flageul et al. [120]
demonstrated that IBV D388 evolved rapidly over three pas-
sages in both unvaccinated chickens and chickens vaccinated
with the heterologous vaccine strain H120. However, the
viral population selection and genetic drift were completely
different in both groups.

3. Emergence and Dissemination of IBV
Variants Worldwide

In 2016, Valastro et al. [74] classified IBV strains into six
main genotypes (GI through GVI) based on the full S1 gene
sequence. These genotypes encompass 32 lineages, with 27
lineages identified within genotype GI and one lineage each
within the remaining genotypes. In addition, 26 unique var-
iants (UVs) were identified that did not cluster within any of
the established lineages. Subsequently, as more IBV S1 gene
sequences became available, some of the UVs were identified
as new genotypes. Moreover, novel IBV variants emerged in
different parts of the world and have been assigned new
genotype classifications as well. To date, at least nine well-
established genotypes (GI through GI-IX) have been identi-
fied encompassing 41 lineages (31 lineages within GI, 2

lineages within each of GII and GVIII, and 1 lineage within
the remaining genotypes). Confusingly, some of the reported
UVs were designated tentatively as novel genotypes based on
only one or two S1 gene sequences. However, according to
the harmonized classification system proposed by Valastro
et al. [74], the S1 gene sequence of at least three viruses col-
lected from two different outbreaks are required to establish a
new genotype/lineage. This section explores the updated
global landscape of IBVs, the wide dissemination of IBV var-
iants, and the emergence of novel genotypes/lineages.

3.1. The Global Landscape of IBV Variants. In the 1930s, IBV
was first recorded in diseased chicken flocks in the USA
[121]. This initial strain, known as the classic Mass-type,
was later classified as part of the GI-1 lineage, including
H120, H52, Connecticut, Beaudette, and classic-like field
isolates. Over time, IBV strains belonging to the GI-1 lineage
have spread extensively across the globe, likely due to their
widespread use as vaccines in poultry production. 793B-
types (later identified as GI-13) has also spread to several
countries, due to being used as vaccines along with the
Mass-type in heterologous vaccination programs, known as
“protectotype.” Since IBV is a rapidly evolving virus, several
variant strains have emerged over the years in face of the
intensive vaccinations.

While certain variants have exhibited global prevalence,
others have been identified as indigenous to specific geo-
graphical regions, suggesting a localized transmission and
adaptation (Figure 5). For example, in North America, vari-
ous indigenous genotypes have been identified, including

Genotype
–lineage Common names/examples

North America South America Europe Africa Asia Oceania

USA Canada Mexico Brazil Argentina Chile Costa
Rica 

Trinidad and
Tobago Holland Belgium Italy Spain Germany Poland Nigeria Morocco Tunisia Egypt Israel Saudi

Arabia Iran India China Korea Japan Australia New
Zealand 

GI-1 Mass, H120, Connecticut

GI-2 Holte_1954, Iowa 97, Guangzhou-06

GI-3 JMK, Gray

GI-4 Holte_1962, GX2-98

GI-5 Armidale vaccine, N1/62 (T), HN99, JAAS

GI-6 VicS/62, A, J9, QS

GI-7 TW-I, TW-II, JP-II

GI-8 SE-17

GI-9 Ark99, and Ark DPI, Cal99

GI-10 B, C, D, T6, K43, K87

GI-11 SAI, BR-I

GI-12 D274, D207, UK/6/82

GI-13 793B (4-91, CR88), G/83

GI-14 B1648, D8880, NGA/324/2006

GI-15 K-I

GI-16 Q1, 624/I, LDL/97I

GI-17 GA13, PA/Wolgemuth/98, PA/171/99

GI-18 JP-I

GI-19 QX, D388, K-II (KM91), JP-III

GI-20 Qu_mv

GI-21 Italy-02

GI-22 LSC/99I, HN08

GI-23 Var2, IS/1494/06, Egypt/Beni-Suef/01

GI-24 V13, NPR, PDRC/Pune/Ind/1/99

GI-25 GA07, CA/1737/04, DMV/5642/06, GA/60,173/07 

GI-26 IBADAN

GI-27 GA08, 

GI-28 LDT3-A, LGX/111119

GI-29 γCoV/ck/China/I0111/14

GI-30 18RS/1461-1, 18RS/1461-2, 18RS/1461-5

GI-31 Mex-07, Mex430

GII-1 D1466, D212, and V1397

GII-2 D181

GIII-1 Australian II (N1/88, Q3/88, N18/91)

GIV-1 DE072, GA98

GV-1 Australian III (N5, V1/07, Q1/13)

GVI-1 TC07-2 , JP-IV

GVII-1 I0636/16 

GVIII-1 PA/1220/98 

GVIII-2 IB80 and D2860

VIX-1 98-0748, Mex-12 and Mex-3009

Genotypes detected as field strains

Genotypes employed in vaccination

The Middle East

FIGURE 5: Global landscape of IBV genotypes and lineages. A virus icon indicates the presence of field viruses. The vaccine icon indicates the
genotypes employed in vaccination in each respective country. Dashed borders delineate the Middle East region.
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GI-8, GI-9, GI-17, GI-20, GI-25, GI-27, GIV-1, GVIII-1,
with GI-20 reported exclusively in Canada [74]. Interest-
ingly, GI-17 has been isolated recently from outbreaks dur-
ing 2016–2017 in Costa Rica [122]. Mexico is endemic with
GI-31 and GIX [123] (discussed later in this review). South
America is characterized by the presence of the indigenous
GI-11 lineage [74] in addition to GI-30 recently identified in
Trinidad and Tobago [124]. In Asia, several indigenous
lineages have been reported including GI-7, GI-15, GI-18,
GI-22, GI-24, and GVI-1, with GI-15, GI-22, and GI-24
exclusively reported in Korea, China, and India, respectively
[74]. Recently, GI-28, GI-29, and GVII-I have been identified
in China [125, 126]. Australia and New Zealand are home to
the indigenous lineages GI-5, GI-6, GI-10, GIII-1, and GV-1
[74, 127]. The African continent harbors the indigenous GI-
26 lineage, observed in Nigeria and Niger [74, 128]. Europe
has been identified to host the GI-21, GII-1, GII-2, and
GVIII-2 lineages [74, 129]. GI-21 has been reported in
Morocco as well [130]. GI-2, GI-3, and GI-4 have been
reported to be confined primarily to North America and
Asia [74]. While some of these indigenous genotypes/
lineages were observed for a short period of time, others
became predominant within their respective regions. For
instance, GI-2, GI-4, and GI-8 were detected only in a limited
period in the USA, indicating its limited importance [74]. On
the other hand, GI-9 (ArkDPI), GI-17 (DMV/1639), GI-27
(GA08), and GIV-1 (DE072) became predominant in the
USA [131]. In China, detection of GI-2, GI-3, and GI-4
became rare while detection of GI-7, GI-22, and GI-28
(LDT3-like) is increasing [132]. GI-23 was considered indig-
enous to the Middle East for approximately two decades
since its emergence in the mid-1990s [74]. However, GI-23
has been recorded in several countries in Europe since 2016
[129, 133] and more recently in South America [134]. In
addition, GI-16 and GI-19 are expanding their geographical
distribution and spreading to multiple regions including
Asia, Europe, Africa, and South America.

3.2. IBV Variants Expanding their Geographical Distribution.
It is noteworthy that GI-16, GI-19, and GI-23 are dissemi-
nating to numerous countries, thereby expanding their geo-
graphical distribution. Although the origin, evolution, and
spread dynamics are unique for each genotype, there are
common causes that explain the methods of their widespread
across several countries such as the live poultry trade, eco-
nomic, and political relationships among countries and
migratory birds. The intensive poultry industry, and the
absence of serotype-specific immunity facilitated the spread
of the introduced genotype within the country. Nonetheless,
introduction of exogenous genotypes could also occur with
the introduction of vaccine strains. In China, for instance,
GI-5 and GI-6 were recorded after the introduction of JAAS
and J9 vaccines from Australia [135]. Moreover, the detec-
tion of GI-13 field strains was recorded in Egypt [136], Chile
[137], and Costa Rica [138] several years after the introduc-
tion of 793B live vaccines.

GI-16 (Q1-like), also known as 624/I, T3, J2, LDL/97I,
Korean-III -like viruses, have been reported in several

countries in Asia [139], Europe [129], South America
[105, 140–143], Africa [144, 145], and the Middle East
[146–148]. Although 624/I was initially identified in Italy
in 1993, retrospective studies backdate its emergence to
1963 [149]. After gradual diminishing, the Q1 strain was
reported in China in 1996 causing proventriculitis [150].
Retrospective studies revealed that both the Italian 624/I
and the Chinese Q1 strains have the same origin nearly at
the beginning or middle of the 20th century [151, 152]. A
recent phylodynamic study revealed that GI-16 migrated
from Italy to Asia, serving as the primary core for subsequent
dissemination to the Middle East, Europe, and notably South
America, probably facilitated by multiple introduction events
[152]. The introduction of GI-16 from Europe to China
might be attributed to the live breeders’ trade, aimed to
enhance the local genetic lines in China. The study also
suggested backflow from China to Italy based on the detec-
tion of two Chinese Q1 strains in Italy. The migration of wild
birds could also have played a role in the intercontinental
virus transmission, especially over the short distance between
Europe and Asia. However, the extreme long distance to
South America suggests that other hypotheses such as unde-
clared animal trade were more likely to have established the
introduction of GI-16 [152]. While the clinical impact of
the Italian Q1 strains has been minimal in recent years, the
introduction of the South American Q1 strain had a signifi-
cant clinical and economic impact in those countries. This
may be attributed to the genetic differences between both
strains and/or different vaccination regimens implemented
in both countries [141, 142, 152].

It is noteworthy that the introduction of the GI-16 line-
age to South America resulted in extensive recombination
with the indigenous GI-11 strains circulating in the region
since the 1950s [105, 143]. This led to the emergence of novel
recombinant GI-11 strains, mainly found in Argentina and
Uruguay, which combine the ORF S of the native GI-11 with
the backbone genome from the introduced European/Asian
GI-16 lineage [105]. Currently, GI-16 is more prevalent in
Western countries along the Pacific Ocean in South America
[105, 142].

Introduction of GI-16 viruses from China to Egypt was
predicted about in 2010 [152]. Currently, GI-16 has been also
detected in other African countries such as Nigeria [144] and
Ivory Coast [145]. Yet, little information is available about
this lineage in Africa.

GI-19 (QX-type), also known as LX4, Korean-II, and
Japanese-III-like, Dutch D388 viruses was first detected in
China in 1996 [153]. Since then, GI-19 has been undergoing
extensive evolution primarily through recombination
[154, 155]. While many of these variants eventually disap-
peared due to their inability to thrive in chicken hosts, and
other viruses that exhibited adaptability (“fitness”) continued
to evolve and gradually gained prevalence in commercial
poultry across China after 2006 [156]. Currently, GI-19 has
been frequently reported in several countries in Asia, Europe,
and Africa [6, 12, 20, 129, 153, 157–159]. A phylodynamic
reconstruction of GI-19, utilizing 807 partial S1 sequences of
strains collected from 18 countries, revealed that the GI-19
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genotype originated in China more than 10 years before its
initial identification in 1996, probably because of limited
surveillance and/or reporting [158]. Following this extended
period of local circulation, it potentially gained virulence and
eventually emerged as a pathogenic genotype. The study
revealed that GI-19 gradually spread to various countries
plausibly in at least four successive waves: (1) introduction
in Europe in the early 2000s, (2) spread in central Europe and
Italy around 2005, (3) expansion in Spain and Eastern Euro-
pean countries approximately during 2008–2010, and (4)
dissemination to the Middle East and North Africa during
2013–2015. These multiple waves of viral dissemination
could have resulted in fluctuations in viral population size.
The closer geographic and economic ties among European
nations plausibly explain the fast spread of GI-19 among
European countries. However, the colonization of new
regions by the GI-19 lineage was primarily driven by single
introduction events followed by local expansion [158]. Sev-
eral well-established epidemiological links among distantly
related regions indicate that animal transportation and indi-
rect transmission routes, rather than local airborne diffusion,
play a significant role in the local persistence of QX [158].

GI-23, also known as Variant-2, is expanding its geo-
graphical distribution after being considered an indigenous
Middle Eastern strain for more than 10 years. GI-23 is now
frequently reported in several countries in Europe such as
Poland, Germany, Romania, Lithuania [129, 133], and more
recently in Brazil in South America [134]. In 2021, Ekiri et al.
[144] reported the detection of GI-23 in three broiler flocks
and eight layer flocks in Nigeria using a Variant02-specific
real-time RT-PCR kit. However, no S1 gene sequences are
available to help determine the source of virus introduction.

A phylodynamic analysis revealed that GI-23 after origi-
nating in the Middle East in the 1990s, circulated undetected
or underdiagnosed, possibly due to low virulence, limited
poultry industry development, and/or poor diagnostic meth-
ods [160]. However, with the growth of the poultry industry,
there was a gradual increase in viral population size between
the late 1990s and 2010, leading to an increase in viral viru-
lence. The study revealed a notable recombinant clade, exhi-
biting potential higher virulence and fitness, which appeared
to spread from the Middle East to European countries. Tur-
key, functioning as an intercontinental “bridge” between less
related countries, played a crucial role in facilitating this
transmission [160]. The initial introduction of GI-23 to Eur-
ope was documented in Poland in late 2015 from a diseased
broiler flock [161], followed by spread among multiple Euro-
pean countries including Germany, Lithuania, Romania, and
Ukraine [129, 133].

In 2022, Ikuta et al. [134] reported the first introduction
of GI-23 to South America in Brazil with distinct amino acid
mutations compared to the GI-23 sequences from other con-
tinents. Phylogenetic analysis of 120 Brazilian GI-23 strains
revealed the presence of two distinct subclades, namely SA.1
and SA.2. Intriguingly, both subclades clustered with the
Eastern European GI-23 strains, suggesting possible intro-
ductions from Europe, likely through multiple events
between 2017 and 2019 [162]. The expanding poultry market

in Brazil, coupled with international trade, may have facili-
tated the introduction of the GI-23 genotype through the
importation of live birds, fomites, and/or human movement
[162].

3.3. Emergence of Newly Identified IBV Genotypes/Lineages.
According to the standardized classification of IBV geno-
types established in 2016, a novel genotype lineage should
form a monophyletic group consisting of a minimum of three
viruses collected from at least two different outbreaks, defined
by strongly supported nodes (>0.98 SH-like test support
value), and demonstrate uncorrected pairwise distance of
not less than 13% in their S1 gene sequences [74]. Since
2016, newly identified genotypes and lineages have been
reported in different parts of the world including GI-28,
GI-29, and GVIII in China, GI-30 in Trinidad and Tobago,
GI-31 and GIX in Mexico, and GII-2 and GVII-2 in Europe.
Some UVs (less than three viruses) were also reported in
Mexico and Ivory Coast.

GI-28: In 2017, Chen et al. [125] reported a distinct IBV
strain (LGX/111119), designating it as a novel lineage within
GI (GI-28). The reported IBV strain clustered closely with six
reference strains previously classified as UVs, namely, the
Chinese Variant-2 group [163], exhibiting 96% amino acid
identity, while being distinct from all other identified geno-
types/lineages. LGX/111119 strain was suggested to be
emerged either as a result of recombination including the
LX4 strain (GI-19) and an unknown IBV that contributed
to the S1 gene, or by accumulation ofmutations and selections
in the S1 gene of the LX4 strain [125]. The Chinese strain
LGX/111119 was also identified as a novel serotype after test-
ing against five IBV strains antisera; Massachusetts, 793/B,
LX4, ck/CH/LDL/97I, and TW-I serotypes. LGX/111119
induced nephropathogenic effects in 1-day-old SPF chicks
and exhibited multiorgan tropism (respiratory, renal, diges-
tive, and reproductive) [125]. Despite the introduction of the
LDT3-A (GI-28) vaccine alongside the commonly used H120
and 4/91 vaccines since 2011, GI-28 remains prevalent in
various geographic regions within China [164], indicating
its endemic nature. Later, a new recombinant IBV strain
CK/CH/MY/2020 belonging to GI-28 emerged because of
multiple recombination events involving three live-attenuated
vaccine strains: H120, 4/91, and LDT3-A [165]. Despite being
composed of three attenuated vaccine strains, the recombi-
nant IBV strain CK/CH/MY/2020 caused clinical disease,
resulting in 40%mortality in SPF chickens. This finding high-
lights the risk associated with the use of multiple live-
attenuated vaccines, as theymay revert to virulence by recom-
bination, even in the absence of the field strains. Moreover,
recombination among the three vaccine strains and the field
strain LJL/08-1 (GI-19) was also recorded [166].

GI-29: Jiang et al. [126] identified three Chinese IBV
strains, namely γCoV/ck/China/I0111/14, γCoV/ck/China/
I0114/14, and γCoV/ck/China/I0118/14, which were isolated
in 2014 from various outbreaks. These strains were found to
be genetically and antigenically distinct viruses, leading to
their classification as a novel lineage within GI (GI-29). GI-
29 was suggested to have emerged from a GX-YL5-like virus
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through the accumulation of genome-wide substitutions. In
addition, γCoV/ck/China/I0114/14 exhibited evidence of two
recombination events involving the vaccine strain 4/91, spe-
cifically within the nsp2 and nsp3 regions [126]. GI-29 also
demonstrated nephropathogenicity, however, it did not
induce cystic oviduct [126].

GI-30: In Trinidad and Tobago, Jordan et al. [124],
molecularly characterized the three IBV strains 18RS/1461-
1, 18RS/1461-2, and 18RS/1461-5 that were previously iso-
lated in 2014 from two discrete backyard chicken farms. The
three viruses formed a distinct cluster, with a similarity rang-
ing from 99.1% to 100% among each other, but distinct from
the previously identified lineages (16% difference from the
closest lineage and 20% differences from the locally used
vaccines). Therefore, these viruses were designated as a novel
lineage in GI (GI-30).

GII-2: In 2017, a novel IBV strain (D181) was initially
discovered in layer flocks experiencing a significant decline
in egg production in the Netherlands [167]. Based on S1 gene
sequencing, Strain D181 displayed a close relationship to the
GII-1 strain D1466, exhibiting a 90% similarity. Conse-
quently, D181 has been classified as a distinct lineage within
the GII genotype, known as GII-2. Furthermore, D181 is
considered a novel serotype as it differs antigenically from
D1466, with only 9% crossneutralization observed between
the two strains. Like D1466, D181 is primarily isolated from
layer and breeder flocks, whereas occurrences in broiler flocks
are rare. Infection with D181 is associated with high mortality
rates and a decline in egg production without apparent respi-
ratory signs [167]. Currently, D181 has become the second
most prevalent IBV strain in the Netherlands and is fre-
quently reported in Germany and Belgium [129].

GVII-1: In 2016, the novel IBV strain I0636/16 (GVII-1)
was isolated in south China and recently identified as an
emerged recombinant strain with a novel spike gene in a
GI-28 (LGX/111119) backbone [168]. These findings empha-
size the lack of protection of the currently used vaccines
against GI-28 and suggest the circulation of a yet identified
genotype under the detection limit of the surveillance.
Although pathogenic to SPF chicks, strain I0636/16 exhibited
reduced affinity to the respiratory tract compared to its puta-
tive parent strain LGX/111119. Interestingly, strain I0636/16
did not spread, suggesting its limited competitiveness [168].

GVIII-1 and GVIII-2: Domanska-Blicharz et al. [169]
reported the identification of the IBV strain (gCoV/ck/
Poland/G516/2018) isolated from a layer flock in Poland in
2018, that exhibited a decline in egg production. Through
analysis of the partial S1 gene sequence (1,073 nt), this virus
was found to be distinct from all known genotypes (GI–G-
VII), with a maximum identity of 81.4% to the PA/1220/98
variant, previously classified as a UV [18, 74]. The authors
suggested that PA/1220/98 and gCoV/ck/Poland/G516/2018
be potential candidates for separate lineages in a new geno-
type (GVIII), namely GVIII-1 and GVIII-2, respectively
[169]. Following the application of an in-house PCR to detect
this variant, three more viruses related to the same lineage
were discovered. Interestingly, the analysis of the partial S1
gene sequences (from 754 to 1,133 nt) revealed the presence of

three related IBV strains previously isolated in Germany and
the Netherlands between 2010 and 2015. Subsequently,
Domanska-Blicharz et al. [169] and Petzoldt et al. [170]
reported the full S1 gene sequence of 10 IBV strains, showing
a 92.2%–100% identity among themselves and an 80% iden-
tity to the PA/1220/98 variant. Furthermore, the reported IBV
strains shared 91.5%–95.2% identity with the partial S1 gene
sequences of the previously recorded Polish strains in 2018,
confirming the emergence of GVIII-II. It is noteworthy that
the late identification of GVIII-II (also known as IB80) was
due to amismatch with the primers used at that time. By using
an IB80-specific qRT-PCR, the authors were able to detect
IB80-like strains in several countries in Europe and the Mid-
dle East from 2015 to 2021. Similar to GII, IBV strains belong-
ing to GVIII were primarily detected in diseased layer and
broiler breeder flocks experiencing a decline in egg produc-
tion and increased mortality rates [170].

Novel Mexican genotypes and lineages (GI-31 and GIX):
Recently, Mendoza-González et al. [123] described novel
IBV strains isolated from various regions in Mexico. The
full S1 sequence analysis of six Mexican strains collected
between 2007 and 2019 revealed a 6% amino acid intergroup
divergence and a 25% amino acid distance from the nearest
genotype, GI-27. The authors suggested classifying these
viruses as a new lineage within GI, tentatively designated
as GI-30. However, it should be updated to GI-31, as GI-
30 was proposed in 2020 [124, 145]. Furthermore, the
authors identified two isolates, Mex-12 andMex-3009, which
exhibited a close relationship to the Mexican UV 98-0748,
displaying a 3% amino acid divergence and a 45% amino acid
distance from the nearest GIV genotype. Based on these
findings, the authors proposed a new genotype designation,
initially named GVIII. However, it also should be updated to
GIX, as GVIII was previously proposed in 2018 [169]. In
addition, Mex-56-7 (isolated in 2007) and Mex-14P (isolated
in 2020) were clustering together with a low intralineage
amino acid divergence of 10% and a high amino acid dis-
tance from the nearest GVII (50%). The authors described
these Mexican isolates as a new genotype designated as
GIX-1 (should be updated to GX). It is worth noting that
this proposed classification should be confirmed with at least
three reported viruses [74], while only two S1 gene sequences
are currently available in the database. Nonetheless, the long
detection period (2007–2020) of these two viruses suggests
possible circulation in Mexico, and further surveillance with
optimized primer sets may reveal additional sequences. The
widespread geographic distribution and collection of these
viruses over time and diverse locations support their persis-
tence in Mexican chicken flocks, rather than being consid-
ered sporadic strains.

Novel Ivorian variant: Recently, Bali et al. [145] reported
a unique IBV variant strain D2334/11/2/13/CI/2013 isolated
in Ivory Coast in 2013 from H120 vaccinated flocks showing
respiratory and digestive signs. The variant strain D2334/11/
2/13/CI/2013 clustered separately from other genotypes/
lineages with maximum inter- and intragenotype amino
acid identities of 78.84%, and 78.6%, respectively. The inves-
tigated variant also did not show evidence for recombination
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events. The authors considered this UV to be the first mem-
ber of a new lineage in GI (GI-3I) [145]. However, according
to the genotype/lineage classification system suggested by
Valastro et al. [74] this Ivorian strain should be classified
as a UV until further identification of at least two more
related strains from different outbreaks to prove the exis-
tence of this new lineage.

4. Immunity of IBV

The immune response against IBV is complex. Bird suscep-
tibility is influenced by the Major Histocompatibility Com-
plex (MHC) genotype. MHC is responsible for binding the
antigen epitope and presenting it to T-lymphocytes by spe-
cialized antigen-presenting cells, determining the generation
of humoral (when the epitope binds to MHC-II) or cell-
mediated (when the epitope binds to MHC-I) responses
[171]. The quality of the adaptive immune responses against
IBV varies according to the virus strain, dose, host suscepti-
bility, and age of vaccination or infection [172].

4.1. Passive Immunity. Maternally derived antibodies
(MDAs) are passively transferred from the vaccinated bree-
ders to their progeny to provide early protection against
infection. Whilst IgG are predominant in the egg yolk, IgA
and IgM are mainly present in the egg white because of the
mucosal secretion in the oviduct. It was recorded that
approximately 30% of the maternal IgG is transferred from
breeders to their newly hatched chicks, however, the transfer
of maternal IgA and IgM was estimated to be less than 1%
[173]. IBV-specific MDAs have been detected in the serum,
tears, and trachea of the newly hatched chicks [173–175]. It
has been shown that chicks with elevated levels of IBV-
specific MDAs exhibited an excellent level of protection
(>95%) when challenged with IBV Mass strain at 1 day of
age (doa) but not at 7 doa (<30%) [176]. These protection
levels were correlated to the level of the local respiratory
antibodies, not to the level of the serum antibodies [176].
Serum antibodies, however, are suggested to offer protection
of the internal organs (kidneys and oviduct). Vaccination of
layer breeders with heterologous live and inactivated IBV
vaccines provided titers of 9–10 log2 maternally derived
D388 VN antibodies in the hatched chicks, giving partial
tracheal protection and high renal protection against chal-
lenge with D388 serotype (QX genotype) at 6 doa [27].

The role of MDA in interference with live IBV vaccines is
debatable. It was shown that intraocular vaccination of
MDA-positive chicks by IBV/Mass at 1 doa hastened the
depletion of the serum antibodies and failed to produce an
adequate immune response [5, 176]. This indicates that the
MDAs interfere with the vaccination at 1 doa when using the
same IBV serotype used for the breeder flock immunization.
Interestingly, vaccination of MDA-negative chicks was mar-
ginally effective [176] indicating that the immature status of
the immune system is another factor that could contribute to
reducing the efficacy of the vaccination at 1 doa [177, 178].
Nevertheless, 1-day-old chicks are routinely vaccinated in
commercial poultry farms. On the other hand, other studies
reported no negative effect of the MDA on the vaccination at

1 doa [179–181]. This is probably because the IgY in the yolk
sac continues to be transferred for at least 48 hr after hatch-
ing, so MDAs are not necessarily at their peak level at 1 doa
[182], allowing partial exposure of the immune system to the
vaccine virus. Indeed, since MDA are predominantly located
systemically, mucosal vaccination via the ocular-nasal route
may allow viral replication at the site of viral entry (the
Harderian gland and upper respiratory tract) before being
subsequently neutralized by the MDA during the viremia
stage. This process potentially results in the induction of a
protective local immune response [180].

4.2. Innate Immunity. The innate immune response is the
first line of defense that nonspecifically targets invasive
pathogens as they enter the host [183]. After IBV infection,
hyperplasia of goblet cells and alveolar mucous glands
occurs, leading to seromucous nasal discharge and catarrhal
exudates in the trachea [184]. After the loss of cilia, epithelial
degenerative changes and depletion of goblet cells and alve-
olar mucus glands occur, and other immunological compo-
nents become activated [184].

IBV antigen is first recognized by two independent
innate mechanisms including TLR and RIG-1. IFN-1 was
found to reduce viral replication and delay the onset and
severity of the disease in chickens due to its antiviral action
[185]. Cytokines such as IFN-1, IFN-γ, IL-1β, IL-6, IL-8,
IL-12, and macrophage inflammatory protein-1β are early
activated by the innate pathways, in addition to other innate
immune responses such as phagocytosis, complement,
inflammation, cell death, and antigen presentation result in
the innate protection of the adjacent cells [16, 186–188].
Later, CD8αα and Granzyme homolog A were shown to be
increased, which was correlated with a subsequent decrease
in the tracheal lesion scores and viral load [187]. In addition,
it was shown that the macrophage count in the respiratory
tract increased after IBV inoculation [189, 190] and coin-
cided with a decrease in IBV viral loads and the production
of IL-1β [191]. Remarkably, the innate immune response
may differ according to the IBV strain pathogenicity, tro-
pism, and population diversity [192–194].

These innate immune responses create an ideal microen-
vironment for T-cell activation and migration to the target
organs, serving as bridging factors for connecting the local
innate and adaptive immune systems. Interestingly, a greater
upregulation of the innate immune responses-associated
genes in the trachea is stimulated with a heterogenous pop-
ulation of IBV vaccines compared to a homogenous vaccine
population [193]. This may explain the wider spectrum of
protection provided by heterologous versus homologous
vaccination.

4.3. Humoral Immunity. Humoral immune response to IBV
is evaluated by determination of the level of IBV-specific
antibody titers, either systemic (in serum) or local (in tears,
tracheal wash, or oviduct), by ELISA, VN, or HI. ELISA is a
group-specific test that could detect the antibody response
within one week after infection or vaccination. Later, VN or
HI could be used for detection of serotype-specific antibodies
[195]. Unlike the innate immune response, the humoral
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antibody levels and avidity are shown to be favored by the
homogenous IBV vaccine population [193].

4.3.1. Systemic Humoral Immunity. The primary IgM
immune response, which peaks at 8–10 days after infection,
is a fast, short-lived response that is the first to be detected in
chicken serum (at 5 days after infection). [196]. Therefore,
detection of IgM in serum indicates recent infection by IBV.
IgG becomes the predominant immunoglobulin around
14 days after vaccination or infection and its level is sus-
tained for a longer time. The secondary IgM and IgG
immune responses peak at the same time, but IgM declines
faster [196]. It is worth noting that the levels of systemic
humoral antibody do not correlate to protection against
respiratory infection [84, 197]. However, it plays a crucial
role in preventing the spread of the infection to the internal
organs such as kidneys and oviduct and thus protects against
nephrosis and a decline of egg production and egg quality
[198–202]. On the other hand, mucosal antibodies are
believed to be more relevant to the protection of the respira-
tory tract [203, 204].

4.3.2. Mucosal (Local) Humoral Immunity. The local secre-
tory immune response is a fast and considerably transient
response characterized by secretion of local IgA [172]. When
the IBV vaccine is administered by eye drop, IBV replicates
in the Harderian gland, which is the main contributor to the
local immune response, resulting in the production of high
amount of lachrymal IgA [204–210]. This explains why vac-
cination by eye drop is suggested to be more relevant to the
production of protective immunity than the drinking water
method.

The pattern of the IgA levels in the tracheal and lachry-
mal secretions differs according to the IBV strain and dose. A
very early increase of IgA level has been detected in tears at
3 days postvaccination (dpv) with Ark-DPI strain, indicating
that this increase is a mucosal T-independent immune
response [211]. Then the levels of IgA decrease to a nonsig-
nificant level at 17 dpv. It was also reported that tracheal and
lachrymal IgA were detected at 4 dpv with H120 alone or
with H120 and CR88 simultaneously at 1 doa, and reached
the peak at 7 and 14 dpv, respectively [212]. Smialek et al.
[181] showed that the 4/91 strain alone or in combination
with the Ma5 strain induced a longer and higher level of
tracheal IgA that continued to rise till 21 dpv, compared to
that of Ma5 alone, which declined 14 dpv. Upon secondary
exposure (revaccination or challenge), the local IgA titers
decline, indicating partial neutralization of the IgA, whereas
IgG antibodies become the most dominant isotype in plasma
and lachrymal fluid [211, 212]. Lachrymal and tracheal IgG
immunoglobulins have been suggested to be produced
locally in addition to be transduced from serum [213]. Sig-
nificant levels of IgG antibodies were detected in lachrymal
fluids and oviduct washes at 7- and 23-days postinfection
(dpi) [214].

The role of local IgA in protecting against IBV infection
is controversial. Many studies have shown that high levels of
lachrymal IgA correlated to the refractivity to reinfection
[203, 215, 216]. This presumably explains why revaccination

with or secondary exposure to homologous IBV strains does
not induce a secondary local IgA immune response. Poly-
meric IgA is suggested to play an important role not only in
the inhibition of the viral infection by preventing the virus
entry at the mucosal surfaces, but also in reducing the viral
shedding by neutralizing the viral particles budding from the
infected cells [217]. Conversely, Gelb et al. [174] found that
some chickens with high levels of lachrymal IgA were sus-
ceptible to infection by IBV, while some other chickens with
low levels of lachrymal IgA were protected, suggesting that
local IgA immune response is not the main mechanism
responsible for the protection of chickens against IBV infec-
tion. Moreover, in a study evaluating the transcriptional pro-
filing in the trachea of chickens vaccinated with attenuated
IBV-Mass vaccine, a significant upregulation of IgG expres-
sion was observed in the absence of IgA upregulation after
the primary and secondary immunization, indicating that
IgA might not be important in local immunity and the IgG
dominated in the local immune response provide protection
from virus entry by neutralizing viruses [186]. The absence
of IgA upregulation after the primary immunization conflicts
with other studies established that IgA antibodies are pro-
duced in high levels in the tracheal mucosa after primary
immunization while significantly decreased after the second-
ary immunization [211, 212]. The roles of IgG and IgA in
mucosal immunity remain to be established.

4.4. Cell-Mediated Immunity. Cell-mediated immunity
(CMI) plays a significant role in the control of IBV [172].
S1, N, and M proteins have been reported to induce cell-
mediated immune responses associated mainly with CTL
[63, 77]. CTL activity is MHC class I-restricted, and lysis
of IBV-labeled target cells is mediated by CD8+CD4− T cells
not by CD4+CD8− T cells [62, 218]. Moreover, the CD8+ T
cell response is established in the blood and spleen before the
serum IgG humoral response to IBV [219], supporting that
CTL response is correlated to the early decrease of viral titers
and clinical disease [16, 218, 220]. Adoptive transfer of CD8+
T cells and αβ T cells reduced the viral loads 5 days postchal-
lenge. However, adoptive transfers of CD4+ T cells and γδ
T cells decreased the viral load by less than 11%, and did not
alleviate the clinical illness after challenge [62]. Nevertheless,
CD4+ T cells also contribute to the control of viral infection
as theymay produce antiviral cytokines, resulting in increased
B cell activity and triggering the proliferation, maturation,
and functional activity of CD8+ CTLs [221, 222].

The response of CTL, measured in the spleen, lungs, or
kidneys of chickens infected with IBV was detectable at 3 dpi
and reached the maximum by 10 dpi, correlated to a signifi-
cant decrease of clinical signs and clearance of IBV from
lungs and kidneys [16, 223]. Furthermore, the CTLs in the
tracheal mucosa were found to be significantly increased by 3
or 4 dpi, peaked at 5 dpi, and then declined to baseline levels
by 14 dpi, suggesting that these locally infiltrating CTLs are
involved in the clearance of IBV from the trachea in the early
phase of infection [224].

Chhabra et al. [212] studied the CMI of H120 alone
(group I) or combined with CR88 (Group II) at 1 doa

Transboundary and Emerging Diseases 11



followed by revaccination of the two groups with CR88 at
14 doa. They found a significant increase in the infiltration of
CD4+ and CD8+ in the trachea in the first 2 weeks after
initial IBV vaccination, with the overall patterns of CD8+
cells subpopulations more dominant than those of CD4+
cells in the two vaccinated groups. Moreover, CD8+ cells
were significantly higher in group II than those in group I
at 21 and 28 doa, correlated with greater ciliary protection,
lower viral RNA load in the trachea and kidneys, and
reduced histopathological lesions against IBV-Q1 challenge.

In another study comparing the CMI response of Ma5
and 4/91, given separately or combined at 1 doa, a faster
stimulation of CMI associated with an increase of CD8+ T
cells in the Harderian gland was recorded 3 dpv using Ma5
alone, whereas delayed stimulation of CMI characterized by
higher infiltration of CD8+ T cells in the Harderian gland
was recorded 14 dpv using combined Ma5 and 4/91. On the
other hand, vaccination with 4/91 alone induced a stronger
stimulation of splenic CD4+ T cells and B cells at 3 and
7 dpv, respectively, without a significant increase in CD8+
T cells [181]. The authors suggested the Ma5 alone elicited
CMI more efficiently than the 4/91 strain, which is suggested
to generate a broadly crossreactive immune response and
elevated respiratory IgA production.

The role of memory CTL response against IBV remains
unclear. Guo et al. [186] found no local memory CTL
response after the secondary exposure to the same IBV strain
attributing this to the complete protection by the local IgG
antibodies. It seems that the local memory CTL response

occurs only when the virus succeeds in penetrating the local
innate and humoral immunity allowing the host immune
system to recognize it and thus activate the secondary CTL
response.

5. Vaccination

Vaccination is the major practical mean used for controlling
IB. Live-attenuated and inactivated IBV vaccines are rou-
tinely used in commercial broiler, layer, and breeder chicken
farms [172]. Next-generation IBV vaccines developed by
novel methods have been raised in many studies but none
of them is available commercially yet (Figure 6). This section
provides an overview of the various types of IBV vaccines,
explores the latest advancements in IBV vaccine research,
and provides insights into the vaccination challenges against
the emergence of new variants.

5.1. Live-Attenuated Vaccines. Live-attenuated vaccines have
been extensively used to control IB worldwide. Live-
attenuated vaccines are commonly used to immunize young
broiler chicks and to “prime” future layers and breeders before
administration of the inactivated vaccine [2, 172]. Live-
attenuated IBV vaccines are developed by serial passaging
the virulent field isolate in embryonated chicken eggs (ECE)
[157, 225–228]. The mechanism of how the virulent IBV
strain gets attenuated is unclear. However, it was suggested
to be due to the mutations occurring during viral passaging
particularly in the replicase gene [33, 157, 229, 230] and/or
selection of an existing attenuated subpopulation in the

Inactivated
A killed virus prepared by
formaldehyde inactivation of the live
IBV. Usually emulsified with oil
adjuvant to ensure sustained release
and hence long-term immunity.

VLPs 
Self-assembled major structural
IBV proteins in their native
conformation and organization
without incorporating the viral
genome.

Subunit, Peptide
- Subunit vaccine is produced using the IBV

antigenic protein(s).
- Peptide vaccine is a short segment of the

amino acid sequence, derived from the
antigenic protein(s), that is associated with
the immunogenic epitopes.

DNA
A plasmid-based nucleic acid coding for the
immunogenic protein(s) of IBV that is(are)
expressed inside the host cells.

Viral-vectored
Another avian virus is used as a
vector to express and deliver the
immunogenic protein(s) of IBV
into the host cells.

Recombinant IBV
A genetically modified IBV generated
by reverse genetics allows the
development of rationally attenuated
and serotype-matched vaccines.

Live-attenuated
An attenuated IBV developed by serial passaging of
the virulent field isolate in embryonated chicken eggs.
The attenuated virus elicits an adequate immune
response without induction of clinical disease.

FIGURE 6: Types of infectious bronchitis virus (IBV) vaccines.
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original virus inoculum, known as “directional screening”
[230]. Notably, the attenuation process in ECE leads to the
generation of heterogeneous subpopulations within the vac-
cine batch that could also vary from batch to batch [111]. The
live-attenuated virus should be able to elicit an adequate
immune response without induction of respiratory illness in
the vaccinated chickens. Preparation of a live-attenuated vac-
cine is expensive and time-consuming. A combination of heat
treatment and egg passaging could achieve rapid attenuation
of a field virus [231]. Live-attenuated IBV vaccines could be
administered by mass application, via coarse spray and drink-
ing water, or individually by eye drop, eliciting strong local
and systemic responses of both humoral and CMI [2, 172].

In general, live-attenuated IBV vaccines provide excellent
protection against homologous challenge [232, 233]. How-
ever, crossprotection against antigenically different strains is
usually limited [234–236]. Thus, the choice of vaccine strain
must be based on the strains prevalent in the country or the
region. Higher levels of crossprotection against heterologous
challenge could be achieved by a combination of two antigen-
ically and serologically different vaccine strains such as “Ma5
and 4/91” [5, 27, 237] or “H120 and CR88” [238, 239]. This
vaccination strategy is called “protecteoptype” [240]. The rea-
son protectotype strategy gives a higher level of protection
against heterologous challenge is not fully understood. How-
ever, it might be related to many factors including the vaccine
titer, level and timing of vaccine replication in the chicken,
and actual neutralizing titer [241]. Smialek et al. [181] sug-
gested that the protectotype efficiency is due to the additive
impact of Ma5 and 4/91 strains on different levels of both
innate and acquired host immune response. Since the 793/B
genotype (4/91 and CR88) is not licensed in many countries
where no pathogenic field strains of the same genotype are
circulating, some other vaccine combinations have been sug-
gested [242–244]. However, they did not exhibit the same
breadth of protection against multiple heterologous challenge.
Another study showed that multiple vaccinations by the same
serotype could reduce the viral load in chickens after heterol-
ogous challenge [245]. Crossprotection was shown to be lim-
ited by vaccination at 1 doa versus 10 or 14 doa, likely due to
the lower level of antibody affinity maturation [246]. Simul-
taneous administration of three and even four different IBV
vaccine types at 1 doa was shown to replicate to variable levels
in the birds and provide adequate protection against homol-
ogous challenge with each type [247].

Nevertheless, many drawbacks have been reported about
live-attenuated IBV vaccines. The tendency to revert back to
virulence after back-passage in chickens holds a potential risk
for these vaccine strains to induce outbreaks [117, 248–250].
Selection of a minor subpopulation of marginal virulence (less
attenuation) within the attenuated vaccine was shown to occur
in the chicken as early as 3 dpv leading to emergence of vaccine-
derived strains of increased virulence [107, 112, 118, 251].More-
over, genetic recombination between the vaccine and field strains
of IBV promotes the creation of novel variant strains
[98, 101, 117, 136, 156, 159, 164, 249, 250, 252–255]. The use
of multiple live-attenuated vaccine strains could result in simul-
taneous recombination, even in the absence of field strains,

leading to the creation of virulent recombinant viruses [165].
In addition, live-attenuated IBV vaccines could induce patholog-
ical lesions in the trachea and reduce the ciliary activity (cilios-
tasis), predisposing to secondary bacterial infection, especially in
young chicks [256, 257]. Interference of the live-attenuated IBV
vaccines with maternal immunity in young chicks has also been
reported [5, 176]. Since the live-attenuated vaccines are devel-
oped by serial passaging in embryonated eggs, they become
lethal to embryos and cannot be administered in ovo. In addi-
tion, research has demonstrated possible interference between
live-attenuated IBV vaccines and other respiratory viral vaccines,
specially Newcastle disease virus [258, 259].

5.2. Inactivated Vaccines. Inactivated IBV vaccines are rou-
tinely prepared by formaldehyde inactivation of the live IBV
and emulsified with oil adjuvant to ensure sustained release
and hence long-term immunity. Inactivated IBV vaccines are
mostly used for immunization of layers and breeders, by
injection, at least 4 weeks before the point of egg production
[172]. Inactivated vaccines induce strong, long-lasting sys-
temic humoral immunity required for the protection of the
internal organs (kidneys and oviduct). Unlike the live-
attenuated vaccine, the inactivated vaccine does not elicit
strong cellular or local immune responses and thus, is not
as effective in preventing the infection of the respiratory tract
after homologous challenge [223]. Therefore, for an inacti-
vated IBV vaccine to be effective, chickens must be “primed”
with live-attenuated IBV vaccine at an interval of 4–6 weeks
[260–263]. This ensures longer immunity and higher levels
of circulating antibodies required for protection of the repro-
ductive tract, as well as passage of maternal immunity from
the hens to their progeny. Encapsulation of inactivated vac-
cine in chitosan nanoparticles allowed mucosal administra-
tion and elicited strong local IgA and IgG responses in
addition to CMI in the trachea that provided effective pro-
tection against challenge [264]. Being unable to replicate, the
inactivated vaccine does not regain pathogenicity or induce
clinical disease in the vaccinated chickens [172]. Therefore,
new IBV variant strains could be used for the preparation of
autogenous inactivated vaccine without the risk of viral
spread or induction of clinical disease in the vaccinated or
nearby flocks. To increase the spectrum of protection, heter-
ologous live priming followed by homologous inactivated
boosting is suggested in many studies. Santos et al. [265]
showed that the combination of heterologous live-attenuated
vaccine (Massachusetts strain) with a booster dose of a
homologous inactivated vaccine (BR-I IBV strain) two weeks
later elicited mucosal and systemic memory immune
responses, and provided protection against infection with
the nephropathogenic homologous BR-I IBV strain. Simi-
larly, heterologous priming with live vaccines MA5 and
4/91, followed by boosting with inactivated D1466 antigen
provided protection against a drop in egg production and egg
quality in the vaccinated layers challenged with virulent
strain of D1466 [263]. Combination of inactivated antigens
of different genotypes of IBV, or even two different diseases,
into one vaccine without the risk of interference is another
advantage of the inactivated vaccine [261]. Hassan et al. [266]
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demonstrated that priming with a bivalent live-attenuated vac-
cine of Mass and Conn types, followed by boosting with a
bivalent inactivated vaccine of Mass and Ark types protected
the hens from decline in egg production and reduced the viral
replication and pathological changes in respiratory, renal, and
reproductive organs after being challenged with the heterolo-
gous Canadian IBV DMV/1639 strain.

5.3. Viral Vectored Vaccines. Development of a viral vectored
vaccine against IBV holds a great promise as an alternative to
the live-attenuated IBV vaccine as it has the advantage of
being safe, that is, overcome the problem of regaining patho-
genicity and recombination with field viruses because it
expresses only the immunogenic protein(s) of IBV without
using the whole virulent organism. This also allows the vec-
tored vaccine to escape the maternally derived immunity
against IBV. However, the pre-existing or the maternally
derived immunity against the viral vector itself could interfere
with the viral vector replication and consequently hinder the
expression of the IBV protein(s) leading to vaccination failure.

Some avian viruses including adenovirus [267–269], pox-
virus [270–272], Herpes virus [273, 274], Newcastle disease
virus (NDV) [275–279], and avian metapneumovirus [280]
have been used as vaccine vectors for expressing IBV struc-
tural immunogenic protein(s) (S, S1, S2, or N protein).
Among these virus vectors, NDV is of particular interest
because of its respiratory tropism allowing it to elicit strong
mucosal and cellular immunity at the site of viral entry [281].
Mass application of NDV-vectored vaccines makes them
feasible for use in commercial poultry farms. In addition,
NDV-vectored vaccines provide dual protection against
IBV and NDV, another highly lethal avian virus of great
concern, without the possible interference that may happen
by coadministration of both IBV and NDV vaccines. Full S
protein has been shown to be the antigen of choice for
expression by NDV vector rather than expression of S1 or
S2 alone [275] and modifications of the S protein could alter
its protective efficacy [278]. The protective efficacy of NDV
expressing full S protein of IBV is shown to be enhanced by
vaccination at a higher age (4-week-old) [275] or by prime-
boost vaccination at 1 and 14 doa [278] resulting in alleviated
clinical signs and significant reduction of tracheal viral shed-
ding. In another study, prime-boost vaccination (at 1 and
14 doa) or single vaccination at 10 doa using NDV expressing
ectodomain of IBV S protein clearly showed reduced respi-
ratory signs and induced better immune response versus
single vaccination at 1 doa, however, it did not reduce the
viral load in tears [279]. Recombinant NDV expressing a
multiepitope of IBV S1 protein provided 90% protection
against virulent IBV M41, significantly reduced viral load
in the trachea, and reduced the pathogenicity to the trachea
as shown by decreased ciliostasis score [282].

In addition to expressing the IBV immunogens, viral
vectors can be engineered to express cytokines for aug-
mented immune responses. For instance, coexpression of
cytokine adjuvants such as IF-γ and IL-18 along with the
IBV S1 protein by poxvirus has revealed enhanced cellular

and humoral immune responses and provided better protec-
tion than the expression of IBV S1 protein alone [270–272].

Despite the promising results of the recombinant vec-
tored vaccines, none of them has come to the market. The
stability of the transgenes and the interference with vector-
specific MDA, specially NDV, are of great concern. However,
chimeric NDV vectors or increasing the antigenic dose were
suggested to overcome the neutralization by MDA [283].

5.4. DNA Vaccines. A DNA vaccine is a plasmid-based or
nonplasmid-based nucleic acid coding for the immunogenic
protein(s) of IBV that is (are) expressed inside the hosts’ cell.
DNA vaccines induce enhanced cellular and humoral immu-
nity especially when coadministered with DNA coding for
cytokine adjuvants such as IL-2 [284] and granulocyte-
macrophage colony stimulating factors [285]. A trivalent
IBV DNA vaccine encoding for S, M, and N proteins has
been shown to provide better protection than a monovalent
vaccine expressing only one of these proteins [286–288].
Boosting with an inactivated vaccine enhances the protective
efficacy of the DNA vaccines [286, 287]. Polyepitope-based
DNA vaccine containing B and T cell epitopes derived from
S1 genes of three IBV strains, namely, SH1208, Australian T,
and Holte, protected against a lethal dose of the IBV SH1208
strain [289]. In a similar study, a chitosan-encapsulated
DNA nanovaccine expressing IBV neutralizing epitopes
(derived from S protein) and T-cell epitopes (derived from
N protein) provided partial protection against challenge with
IBV QX-like strain by reducing the viral load in kidneys and
bursa of Fabricius, but not in the respiratory tract [290]. The
authors attributed the incomplete protection to the paren-
teral administration of the vaccine which failed to elicit
mucosal immunity at the respiratory tract. Moreover, the
individual administration of DNA vaccines in general makes
it difficult for application in large-scale poultry productions.
However, in ovo vaccination at the hatchery is an alternative
method that could be used for mass application of a DNA
vaccine [291]. In addition, for mass application via drinking
water, bacterial delivery systems were developed using atten-
uated Salmonella Typhimurium [292] and attenuated Salmo-
nella Gallinarum [293] to deliver DNA vaccines carrying S1
and/or N genes and S gene of IBV, respectively. Lactococcus
lactis was also used as a bacterial delivery system of the
polypeptide-based IBV-DNA vaccine by drinking water or
intranasal immunization [294, 295]. In addition, a nanopar-
ticle adjuvant composed of Quil-A and chitosan (QAC)
encapsulating DNA plasmid expressing the N protein of
IBV Ark DPI strain (pQAC-N) offered a convenient intra-
nasal application, elicited a robust cellular immunity and
protected the chickens against homologous IBV challenge
after prime-boost vaccination at 1 and 14 doa [296]. In a
recent study, Chandrasekar et al. [297] showed that using
the pQAC-N DNA vaccine as a prime dose before boosting
with Modified Vaccinia Ankara (MVA) expressing the same
N protein out-performed the prime-boost vaccination with
MVA-vectored vaccine. This strategy elicited a robust local
CMI in the lungs (lymphocyte proliferation) and led to a
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significant reduction of clinical severity and viral shedding in
lachrymal fluid and tracheal swabs.

Since the DNA vaccine does not interfere with the MDA,
it could be used in vaccinating young MDA-positive chicks.
A DNA vaccine has other advantages including safety, sta-
bility, scalability as well as the ability to express multiple
antigens. However, it needs to be administered in multiple
doses or boosted with other kinds of vaccines such as inacti-
vated and vectored vaccines.

5.5. Subunit, Polypeptide, and VLP Vaccines. A subunit vac-
cine is produced using the antigenic protein. A peptide vac-
cine is a short segment of the amino acid sequence, derived
from the antigenic protein, that is associated with the immu-
nogenic epitopes. The S1 and N proteins of IBV contain
immunogenic epitopes responsible for the induction of neu-
tralizing antibodies and CTL responses [1, 63, 64, 298]. It has
been shown that the Spike ectodomain subunit vaccine pro-
vided significant protection against IBV challenge, whereas
the S1 subunit vaccine provided inadequate protection, indicat-
ing the contribution of the S2 protein to bind to chicken tissue
[299]. A polypeptide IBV vaccine based on multiple epitopes
from S1 and N proteins was developed by expression in E. coli.
Chickens immunized by the purified polypeptide vaccine
showed significant humoral and cellular immune responses
with 80% protection after challenge with the nephropathogenic
IBV SAIBK strain [300]. Coadministration of S1 andN subunit
vaccines derived from virulent IBV GX-YL5 strain was shown
to provide better protection against homologous challenge than
that of S1 or N proteins alone, but still lower than the
protection afforded by the H120 inactivated vaccine [301].

VLPs are developed by the assembly of the major struc-
tural viral proteins in their native conformation and organi-
zation without incorporating the viral genome [302]. This
technology makes use of the immunogenic properties of a
live virus without the potential risk of regaining pathogenic-
ity or recombination. The presentation of the immunogenic
proteins in the native structure and morphology ensures
exposure of the immunodominant epitopes and thus stimu-
lation of neutralizing immune responses. It has been
reported that IB VLPs could be formed using E proteins
only [303], however, the efficiency was extremely low. IB
VLPs, assembled by M and S proteins alone, effectively
induced a humoral immune response similar to that of an
inactivated vaccine, in addition to a significantly higher cel-
lular immune response [304]. Moreover, VLP carrying the
M, E, and S proteins of the IBV were generated using a
Baculovirus system and were able to elicit IBV-specific anti-
bodies and neutralizing immune response in chickens [305].
In another study, Lv et al. [306], constructed chimeric VLPs,
composed of the M1 protein from avian influenza (AI)
H5N1 virus and the IBV S1 protein fused to the transmem-
brane and cytoplasmic domains of AI H5N1 NA protein.
Vaccination with these chimeric VLPs induced significantly
higher S1-specific antibody response and levels of neutrali-
zation antibodies when compared to inactivated H120 virus
in SPF chickens in addition to higher IL-4 secretion in mice.
Other chimeric IB-ND VLPs carrying the IBVM protein and

two recombinant proteins, IBV S1 and NDV F ectodomain,
both separately linked to transmembrane and carboxyl ter-
minal domains of IBV S protein, were constructed using a
Baculovirus expression system. These chimeric IB-ND VLPs
were shown to induce better humoral and cellular immunity
responses compared to inactivated vaccines, and provided
protection against both IBV and NDV [307].

Since the S protein of IBV is highly glycosylated and the
neutralizing epitopes are highly conformation-dependent,
the lack of glycosylation and the improper protein folding
in the expression host could affect the immunogenicity of the
expressed IBV protein and hence decrease the efficacy of the
vaccine. In addition, the purification of the antigenic proteins
or VLPs in large amounts and the individual administration
by injection are two major limitations of the subunit, poly-
peptide and VLPs vaccines. These limitations make these
types of vaccines uneconomical and inconvenient for appli-
cation in large-scale poultry production.

5.6. Reverse Genetic Vaccines (Recombinant IBV).Generation
of recombinant IBV by reverse genetics allows understand-
ing the function of the viral proteins and their manipulation
for attenuation or changing the antigenic specificity. For
example, deletion of 3ab and/or 5ab resulted in a mutant
virus with an attenuated phenotype that could induce pro-
tection in chickens [40]. Exchange of the ectodomain of the S
protein of the apathogenic Beaudette strain (Beau-R) with
that of the pathogenic strains M41 [308] or 4/91 [309]
induced protection against homologous challenge with
M41 or 4/91, respectively, without increasing the virulence,
while providing limited protection against heterologous
challenge with the QX strain [236]. However, exchange of
only the S1 or S2 subunits of the Beau-R with the corre-
sponding regions from the pathogenic M41 provided signifi-
cantly lower levels of protection compared to replacing the
full ectodomain of the S protein [310]. On the other hand,
substituting the S1 of IBV H120 with the virulent IBV strain
SC021202 [311] or the nephropathogenic QX-like ck/CH/
IBYZ/2011 strain [312] resulted in a nonvirulent recombinant
IBV vaccine that could resist the challenge by SC021202 strain
or QX-like strain, respectively. The limited replication of the
Beau-R is suggested to be the reason of the incomplete protec-
tion when using the Beau-R as a vaccine backbone. In a recent
study, Ting et al. [58] have shown that a prime oculonasal
immunization of 1-day-old SPF chicks using live recombinant
Beaudette strain expressing the S1 subunit of the QX-like strain
KC boosted by intramuscular injection of an inactivated vaccine
of the same virus at 14doa provided better protection against
challenge with virulent IBV of both QX andM41 strains. Weng
et al. [313] replaced the spike gene of H120 with that of the QX
strain, generating the recombinant virus H120-QX(S) that was
apathogenic in SPF chickens and provided 100% protection
against challenge with the virulent QX strain. All these studies
emphasize that the S protein is not a determinant for IBV
pathogenicity and could be used to precisely develop avirulent
serotype-matched IBV vaccine candidates by reverse genetics.

On the other hand, switching the replicase gene of the
virulent M41 with that of a Beaudette strain while keeping
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the remaining M41 genome unchanged resulted in avirulent
chimeric IBV [32]. Later, Keep et al. [314] discovered a
temperature-sensitive criterion of the recombinant IBV
(Beau-R) determined by its replicase gene, emphasizing the
role of the replicase gene in pathogenicity [229, 230]. The
temperature-sensitive Beau-R was able to replicate at 37°C
(the very upper respiratory tract) but not at 41°C (the core
body temperature of chickens), presenting a new insight into
the rational attenuation of IBV strains. Recently, Keep et al.
[34] developed a rationally attenuated IBV vaccine candidate
by substituting four amino acids in nsps 10, 14, 15, and 16,
that was stable for up to 10 passages in primary CK cells and
TOCs. In ovo application of the developed vaccine candidate
showed successful hatchability rates (97% at a low dose; 101

EID50, and 88% at a high dose; 104 EID50), offering another
advent for mass application in the hatchery.

Once an IBV reverse genetic system is set up, this tech-
nique allows the development of attenuated serotype-specific
vaccine candidates against newly emerged variants more
quickly than the attenuation of the pathogenic variant strain,
through serial passaging in ECE. In addition, targeted RNA
recombination based on the virulence genes allows the devel-
opment of rationally attenuated IBV vaccine candidates
rather than random attenuation by egg adaptation. More-
over, swapping only the S protein genes while keeping the
remainder of the vaccine candidate constant, will help in the
general predictability of the IBV vaccine candidates, rather
than using different IBV vaccines that differ in many posi-
tions outside of the S gene [241]. Nevertheless, the chances of
mutations and recombination are still possible with long-
term use of recombinant IBV vaccines.

5.7. Vaccination Challenges against the Emergence of New
Variants. Despite the implementation of various vaccination
programs, IBV continues to circulate, evolve, and trigger
outbreaks worldwide. The heterogeneity of IBV serotypes/
genotypes poses a significant challenge in disease control by
vaccination. In addition, the cocirculation of more than one
serotype/genotype in the same geographical area facilitates
the continual emergence of new variants by genetic recombi-
nation. When facing a newly emerging variant, the decision
must be made whether to develop a homologous vaccine, rely
on the currently available strains within the geographical area
or introduce a new vaccine strain. Developing a homologous
live-attenuated vaccine for each emerging variant is impracti-
cal as it is expensive and time consuming. In addition, differ-
entiating between vaccine and field strains (DIVA) in
diagnostics becomes complicated [111]. Moreover, using a
homologous vaccine adds complexity to assessing viral evolu-
tion as reisolation of the vaccine strain will yield an apparently
low evolution rate [117]. On the other hand, relying on the
“protectotype” concept (using two antigenically distinct vac-
cine strains to provide broad protection against heterologous
challenge) may allow DIVA but might not be as efficient as
the homologous vaccine [235]. In addition, possible recombi-
nation betweenmultiple vaccine strains could further compli-
cate matters. Interestingly, a molecular epidemiology study
conducted in integrated poultry companies in northern Italy

revealed that the replacement of heterologous protectotype
vaccination, based on Mass and 793B strains, with a homolo-
gous QX vaccine (D388) led to a higher vaccination pressure
[113]. This phenomenon occurs because the immunity eli-
cited against IBV is not sterilizing, allowing the field strains
to replicate and evolve in partially protected chickens. The
highest pressure was primarily directed toward the RBM in
the S1 CTD, which is a major target for neutralizing antibo-
dies. This homologous vaccine pressure potentially influences
the emergence of vaccine-immunity escape mutants. By con-
trast, the heterologous vaccination is suggested to induce a
more diversified spectrum of immune responses, making it
more challenging for specific immunity escape mutants to be
selected [113]. Although the protectotype concept based on
Mass and 793B types demonstrated a broad spectrum of pro-
tection against multiple variants, the decision to introduce the
793B type vaccine into a region where this serotype has not
been reported before necessitates thoughtful consideration.
Once a new strain is incorporated into the vaccination strat-
egy, withdrawing it becomes challenging.With long-term use,
vaccine-derived strains with virulent characteristics may
evolve and trigger outbreaks [136–138]. Therefore, there is
an urgent need for a novel vaccine platform other than live
attenuated vaccines to halt the continuous emergence of var-
iants [315].

In field application, the efficacy of a vaccine may be
influenced by various factors, leading to outcomes that
may differ from the results observed in controlled laboratory
settings. Several practical considerations, such as the poultry
management practices, bird health status, vaccination tim-
ing, handling, storage, route of administration, and the pres-
ence of diverse circulating viral variants, can all play a crucial
role in shaping the actual effectiveness of the vaccine in the
field. Even with the best-matched vaccine in use, suboptimal
vaccination practices can result in inadequate immunization,
ultimately leading to vaccination failure. For instance, stan-
dardizing the hatchery application of the vaccine is essential
to ensure comprehensive coverage of the chicks. Proper
adjustment of the spray equipment, adhering to the recom-
mended droplet size, prevents vaccine loss to the environ-
ment or excessive inhalation into the lower respiratory
system. Gel administration method has been proposed to
be equally effective in hatchery vaccination against IBV,
without the spray-associated issues [316]. In addition, main-
taining suitable water quality and temperature is crucial, as
these factors can significantly impact vaccination effective-
ness. Another aspect to consider is the potential interference
from the simultaneous application of live vaccines for other
diseases [259]. Taking all these factors into account is vital to
achieve the desired outcome of vaccination in the field.

6. Conclusions

IB is an extremely contagious viral disease that negatively
impacts the poultry industry around the globe. While IBV
replicates primarily in the respiratory epithelial cells, certain
viruses exhibit broader tropisms, disseminating to internal
organs specially the kidneys, oviducts, and proventriculus.
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Therefore, local respiratory immunity is vital in preventing
viral infection, while systemic immunity protects the internal
organs and ensures transmission of maternal antibodies to
the newly hatched chicks. The global landscape of IBV is
characterized by the presence of multiple serotypes/geno-
types, regional distribution patterns, and the continuous
emergence of novel variants. The use of live vaccines can
significantly impact the geographical dynamics and distribu-
tion of IBV genotypes.

The diversity of IBV arises from its high mutation rate
and recombination, creating variants with distinct character-
istics in tropism, virulence, and/or vaccine coverage. Current
IBV vaccines, while offering clinical protection, allow the
virus to replicate under immunization pressure, leading to evo-
lutionary changes, and escape from vaccine immunity. In addi-
tion, these vaccines can recombine with wild-type viruses,
giving rise to novel variants. This is how IBV wins the battle
against the current vaccines making the long-term use of such
vaccines unsafe. Alternative vaccine platforms such as DNA,
peptide, subunit, VLP, and viral-vectored vaccines were pro-
posed and tested in many experimental studies. Although they
offer a safety advantage over the live-attenuated vaccines, they
also come with their own limitations.

7. Future Perspectives

Control of IBV is extremely challenging due to its highly
evolving nature and diverse antigenicity. Addressing these
challenges requires careful consideration of vaccination
strategies. Vaccines that prevent infection entirely offer a
perfect solution, capable of eradicating the disease. However,
current IBV vaccines, providing partial protection by reduc-
ing viral replication without preventing infection, can some-
times exacerbate the situation. Although some vaccines may
appear satisfactory at the clinical level, effectively protecting
flocks from clinical disease, their protection is transient.
With the emergence of a novel variant, severe outbreaks
can occur, as these vaccines do not stop the virus replication
and shedding. Thus, the evaluation of the protective efficacy
of IBV vaccines should include both clinical and viral shed-
ding parameters.

Research efforts should be directed toward the develop-
ment of novel vaccines that effectively and safely prevent
infection. The future IBV vaccine needs to meet several cri-
teria to efficiently control the disease. An ideal IBV vaccine
should provide broad-spectrum protection, elicit both local
and systemic humoral and cellular immune responses, cir-
cumvent the maternal antibodies, and be cost-effective, con-
venient for mass application in the field, and safe. Research
in this area should be coupled with deep exploration of viral
evolution, immunogenicity, pathogenicity, host genetics, and
innate immunity. This interdisciplinary approach can lead to
new avenues for development of effective vaccines.

Continuous surveillance with up-to-date diagnostic tools
is crucial to understand the epidemiology worldwide and
promptly detect emerging genotypes/lineages. While S1
gene sequencing is currently sufficient for IBV genotype
identification, there is a growing need for full genome

sequencing to comprehensively explore the evolutionary tra-
jectories of IBV variants.

Implementing stringent biosecurity measures and sound
management practices are essential to prevent the introduc-
tion and spread of infection. In addition, strict adherence to
the proper vaccination procedures is vital to ensure the max-
imum vaccine coverage and an optimum immune response.
Therefore, vaccination should be complemented with a
holistic strategy that combines robust surveillance systems
and biosecurity measures, recognizing that it does not stand
alone in the battle against IBV.
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