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Leishmaniasis is a parasitic disease with clinical presentations that vary from asymptomatic infection to cutaneous, mucocutaneous, or
visceral disease. Global change, with migratory movements and travels, among others, has had an impact on the presentation of the
clinical forms of leishmaniasis in a given area, hindering its diagnosis. The traditional parasitological techniques have limited sensitivity,
and currently, there is no reference or gold-standardmolecular diagnosticmethod. The aim of this studywas to evaluate the effectivity of
the VIASURE Leishmania Real-Time PCR Detection Kit prototype (CerTest Biotec, Zaragoza, Spain) for the diagnosis of
autochthonous and imported leishmaniasis in comparison with two other commercialized molecular kits: STAT-NAT® Leishmania
spp. (Sentinel, Milano, Italy) and Leishmania spp. Real-TM PCRKit (Sacace Biotechnologies, Como, Italy). Four species of Leishmania,
L. infantum, L. major, L. braziliensis, and L. panamensis, were targeted to assess analytical sensitivity, whereas diagnostic sensitivity was
evaluated by studying a panel of 49DNA samples frompatients with suspected or confirmed Leishmania infection. The prototype could
detect all the New andOldWorld species studied and achieved a limit of detection of 5× 10−5 ng DNA/μL in all species. Also, it allowed
the diagnosis of autochthonous and imported cases of cutaneous and visceral leishmaniasis (VL). Diagnostic sensitivity was 81.8% for
the prototype and 100% for the Sacace kit (27 and 33 positive samples detected, respectively). The STAT-NAT® kit failed to detect
Vianna species. The VIASURE Leishmania Real-Time PCR Detection Kit prototype was found to have good analytical and diagnostic
sensitivity. Using a simple protocol and ready-to-use reagents, results are obtained quickly and are easy to interpret. The evaluation
results indicate that the test is a promising candidate for routine diagnosis of cutaneous leishmaniasis and VL in endemic countries, but
more studies are necessary to address its sensitivity and specificity.

1. Introduction

Leishmaniasis is a vector-borne disease caused by protozoan
parasites from the genus Leishmania, which are transmitted
by the bite of infected female sandflies of the genera

Phlebotomus and Lutzomyia [1, 2]. According to the World
Health Organization, leishmaniasis is one of the seven most
important tropical diseases worldwide. In 2020, it was
described as endemic in large areas of the tropics, being
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present in around 98 countries and territories in all conti-
nents except Oceania [1].

About 20 species of Leishmania have been identified as
pathogenic for humans [3], and they cause three main clini-
cal variants of the disease: (i) cutaneous leishmaniasis (CL),
with infected macrophages resident in the skin; (ii) mucosal
leishmaniasis, which affects mucous membranes of the nose,
mouth and throat; (iii) and visceral leishmaniasis (VL), with
infected mononuclear phagocytic cells in the liver, spleen,
bone marrow, lymphatics nodes, and intestine [3, 4].

The most common form is CL, with about 600,000 to 1
million new cases occurring annually worldwide [1]. CL is
characterized by epithelial lesions and ulcers in exposed
regions of the body [5]. The cutaneous, mucosal, and muco-
cutaneous forms of leishmaniasis, collectively referred to as
tegumentary leishmaniasis (TL), are not usually fatal. The
most severe form is VL, with 50,000 to 90,000 new cases
reported per year [1]. Without treatment, VL is fatal in
95% of cases and, even when treated, is associated with
case-fatality rates of 10%–20% [6, 7]. All the Leishmania
species infecting humans can cause CL, whereas the species
known to cause VL belong to the L. donovani complex [4, 8].

The diagnosis of leishmaniasis relies on clinical manifesta-
tions and epidemiological and laboratory data [9, 10]. In the
absence of a gold-standard diagnostic test, different combinato-
rial algorithms are used. Methods to detect Leishmania infection
include microscopy, in vitro culture, serology, dermal diagnostic
tests, xenodiagnosis, and molecular approaches [11–14]. Each
method has its advantages, and its usefulnessmay vary according
to the clinical form of the disease [15–17].

Recently, several molecular tools have been developed for
the diagnosis of leishmaniasis, and they are playing an
increasingly relevant role in this field due to their high sen-
sitivity, specificity, and applicability to a variety of clinical
samples [13]. Molecular methods are also useful for moni-
toring treatment response in patients with leishmaniasis and
other diseases [18, 19]. Among them, quantitative real-time
PCR (qPCR) is increasingly the method of choice, as it is fast,
has a broad dynamic range, and drastically reduces carryover
contamination because there is no need to open reaction
tubes for post-PCR analyses [13, 20, 21].

In some endemic areas, including countries of South
America, leishmaniasis is caused by a wide variety of coex-
isting Leishmania species [3, 10, 22], whereas in others, such
as Spain, only one autochthonous species is involved; never-
theless, with increased population movement associated with
globalization, cases are being imported from South America,
the Maghreb, and elsewhere [23]. The difficulty of designing
an optimal method to detect all the circulating species ham-
pers the diagnosis of the disease. Commercial molecular kits
are available mainly for the diagnosis of VL, and very few
allow the detection of all species capable of causing TL.
CerTest Biotec (Zaragoza, Spain) has recently developed a
prototype qPCR assay to detect and diagnose infection by
Leishmania spp. in patients with signs of TL or VL. This
prototype was designed to avoid time-consuming manipula-
tion steps, thus reducing the risk of contamination, by incor-
porating lyophilized reagents for the qPCR assay.

In this context, the aim of this study was to perform a
comparative analysis of three molecular diagnostic kits for
leishmaniasis: the new VIASURE Leishmania Real-Time
PCR Detection Kit prototype (CerTest Biotec, Zaragoza,
Spain) and the commercialized STAT-NAT® Leishmania
spp. (Sentinel, Milano, Italy) and Leishmania spp. Real-TM
PCR Kit (Sacace biotechnologies, Como, Italy) kits.

2. Materials and Methods

2.1. Leishmania Strains. To evaluate the analytical sensitivity
of the diagnostic methods, four strains of four species of
Leishmania were targeted. They belonged to the subgenus
Leishmania from the Old World (L. infantum and L. major)
and subgenus Viannia from the New World (L. braziliensis
and L. panamensis). The strains were isolated from patients
with CL or VL and cryopreserved in the Cryobanc of Try-
panosomatids (Universitat de Barcelona). Before the analy-
sis, the strains were thawed and cultured on Schneider’s
insect medium supplemented with 20% fetal bovine serum
and 1% sterile human urine [23].

The DNA extraction from cryopreserved strains was car-
ried out with a manual extraction kit for tissue samples (High
Pure PCR Purification Kit of Roche, Basel, Switzerland) fol-
lowing the manufacturer’s instructions. The extracted DNA
was stored properly at −20°C until use. The DNA of the
strains was quantified with a NanoDrop 1,000 Spectropho-
tometer (Waltham, Massachusetts, United States). DNA
concentration was adjusted to around 50 ng/µL of Leish-
mania DNA for each species, and 1/10 serial dilutions up
to 5× 10E−5 ng/µL were carried out in the elution buffer
supplied with the DNA extraction kit (Roche). The Leish-
mania strains were characterized by hsp70 gene sequencing
and MALDI-TOF MS [23].

2.2. DNA Samples. For the diagnostic sensitivity study, a panel
of 49 DNAs was used, previously isolated from clinical samples
of patients with suspected or culture-confirmed leishmaniasis
without any clinical or epidemiological criteria. The panel of
clinical samples consisted of 44 DNAs from skin biopsy samples
and five DNAs from visceral clinical samples (one from periph-
eral blood, one from liver biopsy, and three from bone marrow
aspiration). The DNA of clinical samples was obtained retro-
spectively using two different methods: the aforementioned
manual extraction kit (Roche) and an advanced automated
instrument with the EZ1 DNA Tissue or EZ1 DNA Blood
Kits (Qiagen, Hilden, Germany). The extracts were stored at
−20°C until analysis. The Leishmania isolates were obtained
and characterized prior to the study.

2.3. Molecular Assays. The performance of the new prototype
(VIASURE Leishmania Real Time PCR Detection Kit, CerT-
est) was compared with that of two commercial CE-marked
kits already available for the molecular diagnosis of leish-
maniasis: (i) the STAT-NAT® Leishmania spp. Kit (Sentinel
Diagnostics), and (ii) the Leishmania spp. Real-TM PCR Kit
(Sacace Biotechnologies). All the qPCR reactions were car-
ried out in a QuantStudio 6 qPCR Flex system (Applied
Biosystems, Waltham, Massachusetts, United States). All
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samples were tested in duplicate, including the positive and
negative controls supplied by the respective kit, in each run.

The VIASURE kit is a prototype multiplex qPCR method
designed for the detection of Leishmania spp. in different
biological samples from patients with signs and symptoms
of leishmaniasis using the 18S rRNA gene as a target. The
amplification conditions were: one cycle at 2′ at 95°C, 45
cycles of 10′ at 95°C and 50′ at 60°C. The kit can be stored
at room temperature. The results were analyzed using the
software of the real-time PCR equipment according to the
manufacturer’s instructions. A sample was considered posi-
tive when the cycle threshold (Ct) value obtained was less
than 40 (web page of the Certest prototype for more infor-
mation https://www.certest.es/wp-content/uploads/2021/07/
VIASURE_LEI_ES.pdf).

The STAT-NAT® (Sentinel) kit is a qualitative multiplex
test based on qPCR amplification using fluorescent probes
specific for Leishmania spp. According to the manufacturer’s
manual, the assay is able to detect all Leishmania species in
whole blood samples. The kit allows room-temperature
transport and storage. A sample was considered positive
when the Ct value obtained was less than 40.

The Sacace kit is a qualitative diagnostic test, which,
according to the manufacturer’s manual, is able to detect
all Leishmania species in tissue specimens such as skin sores
(for CL) or bone marrow (for VL). The kit needs to be stored
at −20°C. The extraction control could only be added in the
assays with cryopreserved strains and not in the clinical
analysis, which was carried out directly with stored DNAs.
A sample was considered positive when the Ct value
obtained was less than 40.

2.4. Data Analysis. The criteria for interpreting the test
results were the following: samples were classified as positive
when a confirmatory positive result was obtained by culture
and/or by the commercial Sacace kit and were considered
negative when a negative result was obtained with both
techniques.

The following measures of diagnostic accuracy were cal-
culated (TP, true positive; TN, true negative; FP, false posi-
tive; FN, false negative): sensitivity (calculated as TP/(TP
+ FN)× 100); specificity (calculated as TN/(TN+ FP)× 100),
positive and negative predictive values (PPV and NPV,
respectively), which are the proportion of correctly diag-
nosed individuals with positive (PPV) or negative (NPV)
results (calculated as TP/(TP+ FP)× 100 and TN/(TN
+ FN)× 100, respectively), and the prevalence (calculated
as (total positive/total samples)× 100). Calculations were
performed with the software VassarStats, which is available
online at http://vassarstats.net.

3. Results

3.1. Linearity of the Assays and Limit of Detection. The Ct
values obtained for each assay carried out with different 10-
fold dilutions of DNA isolated from the four cultured Leish-
mania species are shown in Figure 1.

The results obtained with the VIASURE prototype could
detect all the New and Old World species studied at all the

dilution ranges tested in duplicate. Similar results were
obtained by the Sacace kit, with the exception of the last
dilution point of L. infantum, when none of the duplicates
were detected. In contrast, the STAT-NAT® kit failed to
detect the NewWorld species L. braziliensis and L. panamen-
sis, although its Ct values for the Old World Leishmania
species were lower (Figure 1).

3.2. Clinical Evaluation. The clinical performance of the
STAT-NAT® kit was not assessed, as it failed to detect Vian-
nia species. According to the criteria of positivity, 33 out of
the 49 samples analyzed were considered positive and 16
negatives (Table 1). The VIASURE prototype achieved a
total of 27 qPCR-positive results, whereas the Sacace kit
gave positive results in 33 samples. All the positive DNA
samples detected by VIASURE were positive by Sacace, but
not vice versa. The global results are shown in Table 2,
including previous data based on culture methods and the
characterization of the species. All the samples with positive
cultures tested positive with both assessed kits (VIASURE
and Sacace). When using VIASURE, 23 skin biopsies and
four samples from VL patients were positive, compared to
28 skin biopsies and five VL samples with Sacace. Both kits
showed similar Ct values in positive samples.

The diagnostic accuracy of the VIASURE prototype is
shown in Table 3, being the sensitivity of 81.8%.

4. Discussion

In Spain, as in other countries of the Mediterranean basin,
L. infantum is the only autochthonous species that causes VL
and CL, including nontypical forms and mucosal involve-
ment [23, 24]. Increased population movements have altered
the etiology and distribution of leishmaniasis, which has
become increasingly common, including in nonendemic
countries [23]. Imported cases of leishmaniasis have been
reported in Spain and other Mediterranean countries, espe-
cially of CL, involving infection by Leishmania species from
both the New and Old World [8, 25–28].

According to the WHO, CL incidence in the EU coun-
tries affected by leishmaniasis increased significantly in the
periods 2005–2008 and 2017–2020 (e.g., from 0.01 to 0.27 in
France and from 0.03 to 0.4 in Spain). In contrast, VL has
increased in parts of the European Mediterranean region but
insignificantly. It should be stressed that CL is not a manda-
tory reportable disease in many countries, which affects the
accuracy of the incidence rate, as many positive diagnoses of
Leishmania patients are lost. The number of imported cases
and the growing incidence in this endemic region could have
serious implications for disease management due to an
unnoticed spread of nonautochthonous leishmaniasis,
increased treatment failure, and development of resistance
to treatments [29, 30].

Thus, in the clinical context, there is a pressing need to
establish optimized protocols for the detection and identifica-
tion of all potential etiological agents of leishmaniasis, as this
would allow a more accurate prognosis and efficient treat-
ment [23, 31]. In the present work, we assessed the analytical
sensitivity of the VIASURE Leishmania Real-Time PCR

Transboundary and Emerging Diseases 3

https://www.certest.es/wp-content/uploads/2021/07/VIASURE_LEI_ES.pdf
https://www.certest.es/wp-content/uploads/2021/07/VIASURE_LEI_ES.pdf
https://www.certest.es/wp-content/uploads/2021/07/VIASURE_LEI_ES.pdf
https://www.certest.es/wp-content/uploads/2021/07/VIASURE_LEI_ES.pdf
https://www.certest.es/wp-content/uploads/2021/07/VIASURE_LEI_ES.pdf
http://vassarstats.net
http://vassarstats.net


Detection Kit prototype for the detection of the autochthonous
L. infantum and species from countries of the Old World
(L. major) and New World (L. braziliensis and L. panamensis)
in comparison with two commercial CE-certified kits: Sacace
Leishmania spp. Real-TM PCR and Sentinel STAT-NAT®

Leishmania spp.
The traditional diagnosis of leishmaniasis relies on the

microscopic detection of the amastigote form of the parasite
in stained samples and Leishmania culture, but newer tech-
niques based on PCR assays offer greater sensitivity [32–34].
Of the 49 samples in our study, 13 were positive by culture

isolation, whereas 27 and 33 tested positive by the VIASURE
and Sacace qPCR kits, respectively. In the case of the STAT-
NAT® kit, only DNA samples from CL patients from the Old
World and VL cases were positive.

As the causative agents of VL are the species belonging to
the L. donovani complex [24, 33], its molecular diagnosis is
more straightforward compared to TL, which is caused by a
wider variety of Leishmania species. Designing and standard-
izing a PCR method for TL diagnosis with sufficient sensitiv-
ity and specificity has been a significant challenge due to the
requirement of targeting multiple species [20, 21]. Accord-
ingly, we found that the STAT-NAT® kit was sensitive for VL
diagnosis, as shown by the Ct obtained, but could not detect
CL caused by New World species (see Figure 1).

Overall, PCR-based methods are accessible, safe, have
improved/good sensitivity, and provide reliable results in routine
laboratory conditions [13]. Another advantage is that parasite
culture is not required, and the tests may be applied directly to
clinical samples [35]. qPCR assays have been implemented for
DNA detection, quantification of parasite burden, and species
typing using different targets and protocols. Compared to stan-
dard PCR protocols, they are more sensitive and require a sim-
pler standardization procedure [12, 21].

TABLE 1: Final results of the VIASURE Leishmania Real-Time PCR
Detection Kit according to the interpretation criteria (see Section 2.4).

Commercial Sacace kit

Pos Neg Total

VIASURE kit prototype
Pos 27 0 27
Neg 6 16 22
Total 33 16 49
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FIGURE 1: Comparison of the Ct values obtained with the three different kits for Leishmania infantum, L. major, L. braziliensis, and
L. panamensis. Values correspond to the mean of the duplicates for each dilution.
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Currently, there is no consensus on a universal protocol
for the molecular diagnosis of leishmaniasis, and various
molecular targets for Leishmania identification have been
described for conventional and real-time PCR assays, such
as kDNA, ITS-1, SSU, and hsp70 [20, 36–39]. Although sev-
eral in-house qPCR assays have been developed, very few
studies have focused on validating commercial PCR-based
kits for leishmaniasis diagnosis in humans, which are useful
for routine laboratory testing. To obtain the necessary certifi-
cation for marketing, these diagnostic tools need validation by
independent studies. In the present study, the STAT-NAT®

kit showed better analytical sensitivity than the VIASURE and
Sacace kits for the subgenus Leishmania (L. infantum and
L. major) but failed to detect species of the New World sub-
genus Viannia (L. braziliensis and L. panamensis). Conse-
quently, it was not used for clinical evaluation. Similar Ct
values were obtained with the VIASURE and Sacace kits,
and the detection limit of both tests was comparable, even
for analytical sensitivity and specificity. Sacace had a higher
diagnostic sensitivity and detected more positive samples (33
versus 27 by the prototype). Nevertheless, as indicated in
Section 2, when using the Sacace kit, the extraction control
was not added to the clinical samples, as these had been
prepared prior to the study, which was retrospective in nature.
This could have affected the sensitivity of the assay, as a
monoplex reaction is carried out when there is no extraction
control. Different studies report reduced sensitivity in multi-
plex versusmonoplex qPCR assays when using samples with a
low amount of DNA and high Ct values [40, 41].

The prototype has been able to diagnose both autochtho-
nous and imported cases of CL and VL, which are increasing
in the Mediterranean region, caused by different species of
Leishmania [23, 25]. It is also worth noting that the patient’s
epidemiological context and clinical symptoms are very
important parameters for the development of treatment
once the Leishmania infection has been diagnosed. The ther-
apeutic regimen will depend on the clinical presentation, the
host’s condition, the species causing the infection, and the
size of the lesion, among other variables [8–30].

In routine care diagnosis, it is important that results are
obtained quickly, using a simple protocol and ready-to-use
reagents, and are easy to interpret. Designed to meet these
requirements, the VIASURE Leishmania Real-Time PCR Kit
prototype comes in an 8-strip tube format, in which all the
reagents needed for the multiplex qPCR are lyophilized,

which allows room temperature transport and storage. After
applying a hydration buffer, provided by the manufacturer,
only the DNA sample needs to be added to the solution before
starting the reaction, avoiding time-consuming manipulation
steps, thus reducing the risk of contamination. In contrast, the
Sacace Leishmania spp. Real-TM PCR Kit comes with
different vials for each reagent, and buffer is needed for the
qPCR, which clearly lengthens the sample preparation time,
and storage must be at −20°C. Interpretation of results was
similarly straightforward in both assays.

One of the goals of this study was to assess how the
VIASURE kit would behave in routine diagnostic testing
for Leishmania in different biological samples. This was
done using a panel of DNAs from patients with suspected
infection by Leishmania and different clinical manifestations
(CL and VL), as well as DNA extracted from biological sam-
ples (45 from skin biopsies, three from bone marrow, one
from a liver biopsy, and one from peripheral blood). Both
kits were able to detect Leishmania in both visceral and
cutaneous samples, regardless of the source (autochthonous
or imported cases and different human clinical samples).

Notably, one of the limitations of commercialized PCR
kits is they do not allow species-specific detection of Leish-
mania. Therefore, future research could focus on developing
a single multiplex qPCR assay that is able to differentiate
between the most common causal species of human CL.

5. Conclusion

The evaluation results of the VIASURE Leishmania Real-
Time PCR Detection Kit prototype indicate that the test is
a promising candidate for routine diagnosis of CL and VL in
endemic countries. However, more studies are necessary to
address its sensitivity and specificity.
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TABLE 3: Measurements of diagnostic accuracy, expressed in per-
centage, of the VIASURE Leishmania Real-Time PCR Detection Kit
prototype.

Measure Result (%) 95% CI

Sensitivity 81.8 63.92–92.38
Specificity 100 75.93–100
PPV 100 84.50–100
NPV 72.7 49.56–88.39
Prevalence 67.3 52.34–79.64

PPV: positive predictive value; NPV: negative predictive value; CI: confi-
dence interval.
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