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A novel Omicron subvariant named BQ.1 emerged in Nigeria in July 2022 and has since become a dominant strain, causing a
significant number of repeated infections even in countries with high-vaccination rates. Due to the high flow of people between
Western Africa and other non-African countries, there is a high risk of Omicron BQ.1 being introduced to other countries from
Western Africa. In this context, we developed a model based on deep neural networks to estimate the probability that the Omicron
BQ.1 introduced to other countries fromWestern Africa based on the incomplete population mobility data fromWestern Africa to
other non-African countries. Our study found that the highest risk was in France and Spain during the study period, while the
importation risk of other 13 non-African countries including Canada and the United States is also high. Our approach sheds light
on how deep learning techniques can assist in the development of public health policies, and it has the potential to be extended to
other types of viruses.

1. Introduction

On July 10, 2022, a novel Omicron subvariant named BQ.1
emerged in Nigeria, according to Omicron genome sequence
data shared via GISAID [1]. This Omicron subvariant has
become a dominant strain rapidly since mid-August 2022 in
Nigeria, a sublineage of BA.5 [2, 3]. Omicron BQ.1 (including
its sublineages) causes a massive number of repeated infec-
tions, even in countries with high-vaccination rates due to its
immune escape advantage over other Omicron subvariants
[4]. In the 2months since the first case was detected, Omicron
BQ.1 has been detected in at least 10 countries and caused
about 2,000 infected cases [2]. Considering the potential

health burden that Omicron BQ.1 may cause, estimating
the importation risk of Omicron BQ.1 may inform public
health policymakers to adjust control measures before the
virus spreads further at its destination.

Due to many daily flights between Western Africa and
other non-African countries, a large flow of people make the
risk of Omicron BQ.1 being introduced to other non-African
countries from Western Africa very high. A prior study by
Bai et al. [5] utilized flight data along with mobility data from
Facebook and OpenSky [6] to estimate the global risk of
Omicron variant importations that originated in South
Africa in November 2021. The authors estimated the unre-
ported mobility flows between the two countries via the daily
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number of flights and the proportion of aircraft seats occu-
pied. Especially mobility flows with less than 1,000 daily
users will not be reported by Facebook. The previous study
made an assumption of a fixed ratio to represent the propor-
tion of occupied aircraft seats, which may have had an
impact on the accuracy of importation risk estimation.
This simple assumption could particularly affect the estima-
tion of the probability of multiple infected cases arriving at a
destination, potentially leading to less precise results. In this
work, we proposed a model based on deep neural network to
estimate the importation risk of the Omicron BQ.1 variant,
which is able to yield accurate risk estimation from incom-
plete mobility data. By harnessing the capabilities of deep
neural networks, the proposed model accurately estimates
the proportion of occupied aircraft seats for each flight
between two countries, thereby improving the precision of
the risk estimation. This advancement in estimation techni-
ques sets our research apart from previous studies and con-
tributes to the field by addressing the limitations of existing
approaches. We believe that our model represents a signifi-
cant step forward in accurately estimating the importation
risk of the Omicron BQ.1 variant, providing valuable insights
for public health decision-makers.

2. Materials and Methods

2.1. Data. To estimate the daily number of travelers from
Western Africa to other non-African countries, we analyzed
the movement map provided by Facebook [7], describing the
number of Facebook users who moved from one country to
another daily. Note that Facebook reports the mobility flows
between two countries only when at least 1,000 daily Facebook
users travel between these two countries in the raw dataset, so
only 261 intercountry links are considered from July 10, 2022
to September 30, 2022. To fill in missing data, we further ana-
lyzed the flight data provided by OpenSky [6] from July 10,
2022 to Sep 30, 2022. During the analysis, we also exploited
information about different countries such as location, gross
domestic product (GDP) per capita, and a series of indexes
reflecting the government policy of the different countries.
To correct possible geographic bias existing in the Facebook
data, we also adopted the data indicating the proportion of
population using Facebook in the different countries.

Based on the daily number of travelers estimated above,
we further estimated the risk of importation from Western
Africa to non-African countries. In our study, our primary
focus was on 15 countries located in Western Africa, includ-
ing Nigeria, along with 14 other countries: Morocco, Algeria,
Tunisia, Senegal, Gambia, Cabo Verde, Cameroon, Benin,
Burkina Faso, Chad, Ghana, Guinea, Guinea-Bissau, and
Niger. The selection of these countries was based on two
key criteria. First, we considered their proximity to Nigeria,
ensuring that the distance from each country to Nigeria was
less than 5,000 km. This criterion was essential as it allowed
us to concentrate on neighboring countries with potential
high-mobility flows. Second, we took into account the avail-
ability of sufficient flight data between these countries and
other regions. Specifically, we ensured that each country had

at least one flight that connected it to destinations outside the
Western Africa. This criterion enabled us to analyze mean-
ingful mobility patterns and potential importation risks asso-
ciated with these countries. In our analysis, we aggregated
Omicron BQ.1 (Omicron BQ.1 and its sublineages, such as
BQ.1.1 and BQ.1.2). Given the geographical proximity and
the unavailability of precise prevalence data of Omicron
BQ.1 for other countries, we made the assumption that the
prevalence of Omicron BQ.1 in Western Africa from July 10,
2022 to September 30, 2022, closely mirrored that in Nigeria,
where Omicron BQ.1 was first detected [2]. This approxima-
tion allowed us to account for the potential spread of the
variant during that time frame despite the data limitations.

2.2. Estimating Missing Daily Mobility Data from Western
Africa to Other Non-African Countries by Deep Neural
Network. Table 1 presents our notation and the correspond-
ing parameter values. To estimate the missing data in Face-
book movement map, we first built a deep neural network
model [17] to predict κc1; c2; t , which denotes the proportion
of seats on flights from country c1 to country c2 that are
occupied at time point t. The structure of the neural network
is shown in Figure 1. This neural network can be regarded as
a function mapping from the time t and the information in
two countries c1 and c2 including locations, GDP per capita
and a series of indexes reflecting the government policy of c1
and c2. These indexes include the stringency index, the con-
tainment and health index, and the vaccination policy index
[12]. We denoted the neural network as fθ, where θ are the
corresponding trainable parameters in the hidden layers of
the neural network. Here the neural network we adopt have
five hidden layers and there are 10 neurons in each hidden
layer and we use Relu function as the activation function in
each layer.

We trained the neural network by the available data in
the movement map provided by Facebook [7] and the cor-
responding flight data [6]. The proportion of aircraft seats
occupied is calculated by:

κc1;c2;t ¼
Ψ c1;c2

t

rc1Γc1;c2
t

; ð1Þ

where Ψ c1; c2
t is the number of Facebook users traveling from

country c1 to country c2 at time point t and rc1 is the propor-
tion of population using Facebook in country c1. Γ

c1; c2
t is the

number of available flight seats from country c1 to country c2
at time point t.

We divided the entire dataset into a training set and a
validation set using an 80 : 20 ratio. The neural network is
optimized on the training set by Adam, a gradient-based
optimizer, iteratively [18]. After the training is concluded,
we can exploit the neural network to calculate the proportion
of occupied seats on flights between any two countries that
are occupied at time point t. We further use the validation set
composed of known movement data to validate our model.
We calculate the real proportions of aircraft seats occupied
from the data in the validation set and use our trained neural
network to predict the proportions of aircraft seats occupied
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TABLE 1: Parameters, descriptions, and values.

Parameter Description Values

NWA Population of Western Africa 466.62 million (2022) [8]
Nc Population of country c Population estimates (2022) [8]

rc Proportion of population using Facebook in country c
Estimated Facebook users by country

(2022) [9]

Ψ c1; c2
t

Number of Facebook users traveling from country c1 to country c2 at
time point t

Movement data of Facebook users [7]

Γc1; c2
t

Number of available flight seats from country c1 to country c2 at time
point t

Flight data [6]

lac;ð locÞ Location of country c Latitude and Longitude [10]
GDPc Economic development level of country c GDP per capita [11]
SIc A combined metric derived from nine response indicators in country c Daily stringency index [12]
CHIc A composite measure of thirteen of the response metrics in country c Daily containment and health index [12]
VPIc Policies on the availability of vaccinations in country c Daily vaccination policy index [12]
Ωc

t Number of travelers from Western Africa to country c at time point t Estimated

Γc
t

Number of available flight seats from Western Africa to country c at
time point t

Estimated

κc1; c2; t
Proportion of available seats on flights from country c1 to country c2
that are occupied at time point t

Estimated

psym Proportion of infections exhibiting symptoms 74.5% [13]
dIWA

t Number of new cases in Western Africa at time point t Daily new infections [14]

ξWA
t

Percentage of asymptomatic and pre-symptomatic cases of the variant
among the population of Western Africa at time point t

Estimated

γct
Rate of introductions of the variant from Western Africa to country c
at time point t

Estimated

ωt
Proportion of the Omicron BQ.1 subvariants among new cases at time
point t

Proportion of Omicron BQ.1 subvariants
cases in Nigeria [2]

Dpresym
Estimated interval for the onset of symptoms following infection in
symptomatic cases

3 Days [15]

Dinf ; s
Estimated interval between infection and recovery, for symptomatic
infections

12 Days [16]

Dinf ; a
Estimated interval between infection and recovery, for asymptomatic
infections

7 Days [16]

GDP, gross domestic product.

Input layer

t

(lac1, loc1)  (lac2, loc2)
GDPc1

SIc1

CHIc1

VPIc1

GDPc2

SIc2

CHIc2

VPIc2

Hidden layers

Output layer

Kc1, c2, t

FIGURE 1: Structure of the neural network fθ used for predicting κc1; c2; t . It consists of three parts. The input layer accepts the time t and the
information in two countries c1 and c2 including latitude and longitude, GDP per capita and a series of indexes reflecting thegovernment
policy of c1 and c2. Specifically, SI, CHI, and VPI represent the stringency index,the containment- and -health- index, and the vaccination
policy index, respectively. Thehidden layers are composed of multiple computing nodes with some trainable parameters θ and the output
layer yields the predicted κc1; c2; t .
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for the validation set. We show the training curve of the
mean squared error (MSE) loss between the real proportions
and the predicted proportions for the training set and the
validation set in Figure 2. We calculate the R2 score between
the real proportions and the predicted proportions, which is
0.67. In previous work bu Bai et al. [5], the authors just
exploited a fixed proportion of aircraft seats occupied while
the R2 score between the real proportions and the fixed pro-
portion is 0.11. Our results demonstrate that the neural net-
work approach is capable of generating more precise
predictions compared to the previous method.

Based on the predicted proportion of aircraft seats occu-
pied, we estimate the movement population data Ωc

t from
Western Africa to other non-African countries as given by

Ωc
t ¼ κWA;c;tΓ

c
t ; ð2Þ

where κWA; c; t represents the proportion of aircraft seats
occupied as predicted by the neural network and Γc

t is the
count of seats on flights from Western Africa to destina-
tion c.

2.3. Risk of Importing Omicron BQ.1 through Infected Travelers
fromWestern Africa. To evaluate the likelihood of introducing
the BQ.1 subvariants from Western Africa, we initially com-
puted the prevalence of asymptomatic and presymptomatic
cases, based on the daily confirmed SARS-CoV-2 cases across
the 17 countries described in the above data part. Note that we
assumed symptomatic infected people are not allowed to travel
across countries. Then we used movement data estimated
above to estimate the importation risk of Omicron BQ.1
from Western Africa to non-African countries.

The previous study related to Omicron variant shows
that 74.5% of infected cases of Omicron variant will develop
symptom [13], and we denote such probability as psym.

Another study on the duration of the incubation period
highlighted that interval between infection and symptom
onset in symptomatic cases for Omicron variant has short-
ened to 3 days [15]. Marqez et al. [16] reported that the
infectious period for asymptomatic and symptomatic cases
lasts approximately 12 days and 7 days, respectively. Let
dIWA

t denotes the number of new cases in Western Africa at
time point t and ωt denotes the proportion of the Omicron
BQ.1 subvariants among new COVID-19 cases at a given time
point t. The number of new asymptomatic and symptomatic
cases in Western Africa at time point t is represented by
dIWA

sym; t and dIWA
asym; t , respectively, and they are estimated by

dIWA
sym;t ¼ ωtpsymdIWA

t ; ð3Þ

dIWA
asym;t ¼ ωt 1 − psym

À Á
dIWA

t ; ð4Þ

where ωt denotes the percentage of the Omicron BQ.1
among new cases at time point t. Here we assumed the
prevalence of BQ.1 in Western Africa is close to that in
Nigeria which is identified as the origin of Omicron BQ.1 [2].

The number of new presymptomatic infections dIWA
presym; t ,

the total number of presymptomatic infections and the total
number of asymptomatic infections are estimated, respec-
tively, by

dIWA
presym;t ¼ dIWA

sym;tþDpresym
; ð5Þ

IWA
asym;t ¼ ∑

t−1

i¼t−Dinf ;a

dIWA
asym;t; ð6Þ

IWA
presym;t ¼ ∑

t−1

i¼t−Dpresym

dIWA
presym;t : ð7Þ

Next we estimated the prevalence of asymptomatic and
presymptomatic cases of Omicron BQ.1 subvariants in 17
countries we considered in the Western Africa by:

ξWA
t ¼ IWA

asym;t þ IWA
presym;t

NWA
; ð8Þ

where NWA is the total population of 17 countries we studied
in the Western Africa.

Assuming that the proportion of infected travelers from
Western Africa was the same as the overall prevalence of
asymptomatic and presymptomatic cases of the Omicron
BQ.1 variant at time point t. We approximated the rate of
introducing cases from Western Africa to country c on time
point t using

γct ¼ ξWA
t ⋅ Ωc

t ; ð9Þ

where Ωc
t denotes the number of tourists from Western

Africa to country c at time point t is estimated by the method
introduced above.
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FIGURE 2: The training curve of the mean squared error (MSE) loss.
The red curve represents the MSE loss between the real proportions
and the predicted proportions for the training set in each epoch of
training, while the blue curve represents the MSE loss between the
real proportions and the predicted proportions for the validation set
in each epoch of training.
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According to previous study by Wang and Wu [19], Wu
et al. [20], and Tomba and Wallimba [21], we assumed that
the introduction of cases of Omicron BQ.1 from Western
Africa to other non-African countries follows a Poisson pro-
cess, we calculated the likelihood of Western Africa export-
ing one or more Omicron BQ.1 subvariants to each country,
denoted by c, by time point t, as follows:

1 − exp − ∑
t

i¼t0
γci

 ! !
=c0; ð10Þ

where t0 is the starting time and c0 is the scaling factor.

3. Results and Discussion

In this work, first, we developed a deep neural network
model to predict the proportion of seats occupied on flights
from the departure country to the destination country in the
study period (from July 10 to September 30, 2022) based on
the information in these two countries, such as locations,
GDP per capita, and a series of indexes reflecting the gov-
ernment policy [12]. We assumed such information is asso-
ciated with the movement population between these two
countries. Combining with the flight data, we further esti-
mated the number of population movements between two
countries from July 10 to September 30, 2022, which enables
us to fill in the missing values in the movement data offered

by Facebook. Next, we estimated the probability of the intro-
duction of Omicron BQ.1 to other countries from Western
Africa based on the population mobility data estimated from
Western Africa to non-African countries and COVID-19
case reports in the Western Africa.

The estimated importation risks varied by country and
time. The highest risk was in France and Spain during the
study period. The importation risk of France elevated rapidly
from July 10, 2022 and the chance that France would receive
one imported case from theWestern Africa was at least 50% by
July 13, 2022 and reached 100% by July 23, 2022 (Figure 3(a)).
Notably, the probability of importation in Spain increased
promptly after August 22, 2022, and the chance that Spain
would receive one imported case was at least 50% by August
26, 2022 and reached 100% by September 4, 2022 (Figure 3(a)).
Canada and the United States exceeded the 50% risk threshold
on September 7, 2022 while Italy exceeded it on September 17,
2022. We estimated that eight countries outside Africa would
have a greater than 30% probability of receiving one imported
case by the end of September, 2022. The risk also existed for
nine other non-African countries, including Turkey, the
United Arab Emirates, and Germany (Figure 3(a)). We further
projected the probability of importation into the world map
(Figure 3(b)). The results indicate that Western Europe and
northern American countries faced higher importation risk
than the non-African countries in other countries, whichmight
arise frommany direct flights fromWestern Africa to these two
countries. Furthermore, we have included a visualization of the

–5 –4 –3 –2 –1 0
Log (average import probability)

August 1, 2022

August 15, 2022

September 1, 2022

September 15, 2022

October 1, 2022

October 15, 2022

ðcÞ
FIGURE 3: Estimated risks for importing Omicron BQ.1 from Western Africa to 17 countriesoutside Africa before 1 October 2022. (a) The
probability of ≥1 Omicron BQ.1 infectedcase being imported to a target country from Western Africa by the date is indicated on the x-axis;
The introduction probability of 50% is represented by the red dashed horizontal line;dates in parentheses are the timing of first BQ.1
documented in GISAID; (b) Probability of ≥1 infected case with the omicron BQ.1 importation from Western Africa before 1 October 1,
2022; countries in gray were not studied in our analysis because thecorresponding flight data fromWestern Africa to these countries were too
few to make theestimation. (c) The logarithm of the average import probability for each country isrepresented on the x-axis. The figure
illustrates that a higher import probability usuallycorresponds to an earlier arrival date of the infected cases.
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logarithmic dependence of arrival time on import probability
(Figure 3(c)). Following a similarmethodology as by Brockmann
andHelbing [22] and Gautreau et al. [23], we examined how the
predicted import probability influences the arrival time of
infected cases, as depicted in the log(x)-y plot. The figure reveals
that a higher import probability typically corresponds to an
earlier arrival date of the infected cases. This visualization pro-
vides valuable insights into the relationship between import
probability and the timing of potential outbreaks.

Based on the above results, we found that non-African
countries with numerous flights fromWestern African coun-
tries, such as France and Spain, are at a higher risk of har-
boring Omicron BQ.1. We observed that many cases were
found in the countries with lower estimated risk such as the
United States and the United Kingdom [2], which may be
explained by their accurate and robust genomic surveillance
program.

Our estimates were based on the epidemiological and
direct flight assumptions by Bai et al. [5]. These assumptions
may under/overestimate the importation risk of the target
location. For example, as mentioned by Bai et al. [5], esti-
mating population mobility data for direct flights and ignor-
ing indirect flights may underestimate the risk of exports,
especially if some infected carriers travel on the indirect
flights.

4. Conclusions

In this work, we proposed a model based on deep neural
network to estimate the importation risk of the Omicron
BQ.1 variant. Our approach is able to yield accurate risk
estimation from incomplete mobility data and shed light
on how to exploit deep learning techniques to assist the
development of public health policy. In the future, we will
extend our approach to other types of viruses and provide a
platform for policymakers to keep informed about the risks
of importation.
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