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Borrelia burgdorferi sensu lato (Bbsl) is spirochetes transmitted by ticks and known to cause Lyme disease. Chlamydia-like
organisms (CLOs) comprise a large group of bacteria that can lead to serious health disorders, including miscarriage. Recently,
CLOs have been found in ticks and patient skin biopsies. Due to the involvement of multiple potential vectors in the spread of these
pathogens, the objective of this study was to confirm the presence of both organisms in the early developmental stages of selected
vectors. Three potential vectors, Ixodes ricinus larvae, Culex pipiens larvae, and winged (unfed) adults of Lipoptena cervi, were
collected in the Czech Republic in years 2019–2020. The presence of Bbsl and panchlamydial DNA was detected by PCR and
positive samples were further analyzed by Sanger sequencing and phylogenetic tree construction. Bbsl DNA was proved in 1.5%
(2/137) of I. ricinus larvae (identified as Borrelia afzelii and Borrelia garinii), in 1.7% (2/119) of C. pipiens larvae (both identified as
B. garinii), and in 11% (3/27) of L. cervi (all identified as B. garinii). CLOs were identified in 0.7% (1/137) of I. ricinus larvae
(Candidatus Protochlamydia) and in 7.4% (2/27) of L. cervi (unspecified genus), while C. pipiens larvae could not be evaluated (0%).
This research represents the first investigation of the presence of CLOs in L. cervi. The detection of pathogen DNA in the early
developmental stages of vectors suggests the potential for transgenerational transmission of Bbsl and CLOs in the selected vectors,
although at a low rate.

1. Introduction

Lyme disease is a serious infection affecting the skeletal, car-
diovascular, and nervous systems depending on its form. The
late phase of infection may lead to erosive arthritis
of larger joints, cardiomyopathy, atrioventricular blockade,
meningitis, or cranial neuritis [1, 2]. This disease is caused
by Gram-negative bacteria belonging to spirochetes and Bor-
relia burgdorferi sensu lato (Bbsl) family, also called Borreliella
genus [3, 4]. These bacteria are also known for their special
abilities, including remarkable movement speed, pleomor-
phism (for example, turning into a cystic form), or durable
biofilm formation [5–7]. All these features allow spirochetes
to invade the human immune system or increase bacterial

survival in inhospitable conditions. Another attribute of these
bacteria is the wide diversity of hosts they can infect, including
birds [8, 9], lizards [10], small rodents [11], human patients
[12], and ticks [13]. The classical way of transmission of infec-
tion through tick bite is well known. The tick feeds on the
infected host (usually a small rodent), spirochetes invade the
tick gut, then the tick matures and feeds again on an unin-
fected host and if the period of feeding is long enough, trans-
mission of the pathogen is completed [14]. Transovarial
transmission, where the pathogen is passed from an infected
female tick to its eggs, was confirmed in the closely related
Borrelia miyamotoi [15]. It is believed that this mode of
infection is also possible in the Bbsl group. Since Bbsl DNA
was detected in the larval stages of our selected vector species
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[16, 17], the authors considered the potential for transgenera-
tional infection of Bbsl, as this way of transmission was pre-
viously attributed solely to the B. miyamotoi species [18].

Chlamydia-like organisms (CLOs) are a group of Gram-
negative bacteria, closely related to well-known Chlamydia
genus. CLOs can inhabit the most diverse types of environ-
ments. These bacteria have been found in a large spectrum of
hosts, including protozoa [19], insects [20], reptiles [21], fish
[22], and humans [23]. Depending on the species, they can
cause diseases, including pneumonia, other respiratory dis-
orders, adverse pregnancy outcomes, or even tubal infertility
in women [24–28]. These bacteria can be antibiotic resistant
on a solitary level [29] and can invade the central part of
borrelial biofilm formation. This mutualistic behavior may
contribute to their resistance [30]. There is also a similarity
between symptoms of some Borrelia-caused and Chlamydia-
caused diseases, for example, both bacterial groups can cause
skin manifestations called erythema nodosum or erythema
multiforme [31–33]. Furthermore, Chlamydia pneumoniae
and IgG antiborrelial antibodies are both often connected
to the occurrence of atherosclerotic changes [34, 35] and
the DNA of both bacterial groups was detected in synovial
fluid of patients with unspecified oligoarthritis [36]. These
broadly similar symptoms or suggested mutualistic nature of
coinfection may have contributed to the fact that the pres-
ence of CLOs in blood-sucking vectors was not known for a
long time.

Pathogens like Bbsl can be transmitted by multiple vec-
tors. Ixodes ricinus is a well-known blood-feeding vector
belonging to a vast group of mites. Their three host life cycle
(lasting 2–6 years) and wide incidence favor for potential
spread of many pathogens, including Bbsl. When the larval
stage hatches from the egg, it has only six legs and light
colored body. After first feeding (typically on a small rodent
or bird), it transforms into the nymphal stage with eight legs
and dark-colored cuticula. After the second feeding (usually
on small or bigger mammals), it follows with final transfor-
mation into adults capable of mating. Only female feeds on
blood (for nourishment and development of the eggs) and
can lay 500–2,000 eggs on the vegetation [37–39]. Mosqui-
toes of the Culex genus belonging to the Diptera group are
also vectors of large scale of pathogens, including viruses
[40], filarial worms [41], and protozoa [42]. Females lay
150–300 eggs in rafts on the surface of stagnant water and
these eggs usually hatch within 2 days. Larvae live in water
and feed on microscopic organisms and organic matter for

about 5 days before developing into the stage of pupa. Pupae
stay in water before developing into fully adult individuals
within 2–3 days. Both male and female adults feed on nectar
or damaged fruit. Fertilized females then need blood as a
source of proteins for egg development [43, 44]. Lipoptena
cervi also belongs to the Diptera group and it is a potential
vector of pathogens like Anaplasma spp. [45], Bartonella spp.
[46], Borrelia spp. [47], or Trypanosoma spp. [48]. Although
it was stated that there are only specific hosts (wild rumi-
nants) for this vector, the biting of humans was also docu-
mented [49]. The life cycle can last 270–370 days, including
diapause during winter. The fertilized female produces only
one larva, which is inside of her body until pupation. When
the pupa is formed, the female drops it from the host to the
ground, where it can sink into the snow where it survives
through winter. Hatching usually does not start until late
summer, then unfed winged hatched adult searches for a
suitable host. When an adult attaches to the host, it loses
its wings, feeds on the blood, and mates on the host [50–52].

The aim of the study is to determine the presence of Bbsl
and CLOs in the early developmental stages of selected vec-
tors. The hypothesis is that, given the wide range of host
species, the chlamydiaceae, or directly CLO DNA, will be
found in Culex pipiens and L. cervi. This can serve as an
initial step toward laying the foundation for future investiga-
tions into the potential transovarial transmission of these
pathogens, an area that has not received adequate attention
in previous research.

2. Results

Bbsl was identified by PCR in two of 137 (1.5%) I. ricinus
larvae collected in July 2019. Samples were identified by
sequencing analysis as B. afzelii and B. garinii. Bbsl was proved
also in two of 119 (1.7%) C. pipiens larvae, collected from
different reservoirs of stagnant water (both samples character-
ized as B. garinii) and in three of 27 (11.1%) winged adults of
L. cervi (all characterized as B. garinii). An overview of all
samples with BLAST similarity is shown in Supplementary 1.

Characterization of CLOs is more complicated; therefore,
other two approaches were used. Even with relatively low
similarity, Everett et al. [53] used taxonomic cutoffs based
on BLAST similarity for Chlamydia identification. This
approach has been applied to our data (Table 1). According
to this approach, only two samples were determined as mem-
bers of the CLOs group. For further and more precise analy-
sis, the chlamydial phylogenetic tree was constructed with

TABLE 1: Taxonomic identification of chlamydial samples according to Everett’s method [53].

Vector Order (≥80%) Family (≥90%) Genus (≥95%) Species (≥97%)

I. ricinus Chlamydiales (n= 3) ND (n= 1)
Candidatus Protochlamydia spp. clone

OTU_133 (n= 1)
C. pipiens Chlamydiales (n= 2) ND (n= 2) ND (n= 1) ND (n= 6)
L. cervi Parachlamydiales (n= 1) ND (n= 1) ND (n= 1) ND (n= 1)

Chlamydiales (n= 6)
ND (n= 1)

Note: ND—samples, which cannot be defined on a certain level.
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panchlamydial positive samples with BLAST similarity of
80% or higher (Figure 1). For this construction, the referen-
tial sequences (three representatives of Chlamydia genus,
and seven representatives of different CLO genera) found
in GenBank were used. This tree correctly connected refer-
ential Protochlamydia with the analyzed I. ricinus sample
identified as Protochlamydia representative by high phyloge-
netic proximity. Although a massive prevalence of panchla-
mydial DNA was detected in I. ricinus, only one sample
was identified as a CLO representative (Candidatus Proto-
chlamydia spp.) with a minimal prevalence of 0.72% (1/137).
C. pipiens samples (C3 and C4) were most likely closely
relative to the Simkania genus. Despite many panchlamydial
positive C. pipiens samples (Supplementary 1), no CLO could
be identified in this vector species since the samples were
collected from the water. Hence, there is no certainty whether
the detected panchlamydial DNA originated from C. pipiens
individuals or from water-residing amoebae. Two L. cervi
samples (L13 and L16) were phylogenetically paired with Pro-
tochlamydia and Parachlamydia, respectively, therefore
belonging to the Parachlamydiaceae family. In contrast, the
sample (L6) marked as possible Parachlamydiaceae was cast
aside to the lower part of Figure and, therefore, concluded not
to be CLO positive. Prevalence of panchlamydial DNA is also
relatively high in L. cervi; unfortunately, the only sample
identified as a Parachlamydiales member by BLAST was not
deemed reliable according to the phylogenetic tree (Figure 1).
Nevertheless, the phylogenetic tree identified two other sam-
ples as representatives of Parachlamydiaceae (2/27; 7.41%).

3. Discussion

Every vector sample identified as positive for investigated
bacteria was confirmed by PCR at least twice to avoid
cross-sample contamination. Further confirmation was car-
ried out by the Sanger sequencing and phylogenetic proxim-
ity analysis. Although very low CLO BLAST similarities were
found in the pooled samples of I. ricinus, particularly around
80%, it is very unlikely that this was due to sample contami-
nation or sequencing errors. The presence of nearly identical
single nucleotide polymorphisms (SNPs) within these groups
provides evidence that the discrepancies are not the result of
sequencing errors or a mixture of random chlamydial DNA
in the samples. We conclude that this low similarity is solely
attributed to the existence of a vast number of variable chla-
mydial species that are yet to be discovered, leading to
incomplete mapping and registration in GenBank.

With the mentioned incomplete genome mapping and
provisional naming of the newly discovered species, it is
complicated to determine the taxonomic affiliation of pan-
chlamydial samples. Phylogenetic trees offer great help by
connecting samples by evolutionary distance, although these
results may rarely contradict the results of Sanger sequenc-
ing. We can see this in the example of sample L6, which was
identified by Sanger as a close relative to Parachlamydiaceae
and by Everett’s taxonomic standards should belong to Para-
chlamydiales. However, this sample was put into the lower
part of the phylogenetic tree between samples with relatively

low BLAST similarity, whereas the Parachlamydiaceae repre-
sentatives were placed in the upper part. We can only assume
the reasons behind this, but it is very likely that BLAST
similarity below 90% is too low for taxonomic determination.
The relatively short length of this sequence (150 bp) may also
have directly contributed to the possibility of misevaluation.
Another possibility is the potential insufficient purity of the
sample after amplicon isolation. On the other hand, sample
L6 was placed relatively close to the referential representative
of the Rhabdochlamydia genus, which is known to be spe-
cialized in arthropod infections. This sample was also con-
nected to samples L12 and L23, which do not bear specific
order status and are described only as “Chlamydiae.” These
facts do not exclude the possibility that L6 belongs to the
CLO group and may indicate that this sample is closely
relative to Rhabdochlamydiaceae. Samples C3 and C4 appear
to be potentially very close relatives of a referential Simkania
representative. Unfortunately, samples isolated from C. pipiens
must be excluded from the CLO determination chapter
because the larvae were collected from the water, where
CLO-infected protozoa may live and, therefore, devalue
these data.

Information about the life cycles of selected three vectors
suggests the improbability of acquiring bacteria by feeding
on hosts. For example, in I. ricinus species, the morphology
of larvae indicates that none of these larvae have been fed
yet. Several studies also implicate the presence of Bbsl and
CLOs in I. ricinus larvae or even their transovarial transmis-
sion, but this transmission is mostly considered inefficient
[16, 17, 54–56].

In the case of C. pipiens, larvae live in water and do not
feed on blood yet in this stage, so there should be no oppor-
tunity for them to acquire Borrelia by feeding. The presence
of borrelial DNA in C. pipiens was observed in past studies
but with a low incidence [57–59]. Verifying the transmission
of CLOs is more complex in this case, as the larvae were
collected from water, and it is known that these bacteria
can reside within protozoan hosts. Therefore, we exclude
the CLO results obtained from C. pipiens until it can be
confirmed that the identified species of the Chlamydia group
cannot survive within protozoans. This problem preventing
the evaluation of such samples could be solved (at least par-
tially) in several ways. In terms of prevention, it would be
advisable, for example, to collect adult mosquitoes and let
them lay their eggs in water under laboratory conditions.
These eggs would then be stripped of impurities and their
DNA isolated. If it is necessary to collect larval individuals, it
would be beneficial to evaluate exactly which protozoan spe-
cies serve CLOs as hosts. After this assessment, samples
should then be analyzed by PCR for the presence of DNA
of these protozoa. However, this approach does not consider
host protozoa that have not yet been shown to have such a
relationship with CLO. A similar problem would arise if the
DNA of a CLO species that has never been associated with
survival in protozoa was found in a sample. There would be
no guarantee that such a relationship would not be demon-
strated at some point in the future. Taken altogether, the
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 C3 — Uncultured Chlamydiales bacterium clone VS30055biof (98.77 %)

 C4 — Uncultured Chlamydiales bacterium clone VS30055biof (98.84 %)

 Reference — Simkania negevensis (Z)

 Reference — Parachlamydia acanthamoebae (Bn9)

 L16 — Uncultured Chlamydiales bacterium clone 134 13 (100 %)

 C13 — Uncultured Chlamydiales bacterium clone 111 13 (97.63 %)

 C14 — Uncultured Chlamydiales bacterium clone 111 13 (98.14 %)

 I11 — Uncultured Candidatus Protochlamydia spp. clone OTU 133 (97.01 %)

 Reference — Candidatus Protochlamydia naegleriophila (Knic)

 L13 — Uncultured Chlamydiales bacterium clones 111 13 (96.79 %)

 I3 — Uncultured Chlamydiales bacterium clone rial (95.09 %)

 L22 — Uncultured Chlamydiae bacterium clone paddy 16 5232 (94.7 %)

 Reference — Neochlamydia hartmannellae (A1Hsp)

 Reference — Criblamydia sequanensis (CRIB-18)

 Reference — Waddlia chondrophila (WSU 86-1044)

 Reference — Chlamydia pneumoniae (TW-183)

 Reference — Chlamydia abortus (Ov/B577)

 Reference — Chlamydia psittaci (6 BC)

 C1 — Uncultured Chlamydiales bacterium clone P1H10 ( 96.58 %)

 C10 — Uncultured Chlamydiales bacterium clone GE10193 (100 %)

 C9 — Uncultured Chlamydiales bacterium clone GE10193 (98.82 %)

 L25 — Uncultured Chlamydiales bacterium clone GE11061 (84 %)

 C12 — Uncultured Chlamydiales bacterium clone HE210045 C6 (90.16 %)

 I17 — Uncultured Chlamydiales bacterium clone GE11093water (89.88 %)

 L11 — Uncultured Chlamydiales bacterium isolate Otu001911 (88.37 %)

 Reference — Rhabdochlamydia crassificans (CRIB01)

 L12 — Uncultured Chlamydiae bacterium clone HTM866S-B26 (82.27 %)

 L23 — Uncultured Chlamydiae bacterium clone HTM866S-B26 (84.83 %)

 L6 — Uncultured Parachlamydiaceae bacterium clone Ga4-sred-OTU-148 (87.80 %)

 C5 — Uncultured Chlamydiales bacterium isolate Otu001911 (80 %)

 C6 — Uncultured Chlamydiales bacterium isolate Otu001911 (80 %)

 I24 — Uncultured Chlamydiales bacterium clone SU16A10ocu (80.11 %)

 L8 — Uncultured Chlamydiales bacterium isolate Otu001911 (86.21 %)

 L7 — Uncultured Chlamydiales bacterium clone 12-91 (89.74 %)

 C8 — Uncultured Chlamydiales bacterium clone 111 13 (94.74 %)

 I10 — Uncultured Chlamydiales bacterium clone GE10193 (82.64 %)

 L9 — Uncultured Chlamydiales bacterium isolate Otu001911 (89.36 %)80
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FIGURE 1: Phylogenetic tree with interior-branch confidence values of Panchlamydia positive samples from all three vectors (BLAST≥ 80%).
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most appropriate approach, in this case, is to collect freshly
laid eggs under laboratory conditions.

In L. cervi, feeding opportunity is debatable, but since
every collected adult was a winged individual, which means
it was only in the stage of finding the host, therefore none of
them should be fed yet. Also, this species gives us an inter-
esting point of view on positivity, since every female pro-
duces only one offspring at a given time, in contrast with the
other two investigated vectors. Prevalence of Bbsl DNA was
reported in representatives of the genus of Lipoptena [60],
but the transovarial way of transmission was not discussed
properly. In contrast, no literature whatsoever on panchla-
mydial prevalence in L. cervi has been found.

Despite the proven presence of the borrelial and chla-
mydial DNA in vector samples, we cannot deduce if there
were viable bacteria. We also cannot possibly know if all
these vectors are capable of transmission of these particular
bacteria to the hosts; however, this issue could be evaluated
by artificially feeding a selected vector on laboratory mice.
The viability of these pathogens could be verified by bacterial
culture. The crushed and cooled (without freezing) sample
would be injected into a culture medium specifically designed
for the cultivation of Bbsl orChlamydiae. The bacterial species
would be further determined by PCR after DNA isolation or
by western blotting after protein isolation. However, this
approach carries a high risk of media contamination. In the
future, the plan is also to test tissue samples fromwild rodents
for the presence of these pathogens, similar to the work done
by part of our collaborative team on Leptospira spp. [61].

4. Conclusion

We can summarize our data in the following conclusions.
DNA of B. garinii from the Bbsl group was found in all three
model organisms, which highly contributes to the theory of
its transovarial transmission capability. DNA of CLO repre-
sentatives was also detected in early developmental stages of
I. ricinus and L. cervi, which contributes to their transgenera-
tional transmission capability. A large number of obstacles
have arisen in evaluating (mainly) CLO results of this type of
research; a vast amount of chlamydial species, their yet
incomplete genome mapping, provisional names, ability to
invade protozoans, prevention of sample impurity, and other
complications, these are all challenges to be overcome. How-
ever, these new results help us to better understand the
modes of transmission of some pathogens even in hosts
where this was not expected. It also raises new questions
about the number of possible hosts/vectors or the number
of pathogens themselves in the environment. These unex-
pectedly high levels of panchlamydial DNA found in the
selected model organisms imply that there are likely many
more chlamydial species capable of infecting arthropods dur-
ing their very early developmental stages. Future studies
should also consider the viability of these selected pathogens
or their ability of transmission between species. If mosqui-
toes or other species whose life stage involves living in water
are to be studied, it is recommended not to isolate DNA from
wild larvae but directly from eggs laid in the laboratory

environment. Consequently, further investigation into Bor-
reliella, Chlamydiales, and Parachlamydiales, including their
hosts and modes of transmission, is necessary to gain a dee-
per understanding of this process.

5. Materials and Methods

5.1. Sampling. Sampling of I. ricinus larvae was done by
classical flagging (when a white piece of cloth is drawn
through vegetation) in a cottage area and a former wetland
called Havřické Vinohrady (49°01′42.0″N 17°36′28.8″E,
250–260m altitude) near the town of Uherský Brod in East-
ern Moravia, Czech Republic in years 2019 (May)–2020
(August). In total, 137 individuals of the larval stage were
collected and pooled into 27 samples (divided by the date of
collection). Pooled samples contained five individuals on
average, with consideration given to isolating individuals
from different collections. These representatives were most
likely unfed due to their morphology and developmental
stage. The samples were frozen and kept at −20°C until
DNA isolation.

Sampling of C. pipiens larvae was done in a suburban
destination near Uherský Brod close to the local river and
small brook (49°01′37.9″N 17°37′10.7″E, 201m altitude).
Larval stages were collected from seven distinct reservoirs
of stagnant water, stored in tubes, dried, and frozen (−20°C).
This set of samples contained a total of 119 individuals pooled
in samples of approximately eight individuals. The reservoir
number was considered to avoid mixing, and two samples
were analyzed from each reservoir.

Sampling of L. cervi was done in the same locality by
flagging with the modification (white clothes on collector
were used to lure the winged adults) to be sure that all col-
lected individuals were winged ones and, therefore, unfed. In
total, 27 individuals were collected and separately placed in
tubes (one individual per sample) that were frozen and kept
at −20°C until DNA isolation.

5.2. DNA Isolation and End Point PCR.The DNAwas isolated
from all frozen samples of vectors using E.Z.N.A.® Insect
DNA Kit (Omega Bio-tek, Norcross, USA). Briefly, 2 µl of
DNA was mixed with 10 µl EmeraldAmp MAX HS PCR
Master Mix (Takara, Shiga, Japan), 7.2 µl PCR water, and
0.8 µl of two primers (Sigma-Aldrich, St. Louis, USA). For
Bbsl, primers (5′-GTAAGGAAATTAGTTTATGTCTTTT-
3′ and 5′-TAAGCTCTTCAAAAAAAGCATCTA-3′) target-
ting 153 bp fragment of the hbb gene were used. It is specific
for six typical Bbsl genospecies in Europe (Bb sensu stricto, B.
afzelii, B. garinii, Borrelia spielmanii, Borrelia lusitaniae, and
Borrelia valaisiana). PCR conditions were following: 10min
at 95°C and then 55 cycles (8 s at 95°C, 10 s at 50°C, and
10 s at 72°C). For CLOs, primers (5′-CCGCCAACACTGG-
GACT-3′ and 5′-GGAGTTAGCCGGTGCTTCTTTAC-3′)
targeting 200 bp fragment of 16S rRNA-encoding gene were
used. PCR conditions were following: 2min at 50°C, 10min at
95°C, and then 45 cycles (15 s at 95°C and 1min at 60°C)
followed by a cooling step at 4°C. PCR products were analyzed
by gel electrophoresis. Positive control forBbsl wasDNA isolated
from B. burgdorferi sensu stricto (WSLB 8014/1), B. garinii
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(BRZX 23 MSLB 8064), and B. afzelii (BRZX27 MSLB 8065).
The DNA isolated from samples C3 and C4 was used as a
positive control for CLOs. Every positive sample was con-
firmed by PCR for the second time and then extracted by
PCR DNA Fragments Extraction Kit (Geneaid Biotech, New
Taipei City, Taiwan) and sent for sequencing.

5.3. Sanger Sequencing and Further Analysis. The concentra-
tion and purity of PCR amplicon were measured by Nano-
Drop ND-1000 (Thermo Fisher Scientific, Waltham, USA)
spectrophotometer. The samples and primers were diluted
according to Eurofins Genomics (Ebersberg, Germany)
requirements and sent for Sanger sequencing. The sequences
were checked in SnapGene Viewer and compared with the
gene library by nucleotide BLAST search. For the precise
analysis of panchlamydial positive samples, taxonomic affiliation
was judged according to Everett. This evaluation estimates
taxonomic affiliation through developing taxon thresholds
based on the GenBank sequence similarity (analyzed by
BLAST) [53]. The phylogenetic tree was constructed through
MEGA11 software [62]. The evolutionary history was inferred
using the neighbor-joining method [63]. The evolutionary
distances were computed using the maximum composite
likelihood method [64] and are in the units of the number
of base substitutions per site. This analysis involved 37
nucleotide sequences. All ambiguous positions were removed
for each sequence pair (pairwise deletion option). There were a
total of 190 positions in the final dataset.
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