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Tick-borne pathogens are responsible for many vector-borne diseases in Europe, causing important problems for human and
animal health. The composition of viral communities in ticks and their interactions with pathogens is little understood, especially
in Eastern Europe, an area that represents a major hub for animal-arthropod vectors exchanges. In this study, we used metatran-
scriptomics to characterize the virome of 2,753 Ixodes ricinus ticks collected from France and Romania, focusing on viruses that
could potentially have implications for human or animal health. Among the great viral diversity of viruses identified, we reported a
novel strain of Tribec virus, an important human pathogen that was found in Romanian ticks. We detected viruses belonging to the
Phenuiviridae and Nairoviridae families close to human and animal pathogens, suggesting that these viruses could constitute novel
arboviruses. We used luciferase immunoprecipitation system targeting external viral proteins of viruses identified among the
Sedoreoviridae, Phenuiviridae, and Nairoviridae families to screen serum samples from small ruminants’ exposed to tick bites. The
results suggest that part (approximately 12%, 95% CI 9.1–16.2) of the small ruminant population from Danube Delta, was exposed
to viruses related to bi- or tri-segmented nairoviruses, but cross-reactive viruses could not be confirmed with certainly. The strategy
developed in this study serves as a key step in predicting potential new disease outbreaks and can be readily adapted to study other
reservoirs, vectors, and interfaces involving susceptible hosts.

1. Introduction

Ticks are obligate hematophagous arthropods of animals and
humans that can transmit many pathogenic agents, includ-
ing viruses, bacteria, and protozoa [1]. Ixodes ricinus is the
most common and epidemiologically important species of
ticks in Europe and has a major impact on animal and public
health due to its ability to feed on various animal species and

to the numerous pathogens it transmit [2]. Besides being the
main vector for Borrelia burgdorferi sensu lato which causes
the Lyme borreliosis, I. ricinus can also transmit other med-
ically significant bacterial pathogens, such as Neoehrlichia
mikurensis, Anaplasma phagocytophilum, Rickettsia helve-
tica, Rickettsia monacensis, Coxiella burnetii, and Franci-
sella tularensis, or viral agents like tick-borne encephalitis
or louping ill viruses [3, 4].
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Compared to these extensively studied pathogens, research
on tick-transmitted arboviruses and especially tick-borne
orbiviruses is limited despite several reports of their impor-
tance for public health [5–7]. The Sedoreoviridae family con-
sists of six genera, which have the ability to infect a diverse
range of hosts such as mammals, birds, crustaceans, arthro-
pods, algae, and plants [8]. Within the family, the Orbivirus
genus is primarily associated with animal arboviruses that
cause bluetongue disease in sheep, cattle, goats, and wild
ungulates; African horse sickness in horses, donkeys, and
dogs; and epizootic hemorrhagic deer fever [9]. Some orbi-
viruses are spread by insects (such as midges, flies, and mos-
quitoes) [10] and others by ticks, such as the Great Island
serogroup [11]. Actually, the Great Island group includes
Great Island virus (GIV), Tribec virus (TRBV), Kemerovo
virus (KEMV), Lipovník virus (LIPV), Broadhaven virus
(BRDV), Nugget virus (NUGV), and Muko virus (MUV)
[12]. TRBV was first isolated from I. ricinus ticks from Tribec
mountain range (Slovakia, 1966), and later from Haemaphy-
salis punctata (Romania) and other tick species originating
from the Czech Republic, Belarus, Ukraine, Moldova, Russia
(Volga), Italy, and Germany [7, 11, 13, 14], suggesting that the
virus is circulating mostly among tick populations in Eastern
Europe. For the vertebrate counterpart, TRBV was described
in Slovakia and Czechoslovakia in rodents, birds, brown hares,
wild rabbits, and small ruminants [13, 15, 16]. In humans,
TRBV-specific antibodies were detected in patients presenting
febrile illness and asepticmeningitis [17]. However, the human
health and social impact of this virus are still unknown in
Europe.

Due to the rapid development of next-generation sequenc-
ing during the past decade, a significant number of new viruses
have been discovered in ticks around the world [18–26]. For
example, orthonairoviruses transmitted by ticks are a serious
threat to public health worldwide [27]. In addition to the well-
known Crimean–Congo hemorrhagic fever virus, there are
four emerging orthonairoviruses, yet identified only in China:
Tacheng tick virus 1 [28], Songling virus [29], Beiji nairovirus
[30], and Yezo virus [31], all associated to human febrile ill-
nesses. Furthermore, a nairo-like bisegmented virus group was
recently described, which includes Pustyn virus, South Bay
virus, Norway nairovirus 1, Gakugsa tick virus, and Grotenh-
out virus [19, 32–35], but the relevance of these nairo-like
viruses for public health remains to be unveiled, because
some of them are actively circulating in tick populations of
Eastern Europe. Similarly, within the Phenuiviridae, a novel
phlebovirus named Tacheng tick virus 2 (TaTV2) has been
detected in Dermacentor marginatus from China [36] and
was also found in one patient’s blood, indicating a possible
vectorial transmission of TaTV2, which highlight the need to
monitor the emergence of phleboviruses in humans in close
contact with ticks [36].

In this study, we aimed to describe the virome diversity
of I. ricinus ticks from France (Alsace and Ardennes regions)
and Romania (Iasi and Tulcea regions), collected between
2010 and 2021. Among the huge diversity of viruses identi-
fied, including novel orthonairoviruses for which the spill-
over potential is unknown, we reported the discovery of one

novel strain of Tribec virus identified in ticks from Danube
Delta region, Romania. We conducted a comprehensive
sero-epidemiological study in the Romanian small ruminant
population in contact with ticks and demonstrated the low
risk of vertebrate infection of these new viruses.

2. Materials and Methods

A number of 2,236 questing nymph and adult ticks were sam-
pled from the environment, in Northeastern France, between
2010 (Alsace) and 2012 (Ardennes). The nymphs were
grouped into pools of 15 specimens (116 pools) and adults
were treated individually. Furthermore, 202 adult ticks (20 pools)
were directly collected from sheep in Eastern Romania,
Danube Delta region, during October 2020 and May 2021,
as described previously [22]. Additionally, 315 adult ticks
(39 pools) were collected using the flagging method between
March and September 2015, in Iasi County, Romania. Finally,
a total of 331 small ruminants were blood sampled in six
different locations from Danube Delta Biosphere Reserve,
Romania. The details of sampling, sequencing, and bioinfor-
matics analysis are presented in the Supplementary Materials
(Supplementary 1, Supplementary 2, and Supplementary 3).

3. Results

3.1. Diversity and Composition of the Virome of Ixodes ricinus
in Europe. In the present study, we conducted metatranscrip-
tomics analysis of 2,753 I. ricinus ticks collected in France
and Romania (Figure 1) from the environment and on small
ruminants. The taxonomic assignation of sequences revealed
that eukaryote and bacteria-related sequences were the most
abundant in all libraries, ranging from 37% to 56%, and
viruses represented between 10% and 15% of sequences,
depending on the sample considered.

The classified viral reads were distributed into 82 families
for which the viral abundance varies considerably, depending
on the localization of tick sampling. The highest diversity
was observed in ticks from Ardennes region (72 viral families
detected), while the lowest abundance occurred in ticks from
Tulcea region (21 viral families detected) (Figure 2(a)). How-
ever, this result may be due to the different number of ticks
collected per site. Some families such as Flaviviridae, Phenui-
virdae, or Rhabdoviridae were identified in all sites but with
variable abundance while others such as Sedoreoviridae or
Orthomyxoviridae were restricted to a specific location. This
suggests the existence of a subset of viral families (such as
Phenuiviridae, Nairoviridae, Peribunyaviridae, or Flaviviri-
dae) that forms in part the core virome of I. ricinus, and the
presence of specific families (such as the Orthomyxoviridae
in Iasi) likely being linked to the acquisition of the virus
through blood feeding on a viremic vertebrate host.

For a better overview of specific patterns of viral com-
munities, we performed a principal coordinates analysis
(PCoA), starting with the abundance of viral families detected
in the four I. ricinus datasets (Figure 2(b)). The PCoA revealed a
significant difference between the viral communities infecting
I. ricinus sampled in different biotopes. In Alsace region, the
most predominant families were represented by Flaviviridae
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and Luteoviridae while, in Ardennes region, the most abundant
viral families were Nairoviridae and Rhabdoviridae. In Tulcea
region, most viral sequences belonged to unclassified Bunyavir-
ales andHepeviridae families while the Phenuiviridae family was
dominant in Iasi. These results may suggest that the collection
site is a major factor influencing the composition of tick virome.

Among the core virome, apart from sequences belonging
to the Phenuiviridae or Nairoviridae families (see below),
sequences related to the Peribunyaviridae family mapped
onto six novel strains of Bronnoya-like virus (BroBV-like)
which were present in all tick pools [22]. BroBV virus was
detected in Norway [19], Croatia [24], and Romania [22] and
has been described so far only in I. ricinus ticks. The Flavi-
viridae family was detected in all libraries but was the most
abundant in ticks from Alsace region due to the presence of
numerous Jingmen tick virus (JMTV)-related reads. JMTV is
a segmented Flaviviridae-related virus previously detected in
ticks and mammals (including humans, in which it causes
febrile illness) from China, Africa, South America, Carib-
bean, and Europe [37]. Few sequences were related to Hepe-
viridae family and mapped onto Sichuan tick hepe-like virus,
sharing 88% amino-acid identity with its closest viral relative,
first detected in engorged ticks collected on giant pandas
[38]. Sichuan tick hepe-like virus presented a horizontal
genome coverage ranging from 52% (in Alsace region) to

100% (in Ardennes region). The unclassified Reovirales
sequences were detected in two libraries from Alsace and
Iasi regions and were assigned to Zoersel tick virus (ZTV),
previously identified in I. ricinus ticks. ZTV presented lower
genome coverage, ranging from 20% in ticks from Alsace to
30% in ticks from Iasi region, and more than 99% amino-
acid identity with its closest viral relative from Belgium [39].

In addition to viruses that seem to constitute the core
virome of I. ricinus, we detected several viruses restricted
to a specific location. For example, Dermacentor reticulatus
pestivirus-like virus 1, a virus related to the Flaviviridae fam-
ily, was restricted to Iasi ticks. The virus presented 94%
amino-acid identity with Bole tick virus 4 and a horizontal
genome coverage of 100%. These viruses have been associ-
ated with ticks feeding on ruminants suggesting that the
detection of such viruses in I. ricinus ticks from Iasi may
reflect the blood meal of the ticks. Similarly, Sedoreoviri-
dae-related sequences were restricted to ticks from Tulcea.
Also, the complete genome of Chimay rhabdovirus within
the Rhabdoviridae family, a virus previously identified in
I. ricinus ticks from Belgium was obtained uniquely from
Ardennes ticks.

Finally, within the viral families detected in our study,
some of these deserve special mention (such as Phenuiviri-
dae, Nairoviridae, and Sedoreoviridae families) because of
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FIGURE 1: Sampling sites map of Romania and France.
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FIGURE 2: Continued.
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their abundance or because they are known or suspected
pathogens for animals and humans, being deeply character-
ized below.

3.2. Genetic Characterization of Tribec Virus from Danube
Delta, Tulcea. Among the six different genera included in the
recently reorganized Sedoreoviridae family, one of the most
important in terms of spillover potential is the Orbivirus
genus. In our study, sequences belonging to the Orbivirus
genus were assigned to Tribec virus (TRBV). The genome
of Romanian TRBV was obtained directly from the sequenc-
ing reads and derived from one pool containing 64 I. ricinus
ticks collected from Tulcea region/Danube Delta Reserve.
Romanian TRBV shared the same specific genomic structure
as other orbiviruses and comprised 10 ORFs coding for the
10 proteins of the virus (Table 1). In all genes, Romanian
TRBV was closer to the different strains of TRBV compared
to other viruses present in the Great Island group, except in
the NS3 protein where it was closer to Muko virus (MKV).
The most conserved genes were the VP1 and VP3 while the
VP6 and the NS2 presented the highest degree of divergence.

Phylogenetic analyses performed on the 10 segments
confirmed that Romanian TRBV belongs to the Orbivirus
genus and was positioned in the GIV serogroup, which
comprise tick-borne orbiviruses distributed across different
geographical areas (Figure 3 and Supplementary 2). The
Romanian TRBV generally clustered in a specific clade,
distinct from Kemerovo virus, that comprises other TRBV
isolates but with few variations when considering the dif-
ferent segments: in VP1 and VP6 segments, TRBV/Roma-
nia clustered in a subclade with TRBV-Tr35/Ukraine while
being clustered with the prototype strain in VP2, VP7, and
NS3 genes, and with TRBV-Tr19/Ukraine in the VP5 gene.
In NS1, TRBV/Romania placed at the root of the reliably
supported group of TRBV-Tr19/Ukraine, TRBV-Tr35/
Ukraine, TRBV/prototype, and MUV/Japan, while in NS2

and VP4, Muko virus was placed at the root of the subclade
formed by TRBV/Romania, TRBV-Tr19/Ukraine, TRBV-
Tr35/Ukraine, and TRBV/prototype. The Romanian TRBV
strain exhibits distinct clustering patterns depending on
the segment, indicating it underwent diverse evolutionary
pathways during its circulation through a vertebrate-
arthropod infection cycle and suggesting a possible reas-
sortment at the origin of Romanian TRBV.

3.3. Genetic Characterization of Phenuiviridae Viruses. Phle-
bovirus is the unique viral genus of the Phenuiviridae family
that is able to infect vertebrates, including humans through a
wide range of arthropod vectors (sandflies, mosquitos, or
ticks). Tick-transmitted phleboviruses are clustered into
four serogroups: Bhanja virus (BHAV) and Bhanja-related
viruses responsible for febrile symptoms; severe fever with
thrombocytopenia syndrome virus (SFTSV); member of
SFTSV serogroup and related to hemorrhagic fever illnesses
in Asia; and Uukuniemi virus (UUKV) and Kaisodi virus
(KSOV) in the Uukuniemi/Kaisodi serogroups that have not
been recognized as human pathogens [40–42]. The genome of
these viruses is constituted of three segments: the L segment
encodes for the viral RdRp, the M segment encodes for the
glycoprotein precursor that will subsequently matured into
two glycoproteins (Gn and Gc) and a nonstructural protein
(NS), and the S segment which encodes the nucleoprotein
(NP) and a nonstructural NS protein.

In the current study, we detected two viruses belonging
to the Phlebovirus genus and related to Mudanjiang virus
(MDJV). MDJV-like/Alsace and MDJV-like/Iasi presented
the same trisegmented genome architecture specific to phle-
boviruses. Comparison of the RdRp sequences of Alsace and
Iasi MDJV strains demonstrated a 99% amino-acid identity
between each other, and a lower (around 90%) degree of
conservation with the two strains of MDJV identified in
Ixodes persulcatus in China [43]. MDJV-like/Alsace and
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MDJV-like/Iasi were more distantly related to Mukawa virus
(YP009666332), Kuriyama virus (BBF90225), Pangolin phle-
bovirus (URZ29348), and Alxa phlebovirus (UXL90863),
with lower amino-acid identities ranging from 86.86% to
83.11% in the RdRp. Phylogenetic relationships between
the Romanian and French strains of Mudanjiang virus and
other phleboviruses showed that our strains clustered in a
clade that comprises phleboviruses transmitted by ticks
recently detected in I. persulcatus and H. concinna from
China (Mudanjiang virus) [43, 44] and Japan (Mukawa
and Kuriyama virus) [45], respectively, except for Pangolin
phlebovirus for which the vector is yet unknown. This clade
is rooted by Alxa phlebovirus, a tick-borne phlebovirus detected
in Chinese tick metagenomes in 2016 and 2019, forming a
distinct but well-supported clade within the Phlebovirus
genus (Figure 4).

We also identified sequences related to a novelUukuvirus,
named Dermacentor reticulatus uukuvirus 1-like (DRUV1),
in I. ricinus ticks from Iasi, Romania. DRUV1 presented two
segments encoding for the RdRp and the nucleoprotein and a
horizontal genome coverage of 99.8% and 31.3%, respectively.
Phylogenetic analysis showed that Romanian DRUV1 clus-
tered together with DRUV1 (USL85427) identified in Croa-
tia in 2022 [24], but placed close to Tacheng tick virus 2,
previously associated with human infections in China [36]
(Figure 4).

Among the Ixovirus genus, we detected three Norway
phlebovirus 1 (NWPV1)-like strains in I. ricinus ticks from
Alsace, Ardennes, and Iasi, with a horizontal genome cover-
age ranging from 90% to 100% for the L segment and from
61% to 100% for the S segment. Phylogenetic analysis per-
formed on the RdRp confirmed that the three NWPV1 strains
clustered within the Ixovirus genus, with other NWPV1 iden-
tified previously in I. ricinus from Norway [19] (Figure 4).

3.4. Genetic Characterization of the Nairoviridae Family. Of
major interest is the Orthonairovirus genus which is trans-
mitted mainly by ticks and includes some of the most sig-
nificant tick-borne pathogens for public health [46]. The
genome of orthonairoviruses is usually trisegmented: the
L segment coding for the RNA-dependent RNA polymerase
(RdRp), the M segment encoding for the glycoprotein (Gn
and Gc) and the nonstructural protein NSm, and the S seg-
ment encoding for the nucleocapsid (NP) and the nonstruc-
tural protein NSs. However, recent studies have revealed the
presence of a new group of bisegmented orthonairoviruses,
apparently missing the M segment [19, 30].

Here, we identified four bisegmented strains, provision-
ally named Ixodes ricinus orthonairovirus (IRNV) detected
both in Romanian (Iasi and Tulcea) and French (Alsace and
Ardennes) I. ricinus ticks. The pairwise comparison of our
strains with representative bisegmented Orthonairovirus
strains performed on the NP gene showed a high degree of
amino-acid conservation with Norway nairovirus 1, Pustyn
virus, and Grotenhout virus, ranging from 100% to 98%; but
lower identities were observed for Beiji virus and Gakugsa
virus, ranging from 86.41% to 84.78%. South Bay virus

exhibited a more distant profile than other viruses, with
56.96% and 57.69% of amino-acid identity, respectively. Phy-
logenetic reconstruction placed Ixodes ricinus orthonairo-
virus strains in a clade comprising novel bisegmented
nairoviruses associated with I. ricinus ticks (namely Norway
nairovirus 1, Pustyn virus, and Grotenhout virus) and in a
sister subclade of Beiji nairovirus, a newly identified human
pathogen [30] (Figure 5).

Additionally to the group of bisegmented nairoviruses,
we detected in I. ricinus ticks from Alsace and Iasi regions,
two novel trisegmented strains close to Sulina virus (SULV),
first identified in I. ricinus ticks from Danube Delta, Roma-
nia [47]. Our SULV strains presented an amino-acid identity
ranging from 84% to 99% and a horizontal genome coverage
ranging from 42% to 89% depending on the segment and
strain considered. SULV sequences were also detected in
ticks from Ardennes region, but due to the low genome
coverage, they were excluded from the analysis. Phylogenetic
analysis performed on the NP gene confirmed that the two
strains of SULV identified in our study belong to the triseg-
mented group of nairoviruses and clustered in the Sulina
genogroup comprising other SULV strains originating
from Romania and Yezo virus. Interestingly, this serogroup
is currently associated to the Ixodes spp. vector, with I. per-
persulcatus transmitting Yezo virus to humans in Asia [31]
(Figure 5). The ability of I. ricinus to transmit-related viruses
of this serogroup to vertebrates has therefore to be evaluated.

3.5. Determination of the Arbovirus Potential of Ixodes
ricinus Viruses. To test if one or more viruses identified
among I. ricinus ticks collected on small ruminants are
able to infect their vertebrate hosts and, therefore, could
constitute putative novel tick-borne arboviruses, we devel-
oped LIPS-based serological screening focusing on the
VP7-inner capsid of Tribec orbivirus, the glycoprotein of
Mudanjiang phlebovirus, and the nucleoprotein of Sulina
and Ixodes ricinus orthonairoviruses. In the absence of any
positive control serum, we chose a positivity threshold
defined as the mean of signal-to-noise ratio of nonexposed
French ruminant sera plus three standard deviations. Results
are presented in Figure 6. No Romanian sheep or goat serum
tested positive for TRBV and MDJV. This negative result
indicates that the maximal seroprevalence is 0.9% (p¼
0:05). However, 25 sera collected from Baia (2019 and
2020), Slava Cercheza (2019 and 2021), Somova (2019), and
Cataloi (2021) slightly exceeded the positivity threshold for
SULV antigen. Similarly, for IRNV antigen, 16 sera collected
from Somova and Baia (2019) presented a luciferase activity
higher than the positivity threshold. More importantly, the
median level of antibody response of Baia-2019 and Somova-
2019 sera were significantly higher compared to the French
nonexposed sera, suggesting that the Romanian small rumi-
nants may have been exposed to Ixodes ricinus orthonairo-
virus. Interestingly, in Somova-2019, all sera exceeding the
putative positivity threshold were collected on sheep while
goat sera were all negative.
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4. Discussion

In this study conducted as part of a global research effort to
understand the virome of I. ricinus ticks from two European
countries (France and Romania), we combined virome

characterization with comprehensive phylogenetic analyses
to investigate viruses that are closely related to tick-borne
arboviruses. We further performed a sero-epidemiological
study in the Romanian small ruminant populations from
Danube Delta in order to characterize the arbovirus potential
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of candidate viruses. If a positive finding suggests the ability
of a candidate tick-associated virus to infect small ruminants,
negative findings inform on the probable nontransmitted
nature of a given virus and its probable restriction to ticks
(within the limits of the vertebrate species and the number of
sera tested), increasing therefore the knowledge of the host
spectrum of tick-borne viral communities. Such knowledge,
usually lacking in many metagenomics studies, is a prerequi-
site for improving targeted surveillance of emerging tick-
borne arboviruses.

Among the viral communities detected in I. ricinus ticks,
we described novel viruses belonging to the Phenuivirdae
and Nairoviridae families and we reported the first complete
genome of a novel strain of Tribec virus, an important

pathogen associated with neurological symptoms in humans.
Phylogenetic analyses of the 10 viral segments revealed a
close association between the Romanian strain and other
TRBV strains isolated from Ukraine [11], at the border of
Romania. This finding suggests the presence of a continuum
of tick populations (and their associated viral communities
that include arboviral pathogens) across Eastern Europe
which could result, due to the wide distribution of I. ricinus
ricinus in Europe [2] to the silent circulation of TRBV-
related viruses in Western and Eastern European countries.
In the present study, Tribec virus was detected in engorged
I. ricinus ticks from the Danube Delta, which constitutes one
of the most important wetland areas for migratory birds and
a major hub for bird migration from Africa and Asia [48].
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Migratory birds are able to travel over long distances between
their breeding site and their wintering site, carrying with them
ectoparasites, including ticks and associated microorganisms,
which may suggest the presence of TRBV along their migra-
tory routes, possibly leading to a high risk of introduction of
the virus in new areas. In addition, and despite the fact that
previous studies [11] mentioned I. ricinus ticks as the main
vector of TRBV, the virus has been detected in other tick
species, including Haemaphysalis punctata ticks from the
western part of Romania [49]. This observation highlights
the low degree of vector restriction of TRBV, which can
also favor its dissemination over distant areas and its ende-
mization in new areas that are not colonized by I. ricinus.

Even if rodents and small ruminants are considered as
the main reservoirs of TRBV [13, 16], animal diseases caused
by Tribec virus infection have not been reported yet. Few

studies indicated that the seroconversion has been present in
birds, but their role in the transmission of the virus remains
unclear [15]. In our study, small ruminant sera were tested
and none of them exceeded the positivity threshold, suggest-
ing that infection of small ruminants by TRBV in the
Danube Delta, if they occur, is rare. To obtain a comprehen-
sive understanding of the host spectrum and get primary
insights into the ecological cycle of Romanian TRBV, it is
crucial to conduct further investigations, such as exploring a
larger number of vertebrate hosts, including rodents and
birds, which represent some of the most numerous verte-
brate species present in the Delta.

The family Phenuiviridae consists of segmented negative-
strand ssRNAviruses, encompassing the generaGoukovirus and
Phasivirus (viruses specific to insects), Tenuivirus (viruses that
infect plants), and Phlebovirus (viruses that infect animals).
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Ixodidae ticks serve as the primary vectors for tick-borne phle-
boviruses [50]. Birds and small mammals have been proposed
as reservoirs for these viruses, while humans and domestic ani-
mals are considered accidental hosts [51, 52]. Our study identi-
fied two strains of Mudanjiang virus (MDJV) phylogenetically
related to MDJV tick-borne isolates from Asia [53]. Interest-
ingly, MDJV strains formed two distinct subclades. One sub-
clade consisted of MDJV strains detected in China [53],
specifically in I. persulcatus ticks, and the other subclade com-
prised MDJV strains from Alsace/Iasi, identified in I. ricinus
ticks. Furthermore, the phylogenetic analysis revealed that the
Romanian and French strains of MDJV were closely related to
the Pangolin MDJV strain detected in China, in 2018. This
suggests that these viruses could potentially infect vertebrates,
particularly in regions where vectors, reservoirs, and animals
coexist. In contrast, our serological research indicated that
MDJV does not appear to have the ability to infect small rumi-
nants, or at very low prevalence. Therefore, we cannot exclude
that this virus could constitute tick endosymbionts that repre-
sent viral ancestors of the known trisegmented tick-borne phle-
boviruses, as previously suggested [43].

In the same Phenuiviridae family, we identified Derma-
centor reticulatus uukuvirus 1 and Norway phlebovirus 1
that clustered in Uukuvirus and Ixovirus genera, respectively.
So far, these viruses were only identified in ticks [24], so their
potential ability to infect multiple hosts is questionable.
Indeed, the phylogenetic proximity between Dermacentor
reticulatus uukuvirus 1 and a human clinical isolate from
Northwestern China [36], which has a history of tick bite,
raises concerns regarding the potential for Romanian ticks to
harbor novel arboviruses, and highlights the need for further
investigation and surveillance to better understand the diver-
sity and potential public health implications of Phenuiviridae
arboviruses in Romanian ticks.

The detection of viruses belonging to the Nairoviridae
family in the virome of I. ricinus ticks is also a matter of
concern. Many members of the Orthonairovirus genus are
known to be transmitted by ticks to mammalian hosts such
as bats, rodents, and ungulates, and infections are typically
asymptomatic [54]. Here, we successfully identified and
characterized four distinct strains of a newly discovered
bisegmented nairovirus, tentatively named Ixodes ricinus
orthonairovirus (IRNV). These strains are placed within a
clade that includes recently discovered nairoviruses that
appear to be predominantly detected in I. ricinus ticks
from Northern Europe (Belgium and Norway) [19, 32] and
which constitutes a sister clade of a group of novel bisegmen-
ted tick-borne pathogens associated with human febrile illness
in China [30]. The ability of Ixodes ricinus orthonairovirus,
and viruses of the same clade, to infect vertebrates is therefore
questionable. Similar observations can be considered for the
two strains of the trisegmented Sulina virus (SULV), as they
clustered together in the same clade as Yezo virus [31] detected
in a tick-bitten patient. These viruses are phylogenetically close
to the Tamdy genogroup, which comprises tick-borne human
pathogens such as Tamdy virus or Tacheng tick virus 1
[55, 56]. Our serological surveys show that part of the small
ruminant population from Danube Delta could have been

exposed to viruses related to these bi- or tri-segmented nair-
oviruses. Indeed, some paradoxal serological studies on the
circulation of Crimean–Congo hemorrhagic fever virus
(CCHFV) conducted in the same investigated area are in
favor of this hypothesis [57]. While the virus was never
detected in tick populations, sero-epidemiological studies
revealed a puzzling high prevalence ranging from 27.8%
to 74%, when looking at IgG antibodies directed against
the nucleoprotein of CCHFV [57]. In addition, no human
cases of CCHFV infection have been reported thus far in
Romania. To investigate if the apparent high seroprevalence
of CCHFV in small ruminants could be attributed to the
presence of another related virus currently circulating in the
region, we determined if the prevalence and the level of
antibody response against bi- or tri-segmented nairoviruses
detected in I. ricinus ticks were higher in CCHFV-positive
sera compared to CCHFV-negative sera (Supplementary 3).
No significant differences were observed between the two
groups of ruminant sera, but the few sera that exceeded the
proposed positivity threshold for Ixodes ricinus orthonair-
ovirus belonged all to sheep, while goat sera exhibited a
lower antibody response. This low level of positivity might
be due to the presence of cross-reactive antibodies with
related nairoviruses because the nucleoprotein, which pre-
sents lower specificity than the glycoprotein, is targeted.
Therefore, more-specific serological tests such as seroneu-
tralization are needed to confirm this observation, but this
would require the isolation of the virus in high biosecurity
laboratories.

5. Conclusions

In conclusion, the identification of novel viruses plays a cru-
cial role to monitor silent viral emergences. Equally impor-
tant is the need to determine among the vast number of
viruses harbored in vectors and reservoirs, which one is
able or not to cross the species and to understand why certain
viruses, which share a close phylogenetic relationship with
zoonotic viruses, remain incapable of crossing the species
barrier.
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