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Model description 

The mathematical model was developed to broadly represent disease dynamics of VBR 

transmitted between Desmodus rotundus roosts and cattle farms within the state of São 

Paulo, Brazil. Supplementing the main text, below we detail some of the specific model 

features. 

Detection period in farms 

The detection time (period) in a farm Fi, 𝜏 , is approximated by the incubation period of the 

first infected cattle animal on the farm, which we assume to follow a lognormal distribution 

reported to be a suitable distribution for incubation periods of infections (Sartwell, 1966; 

Nishiura, 2007). This distribution was also confirmed as the best fitting distribution for 

rabies virus incubation period in dogs and cats (Tojinbara et al., 2016). As this period varies 

with host species (Garg, 2014), we used this distribution but amended the parameters. After 

the detection time period, the farm-state changes from exposure to infection. 

 The parameters are unknown and different references may point to a different shape 

of the distribution. Therefore, we use two different lognormal distributions (Figure S1) to 

evaluate the impact of the detection time distribution. Parameters for the first distribution, as 

used in the main text and denoted as DD1 in this supplementary, include the mode of the 

incubation period as 30 days, as it is the most commonly observed incubation period in 

cattle (personal communication). The mean is assumed to be 75 days, as incubation period 

in cattle was estimated to average 2 to 3 months and range from 25 to 152 days (Gylys et al., 

1998). Consequently, the detection time period, 𝜏 , for each exposed farm Fi is drawn from a 

shifted lognormal distribution (𝜏  ~ lognormal(𝜓, 𝜇, 𝜎); or ln(𝜏  - 𝜓) ~ N(𝜇, 𝜎)), with 𝜇 =
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3.14449, 𝜎 = 1.23897 and shift 𝜓 = 25. The probability that the simulated detection time 

period is less than 25 is 0, and longer than 152 days is approximately 0.085, thus values 

outside the range stated by Gylys et al. (1998) are very rare for DD1. These values are used 

throughout unless explicitly stated otherwise. For the second distribution, denoted as DD2, 

we use the parameters estimated from experimental data more recently (Mollentze et al., 

2020), 𝜇 = 2.8666, 𝜎 = 0.1797 and no shift 𝜓 = 0. The mode is 17.01862 and mean 

17.86326 for this distribution. See distribution of detection period comparison section for 

the results using this distribution in a high suitability setting. 

 

Figure S1 Distributions assumed for the two detection time period in farms.  
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Recovery rate 

In every step (corresponding to 1 day), each infected (and infectious) roost and each farm 

with a detected infection may recover with the following probability 

P(recovery of 𝐼 ) = 1 − exp(−𝛾 ), where X∈{RH, RB, F}.                  (S1) 

A roost is assumed to recover when no more infected bats are present, which occurs when 

all infected bats die. We expect that, on average, an infectious roost may recover after 16 

years or 17 years, if it is harem or bachelor, respectively (approximated from the maximal 

longevity of female and male bats; Delpietro et al., 2017). Following this, the roost recovery 

rate is 1/(16*365) days-1 for harem (𝛾 ) and 1/(17*365) days-1 for bachelor (𝛾 ) roosts. A 

farm is assumed to recover when all infected animals on the farm die. To account for a 

reduced infection pressure when roosts are controlled, the recovery rate of farms (𝛾 ) is 

lower, 1/(365/6) days-1, when roosts are controlled, whereas it is 1/(365/2) days-1 when the 

roost control is not performed, corresponding to 2 and 6 months, respectively (Table 1).  
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Network 

The nodes of the network are the occupied roosts (i.e. bachelors and harems) and farms 

raising cattle. The empty and overnight roosts as well as farms with no cattle were not 

included in the network as they do contribute negligibly or not at all to the virus 

transmission. The connections between roosts, the edges, representing possible virus 

transmission are bi-directional and symmetrical, since risk contact is independent of which 

roost donates and which roost receives the infection. However, as male bats are generally 

the ones traveling between bachelors and harems (Streicker et al., 2016; Becker et al., 2020), 

transmission between two harem roosts is not considered. On the other hand, the 

connections between a roost and a farm are directed from the former to the latter, as rabies is 

transmitted from bats to cattle through bites while feeding. There are no loops (edges 

connecting a node to itself). It is assumed that bats always fly to a lower elevation when 

foraging, therefore, the transmission from a roost to a farm is possible only when the roost is 

located at a higher elevation than the farm (Rocha et al., 2020). The estimated maximal 

flight distance of bats is 10 km (Benavides at al., 2016), hence the transmission from a roost 

to surrounding farms in the model is expected to be limited to 10 km distance from the 

infectious roost (Figure S2). 
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Figure S2 Network illustration from a view of a harem roost in the middle. The gray area 

represents the distance of 10 km from the roost in the middle. The directed edges represent 

the possibility of VBR transmission from or to the harem (the edges are directed from a 

potential infection donor to a potential infection recipient).  
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Spatial interaction 

We used the most common approach to model spatial interactions, a gravity model (Barrios 

et al., 2012; Maher et al., 2012; Nicolas et al., 2018; Colombi et al., 2020). Using this 

approach, we estimated the risk of rabies virus transmission between the populations Ri and 

Xj: 

                rRi,Xj = { βRX * aRi * aXj  / 𝛿2
Ri,Xj, where X ∈ {R, F}; 

                       { 0                                   else.                                             (S2) 

The constant βRX is the transmission rate of the rabies virus (βRR or βRF if the population 

receiving the infection is a roost or a farm, respectively). The transmission rates (βRR, βRF) 

are fitted to the field data from the state of São Paulo obtained from roost surveillance 

carried out in the state of São Paulo, Brazil, in 2017-2018 by CDA staff. The Euclidean 

distances, dRi,Xj, between nodes (as points in the map, disregarding the elevations) were 

calculated from the latitude and longitude coordinates of the locations using the distm() 

function of the geosphere package of R (Hijmans, 2021). How far within the 10 km flight 

distance the bats actually fly is determined by the number of individuals in the roost, since 

individuals may fly to more distant feeding sources and/or roosts to minimize competition 

with conspecifics (Kunz and Fenton, 2003; Rocha et al., 2020). This is captured by the 

population sizes included in the gravity model. Vampire bats usually form colonies of 20-

100 individuals in the state of São Paulo (Rocha et al., 2020). Bachelor roosts were reported 

by Rocha and Dias (2020) as five times smaller than harems, we thus assume in the model 

that harems hold 100 bats (𝑎 = 100), while bachelors have 20 animals (𝑎 = 20). It is 
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believed that the number of cattle animals present in a farm does not to influence the 

number of cattle animals bitten by bats, therefore the numbers of cattle in the farms are not 

considered (i.e. , 𝑎 = 1). The denominator in the gravity model, 𝛿Ri,Xj, takes into account 

the elevations of both locations (eRi, eXj) and is calculated using the Euclidean distances 

dRi,Xj: 

𝛿Ri,Xj = sqrt(d2
Ri,Xj + (eRi - eXj )2).                                         (S3) 
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Ecological niche model 

The environmental suitability of bat roost locations, and whether it is a permanent or 

temporary shelter, can be explained by the effect of biotic factors, such as vegetation 

(Escobar et al., 2015), here evaluated using the Enhanced Vegetation Index. Likewise, 

several studies have also highlighted the importance of abiotic conditions (Hayes and 

Piaggio, 2018; Lee et al., 2012; Escobar et al., 2015), such as elevation (Giménez et al., 

2015), temperature (e.g., temperature seasonality, mean temperature of the coldest month) 

(Lee et al., 2012), precipitation (Lee et al., 2012) (e.g., precipitation seasonality, 

precipitation of the wettest and driest month), as well as the impact of nighttime light 

(Escobar et al., 2015). We developed an ecological niche model (ENM) accounting for those 

environmental variables, see Table S1, at approximately five kilometers of spatial resolution 

at the equator. To prevent multicollinearity between the environmental variables, we used 

VIF (Variance Inflation Factors) implemented in the sdm package in R (Naimi and Araújo, 

2016). Using this approach, we excluded all the highly correlated variables from the model 

(VIF value greater than 7), which is associated with a signal of a collinearity problem 

(Chatterjee and Hadi, 2006). 
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Table S1 List of biotic and abiotic variables used in the ENM. 

Variable Unit Source 

Temperature seasonality °C www.worldclim.org 

Mean temperature of the 

coldest month 

°C www.worldclim.org 

Precipitation seasonality mm www.worldclim.org 

Precipitation of wettest 

month 

mm www.worldclim.org 

Precipitation of the driest 

month 

mm www.worldclim.org 

Elevation m www.worldclim.org 

Enhanced Vegetation Index 

(EVI) 

EVI index https://clim-

engine.appspot.com/climate

Engine 

Night time light Radiance https://viirsland.gsfc.nasa.go

v/ 

 

The ENM was developed considering the above-mentioned variables to identify which 

locations have more favorable conditions for bats, using the roost locations which have been 
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documented in use or used in the past (Hahn et al., 2014; Razgour et al., 2019; Zeale and 

Carr, 2019). The study area was determined based on the hypothesis of the most accessible 

area as the M (see M dimension in the BAM framework proposed by Soberón and Peterson, 

2005). To define the study area extent for model calibration, we followed the framework 

proposed by Soberón and Peterson (2005), which restricts the ENM to ecological features 

for the organism in question, the resolution of the environmental variables employed, and 

the extent of the region where the organisms are able to disperse, by their biogeographic 

barriers. This delimitation of the study area permits to determine the spread potential of the 

bat populations studied in the geographical area.  

To define the M area, we used a buffer zone from the average distance among all 

roost locations from the further point into each location border of the state of São Paulo, 

(Figure S3). The total occurrences for each set were randomly subdivided into 70% of the 

data set for model calibration and 30% for model evaluation. This ENM output was 

followed as a suitable index for the presence of vampire bat Desmodus rotundus 

(Chiroptera: Phyllostomidae) roost. The suitability indexes, sRi, calculated using the ENM 

were then re-scaled between 0 and 1. 

 The ENM was developed using a presence-background technique that estimates 

environmental suitability via an index of similarity that resembles a heterogeneous 

occurrence process or logistic regression function (Phillips et al., 2006). We used Maxent 

software v3.4.1 (Phillips and Dudík, 2008) with clamping and extrapolation turned off (i.e., 

no prediction outside the range of environmental conditions in the calibration data) 

(Anderson, 2013; Owens et al., 2013). 



 

14 
 

 

Figure S3 Suitability map of VBR in the state of São Paulo.  
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Network weights 

The edges within the network, representing possible virus transmission, are weighted by the 

risk of transmission. The calculation of the edge weight, 𝜔Ri,Xj, differ if the edge links two 

roost nodes or a roost node with a farm node. The risk of transmission for the former is 

affected by the average of the suitability of the environment of both roosts involved in 

transmission (sRi, sRj) calculated using the ecological niche model (ENM), see Ecological 

niche model section above.  Whenever no transmission is possible (e.g. transmission 

between two harem roosts, transmission to a roost or farm in distance longer than 10 km, or 

transmission from a roost to a farm in higher elevation as explained in Network section 

above), the weight is zero . 

𝜔Ri,Rj = { rRi,Rj * (sRi + sRj ) / 2 if i≠j, dRi,Rj ≤10 km, and Ri and Rj are not both harems; 

            { 0                                             else.                                                      (S4) 

 

       𝜔Ri,Fj = { rRi,Fj      if dRi,Fj ≤10 km and eRi > eFj; 

                              { 0       else.                                                             (S5) 
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Probability of status changes due to bats behavior 

The transmission dynamics of the rabies virus between bat populations, roosts (Ri), with a 

potential to spillover into cattle populations, farms (Fi), are modeled using a discrete-time 

simulation-based model. At the start of simulation, only one roost is infected, the rest of the 

roosts and all farms are susceptible. The transition of population j from susceptible to 

infectious in roosts or to exposed in farms is given by a stochastic risk with the following 

probability: 

P(transmission to the population Xj) = 1 − exp(−αj),   (S6) 

where αj = ∑ 𝜔 ,: ∈ , and X ∈{R, F}. 

The weights of the edges in the network between the populations Ri and Xj, 𝜔 , , express 

the relative degree of risk of infection transmission from the population Ri to the population 

Xj
 (see Network weights section above). 
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Interventions 

Two reactive interventions, roost control (culling or vaccination) and farm vaccination, are 

included in the model (Figure S4), they may or may not be used for a simulation as required. 

It makes possible to explore impacts of all their combinations, i.e. four different intervention 

strategies (both intervention, each alone, or neither of them). 

Figure S4 Model schematic for the transmission of bat rabies virus between bat roosts and 

cattle farms including both interventions (roost control and farm vaccination). The state 

changes between epidemiological classes are shown by solid arrows. The parameters 

affecting the state changes are displayed, see also Table 1. Dashed arrows represent virus 

transmission. Dots arrows represent removal of the population. 
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Model calibration 

A regression-based conditional density Approximate Bayesian Computation (ABC) 

algorithm (Beaumont et al., 2002; Lopes and Beaumont, 2010; Prada et al., 2014) is used to 

calibrate the model in two separate calibration phases, fitting the parameters of the vector 𝛩 

= (βRR, βRF) one by one. Both calibration phases are described in Table S2. The ABC 

algorithm can be written as follows: 

(1) Specify the model to be calibrated and a posterior setting if applicable. 

(2) Specify the unknown parameter 𝜃 that will be sampled, and the vector of parameters 

to be fitted 𝛩. 

(3) Choose a summary statistic 𝑆 and determine its value 𝑠 for the observed data. 

(4) Choose a tolerance 𝜀. 

(5) Sample 𝑁 times the unknown parameter from the prior distribution, the uniform 

distribution with a range given in Table S2, 𝜃 ~p(𝜃), 𝑖 ∈ {1, . . . , 𝑁}. 

(6) Run the model simulation for each sample to get 𝑠 ′, the value of 𝑆 for the simulation 

with 𝜃 = 𝜃 . 

(7) Accept the simulations where ‖𝑠 ′ − 𝑠‖ ≤ 𝜀, reject other simulations. 

(8) Repeat steps 5 to 7 until at least 𝑘 simulations are accepted. 

(9) Calculate the distances of 𝑠 ′ to 𝑠 for all accepted simulations as the absolute value of 

z-score. 
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(10) Improve the vector of fitted parameters 𝛩 using the weighted linear regression model 

of 𝑆 with the vector 𝛩 as the regression coefficients, weighted by the distances 

calculated in step 9 to weaken the effect of that discrepancy. Keep improved vectors 

> 0. 

(11) These improved vectors 𝛩 obtained in step 10 are an approximation to the posterior 

distribution p(𝛩|s). 

 

Table S2 Details on the two calibration phases to fit the roost-to-roost and roost-to-farm 

transmission rates, 𝛽  and 𝛽 , for the model. 

 

 1st phase of calibration 2nd phase of calibration 

Model specification 

 

100 years of transmission 

between roosts without 

spillover to farms, therefore 

no interventions are 

modeled; 

starting with one random 

infection in a roost (limited 

to those connected to at least 

5 other roosts, to ensure 

5 years of roost-to-roost as 

well as roost-to-farm 

transmission, using a 

𝛽 posterior (simulate the 

model for all posteriors 

from the 1st phase of 

calibration), reactive farm 

vaccination modeled1; 
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simulations are not initiated 

in isolated roosts) 

starting with the posterior 

equilibrium of infected 

roosts connected with the 

posterior rate 𝛽 4 

Unknown parameter to be 

sampled, 𝜃 

𝛽  𝛽  

Vector of fitted parameters, 

𝛩 

(𝛽 ) 𝛽
,
𝛽  

Summary statistics, 𝑆 the equilibrium (expected to 

be reached after 100 years) 

of infections among roosts 

(i.e., the infection 

prevalence among roosts) 

the number of expected on-

farms outbreaks during 

simulated 5 years 

(i.e., the infection incidence 

on farms) 

Observed value of 𝑆, 𝑠 1% 

(for the observed data used 

in this study: 41.7 roosts) 

an average of 6 outbreaks 

per 1 million of cattle 

animals in farms per year 

(for the observed data used 

in this study: 226 on-farms 

outbreaks in 5 years) 

Acceptance tolerance, 𝜀 +/- 5 infectious roosts +/- 5 outbreaks in farms 
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Number of samples for each 

iteration, 𝑁 

500 5 (coupled with each 𝛽  

accepted in the 1st phase) 

Prior distribution2, 𝑝(𝜃) 𝑢𝑛𝑖𝑓(0.1; 15) 𝑢𝑛𝑖𝑓(150; 700) 

Required minimum number 

of simulations to be 

accepted, 𝑘 

100 100 

Total number of simulations 

performed 

4,500 3,3003 with DD1, 

4,4003 with DD2 

Number of improved 

vectors of fitted parameters 

𝛩 included in posterior 

distribution, p(𝛩|s) 

1104 107 with DD1, 

103 with DD2 

Notes: 1At the time of data collection, from which we calculate the observed value of the 

summary statistics, only reactive farm vaccination was implemented, but no roost control. 

2The prior intervals were determined by pre-simulations on a subset of roosts and farms. 

3The total number of simulations is the number of simulations performed per posterior 

setting multiplied by the number of posteriors. 4An equilibrium of infected roosts (roosts 

infected at the end of the particular simulation of 1st phase of calibration) is attached to each 

posterior to be used as the posterior equilibrium in the 2nd phase of calibration. 
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As result of the model calibration, we received posterior distribution of the vector of 

transmission rates, 𝛩 = (βRR, βRF) (Figure S5). 

 

Figure S5 Posterior distribution of the roost-to-roost transmission rate, βRR, and the roost-to-

farm transmission rate, βRF. Calibrated with (A) DD1; (B) DD2. 
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Outcomes across environmental settings 

The results of the Welch’s one-way heteroscedastic F tests are summarized in Table S3. 

This provides the evaluation of the two outcomes, number of outbreaks in farms and 

maximal spread of disease from origin (i.e. initial infected roost) across the three initial 

settings for environmental suitability (Figure S6). 

 The cattle farm locations with higher risk of spillover are detected across the initial 

environmental settings (Figure 5, and Figure S7). 

 

Figure S6 Settings for three initial scenarios. For each initial scenario, a set of roosts is 

defined, from which one roost is randomly selected for each simulation as the first 

introduction of infection. Three levels of environmental suitability are defined as high, 90-

100th percentile (between the roosts connected to at least five other roosts), middle, 45-55th 

percentile, and low, 0-10th percentile of suitability indexes. 
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Table S3 Results of the Welch’s one-way heteroscedastic F tests for the hypotheses of equal 

means among different interventions, for two outcomes and three initial settings. 

Subsequent pairwise test results are displayed in Figure 4. 

Outcome Initial setting 

(environment suitability) 

F(df1, df2) degrees of freedom 

df1, df2 

p-value 

Number of 

outbreaks 

in farms 

    High     1e+03     3, 11482.23      0e+00 

    Middle     716.37     3, 11431.00      0e+00 

    Low     510.95     3, 11493.78 1.03e−311 

Maximal 

spread 

distance 

(km) 

    High     1.5e+03     3, 11664.57      0e+00 

    Middle     805.00     3 ,11689.04      0e+00 

    Low     584.50     3, 11835.35      0e+00 
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Figure S7 Spillover risk to farms measured as the probability of detected and undetected 

infections, among all simulations with initial infection in  middle suitability environment, 

for each intervention strategy. The value per pixel shown is the average across the farms 

within the pixel (3’ latitude times 3’ longitude, i.e. approx. 5.5 times 5.5 km square). 
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Figure S8 Spillover risk to farms measured as the probability of detected and undetected 

infections, among all simulations with initial infection in low suitability environment, for 

each intervention strategy. The value per pixel shown is the average across the farms within 

the pixel (3’ latitude times 3’ longitude, i.e. approx. 5.5 times 5.5 km square). 
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Distribution of detection period comparison  

Due to high uncertainty in the lognormal distribution parameters for the detection 

period in farms, a comparison was carried out to evaluate the effect of this distribution in the 

results. Both sets of parameters are described in the Detection time period in farms section. 

The results in the main manuscript are based on simulations with DD1. The model was re-

calibrated using the values for (see Table S2); the posterior distribution of the fitting are 

shown in Figure S5. Subsequently, the effectiveness of intervention strategies on the number 

of outbreaks in farms and the geographical spread from a single infected roost in one year 

are compared with the main results for the most expected initial settings of high suitability, 

see Figure S9. 

Although qualitatively they both yield similar results, when the detection period in 

farms is shorter on average and driven by the less dispersed distribution (DD2 compared to 

DD1, see Figure S1), both the number of outbreaks on farms and the geographical spread 

are higher without intervention. However, the effect of the interventions is stronger with 

DD2, with fewer outbreaks and a lower geographical dispersion across the three 

intervention scenarios. 
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Figure S9 (Top: A-B) Distribution of the number of outbreaks (i.e. infection detections) in 

farms for different combinations of interventions. (Bottom: C-D) Distribution of maximal 

distances of virus spread from a single initial infection in a roost to a farm in one year in 

kilometers, including no virus spillovers to farms, i.e. zero distances; for different 

combinations of interventions in a high suitability setting.  
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Figure S10 Spillover risk to farms measured as the probability of detected and undetected 

infections, among all simulations with initial infection in high suitability environment, for 

each intervention strategy. The value per pixel shown is the average across the farms within 

the pixel (square 3’ latitude times 3’ longitude, i.e. approx. 30 km2). This figure is akin to 

Figure 5 in the main text, here with DD2 instead of DD1. 
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Figure S11 Percentage of runs where rabies is fully extinct (blue), rabies remains only in 

the initial roost without spreading further (yellow), and rabies had a limited spread to farms 

but is undetected at the end of the one-year simulation period (red), in a high suitability 

environment for each intervention strategy. This figure is akin to Figure 6 in the main text, 

here with DD2 instead of DD1. 
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