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Clostridium perfringens is a highly versatile pathogen of humans and animals. Rapid and sensitive detection methods for C. per-
perfringens are urgently needed for the timely implementation of control. In this study, to provide novel promising methods for the
detection of C. perfringens, two rapid, sensitive, and instrument-free C. perfringens detection methods based on recombinase-aided
amplification (RAA) assay and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein
12a (CRISPR/Cas12a) system were developed depending on fluorescence signal (RAA-CRISPR/Cas12a-FL) and lateral flow strip
(RAA-CRISPR/Cas12a-LFS), respectively. The limit of detection of the RAA-CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS
methods is 2 copies and 20 copies of C. perfringens genomic DNA per reaction, respectively, and the whole process can be
completed in 1 hr. Moreover, these two methods show no cross-reactivity with nontarget bacteria, which were used as a negative
control to evaluate the specificity of two developed methods in the detection of C. perfringens and have 100% consistent with real-
time polymerase chain reaction tests for 12 clinical samples collected from 2 Chinese Milu at Beijing Milu Ecological Research
Center and 6 spiked samples from human blood and stool. Overall, the constructed C. perfringens detection methods, RAA-
CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS, have great potential as a novel detection scheme for the early diagnosis of
C. perfringens infection in humans and animals.

1. Introduction

Clostridium perfringens, a Gram-positive and spore-forming
bacterium, is an important human and animal enteric path-
ogen that can cause a wide diversity of diseases. C. perfringens
perfringens is known for its ability to cause human gas gan-
grene as well as one of the most common causes of food-
borne disease burden in the USA and European countries
[1, 2]. In livestock and poultry, it can cause hemorrhagic
bowel syndrome and enterotoxaemia in ruminants [3],

hemorrhagic gastroenteritis in dogs and horses [4], and
necrotic enteritis in poultry [5, 6]. In recent years, many
cases of hemorrhagic enteritis caused by C. perfringens
have also been reported in wild animals, especially in Chi-
nese Milu (Père David’s deer, Elaphurus davidiensis) [7–11].
Furthermore, hemorrhagic enteritis is characterized by acute
onset, short course, and high fatality rate [9]. In view of these
aspects, the rapid and sensitive detection of C. perfringens is
crucial for the conservation of wildlife and keeping human
and animal health.
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Currently, the detection methods for C. perfringensmainly
include the microbial culture-based technology [12, 13],
antigen–antibody interaction-based technology [14, 15], and
nucleic acid amplification-based technology (NAT) [16, 17].
A traditional culture-based method is recognized as the gold
standard method for the diagnosis of C. perfringens infection
[12, 13]; however, it is laborious and time-consuming. Immu-
nological methods such as toxin neutralization assay and
enzyme-linked immunosorbent assay have low diagnostic sen-
sitivity [15, 18]. Molecular detection methods of C. perfringens
have been applied, including polymerase chain reaction (PCR)
assay and real-time PCR assay [16, 17]; however, these assays
rely on specialized and expensive equipment and/or profes-
sional personnel, which limits their application in the field
and resource-poor areas. Advances in isothermal amplification
methods, including loop-mediated isothermal amplification
(LAMP) and recombinase-aided amplification (RAA), have
made it possible for NAT to on-site application [19, 20].
Unsurprisingly, LAMP and LAMP in combination with lateral
flow strip (LFS) methods for the detection of C. perfringens in
food and fecal samples have been developed [13, 21, 22],
although these methods still have some defects, such as aerosol
pollution-leaded false positive and the difficulty in primer
design.

Recently, several seminal discoveries of clustered regularly
interspaced short palindromic repeat (CRISPR)-associated pro-
teins have made CRISPR/Cas system a favorite in the area of
nucleic acid detection owing to its high simplicity, sensitivity,

and specificity [23–25]. Several CRISPR/Cas-based diagnostic
technologies have been developed using a unique group of Cas
enzymes (Cas12a, Cas12b, and Cas13a) [23–26]. Cas12a (Cpf1),
an RNA-guided DNA-targeting enzyme, recognizes DNA
sequence as an activator and then cleaves nonspecific single-
strand DNA reporter (termed collateral cleavage) [23]. Based
on this property, CRISPR/Cas12a-based nucleic acid detection
system combined with RAA or LAMP has been successfully
applied to detect a variety of pathogens, such as SARS-CoV-2
[27], human papillomavirus [23], Vibrio vulnificus [28], Aero-
monas hydrophila [29],Escherichia coliO157:H7 [30], and Strep-
tococcus aureus [30].

The pathogenic mechanism of C. perfringens is mainly
attributable to its copious toxin production [31–33]. Based
on the patterns of toxin (α-toxin, β-toxin, ε-toxin, ι-toxin,
enterotoxin, and necrotic enteritis toxin B), C. perfringens
can be classified into seven toxin types (A–G), and each toxin
type can express cpa-encoded α-toxin and cause animal death
[31, 32, 34]. In this study, based on RAA assay-assisted
CRISPR/Cas12a system, twoC. perfringens detectionmethods
targeting the cpa gene, RAA-CRISPR/Cas12a-FL and RAA-
CRISPR/Cas12a-LFS, were developed through reading fluo-
rescence signal and LFS, respectively (Figure 1). These two
methods are free of elaborate instruments and show high
sensitivity in the detection of C. perfringens genomic DNA
and high specificity in the detection of clinical Milu samples
and spiked human samples, and the whole process can be
completed in 1 hr. Thus, the developed RAA-CRISPR/
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FIGURE 1: Workflow of RAA-CRISPR/Cas12a-based system in the detection of C. perfringens using ssDNA-FQ and ssDNA-FB reporters.
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Cas12a-FL and RAA-CRISPR/Cas12a-LFS methods may be
the promising approach for on-site C. perfringens detection in
samples from humans and animals.

2. Materials and Methods

2.1. Bacterial Strains and Genomic DNA Extraction. A total of
16 bacterial strains, including 11 reference strains and 5 isolation
strains, were used in this study. Eleven reference strains were
C. perfringens Type A (CVCC 2015), C. perfringens Type B
(CVCC 54), C. perfringens Type C (CVCC 1153), C. perfringens
Type D (CVCC 60201), E. coli (ATCC 25922), S. aureus (ATCC
25923), Pseudomonas aeruginosa (ATCC 27853), Bacillus cereus
(ATCC 14579), A. hydrophila (ATCC 7966), V. vulnificus
(ATCC 27562), and Vibrio harvey (ATCC 14126). Five isola-
tion strains wereC. perfringens strainMLa,C. perfringens strain
MLb, Salmonella typhimurium, Vibrio parahaemolyticus, and
Edwardsiella piscicida. C. perfringens reference strains were
kindly gifted by China Veterinary Culture Collection Center.
Two C. perfringens strains, MLa and MLb, were isolated from
clinical samples of dead Père David’s deer infected with C. per-
perfringens. Ten non-C. perfringens bacteria mentioned above
were employed as a negative control to evaluate the specificity
of the two developedmethods in the detection ofC. perfringens.

C. perfringens strains were cultured in tryptose-sulfite-
cycloserine medium under anaerobic conditions, while non-
target bacterial strains were inoculated into 2216E broth or
Luria-Bertani medium. AMiniBEST Bacteria Genomic DNA
Extraction Kit Ver.3.0 (9763; TaKaRa Bio Inc., Japan) was
employed to extract genomic DNA from bacterial cultures.

2.2. RAA Assay. The RAA primer sequences specific for
C. perfringens cpa gene were designed using Primer 5 soft-
ware (Table S1). The bacterial genomic DNA was used as the
template of the RAA reaction according to the RAA basic kit
(Jiangsu Qitian Gene Biotechnology, China). Briefly, a total
50 μL RAA reaction system containing 25 µL of buffer V,
2 µL each of forward and reverse primers, 2 µL of DNA tem-
plate, 16.5 µL of purified water, and 2.5 µL of magnesium
acetate was prepared, and the mixture was then incubated
at 37°C. The products of RAA were finally analyzed with
agarose gel or used as the target of the CRISPR/Cas12a
system.

2.3. RAA-CRISPR/Cas12a-FL Assay and RAA-CRISPR/
Cas12a-LFS Assay. The CRISPR-derived RNA (crRNA),
fluorophore quencher-labeled single-stranded DNA reporter
(5′-/6-FAM/TTATT/BHQ1/-3′; ssDNA-FQ), and fluorophore
biotin-labeled single-stranded DNA reporter (5′-/6-FAM/
TTATT/Bio/-3′; ssDNA-FB) were designed as described by
Xiao et al. [28] and Broughton et al. [27] and synthesized by
Sangon Biotech (Shanghai, China). LFS were purchased
from Tiosbio (JY0301; Beijing, China). The designed crRNA
sequences are shown in Figure 2(b). RAA-CRISPR/Cas12a-FL
detection assay was performed as follows: 10μL of 200 nM
Cas12a (New England Biolabs, USA) and 10μL 200nM crRNA
were preincubated at 37°C for 20min. After this, 10 μL of
500nM ssDNA-FQ reporters and 2µL of RAA products were
added to the above reaction tube and incubated at 37°C for

30min. UV flashlight or a multifunctional microplate reader
(λex: 485nm and λem: 520nm) was used for fluorescence detec-
tion. As for the RAA-CRISPR/Cas12a-LFS assay, ssDNA-FB
reporter was used, and the result would be determined by the
colorimetric signal of the LFS at the end of the reaction.

Optimization of RAA reaction time and Cas12a cleavage
time was conducted using RAA-CRISPR/Cas12a-FL assays.
In terms of the sensitivity of RAA-CRISPR/Cas12a-based
C. perfringens detection methods, serial 10-fold dilutions
ranging from 100 to 106 copies/μL of the C. perfringens geno-
mic DNA were used as templates of RAA reaction. The
specificity of two C. perfringens detection methods was deter-
mined by evaluating the cross-reactivity with nontarget
bacteria.

2.4. Real-Time PCR Assay. Standard qPCR assay [16] was
used to detect C. perfringens according to the instructions
of the CFX96 real-time PCR detection system (Bio-Rad, the
United States). Briefly, the qPCR reaction mixtures con-
tained 10 μL of ChamQ SYBR qPCR Master Mix (Vazyme
Biotech, China), 0.5 μL of forward and reverse primers, 2 μL
of DNA, and 7 μL of ddH2O. The amplification conditions
were 95°C for 30 s, followed by 39 cycles of 95°C for 5 s and
60°C for 30 s.

2.5. Clinical and Spiked Sample Analysis. Clinical samples
were collected from the jejunum, lung, heart, liver, spleen,
and kidney of two dead Milu, and one of them was diagnosed
with C. perfringens infection. Blood and fecal samples were
collected from three healthy volunteers, and 100 μL of blood
or 200mg of stool was added into the tube containing 1× 103

CFU (colony-forming units) of C. perfringens to prepare
spiked samples. Then, genomic DNA was extracted using
TIANamp Genomic DNA Kit and Stool DNA Kit (Tiangen
Biotech, Beijing, China), and 2 μL of genomic DNA was used
as the template for RAA-CRISPR/Cas12a-based C. perfrin-
perfringens detection system.

2.6. Statistical Analysis. Statistical analysis was performed
using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA).
The data were analyzed by Student’s t-test. p<0:05 (indi-
cated by ∗) was considered statistically significant.

3. Results

3.1. Establishing the RAA-CRISPR/Cas12a-Based C. perfringens
Detection Methods. To detect C. perfringens rapidly, sensitively,
and specifically, an RAA-CRISPR/Cas12a-based C. perfringens
detection system was generated, as shown in Figure 1. First, four
RAA primer sets were designed, and evaluated their efficiency
according to the intensity of RAA product band using the gel
electrophoresis. The results showed that all the RAA product
bands were clearly distinguishable (Figure 2(a)). According to
the design principle of crRNA [28], six crRNAs targeting the
conserved region of the RAA amplicon (CR1, CR2, and CR3
targeting the F1/R1 and F2/R2 amplicons; CR4, CR5, and CR6
targeting the F3/R3 and F4/R4 amplicons) were designed
(Figure 2(b)).

To investigate the efficiency of each combination of RAA
primer set and crRNA and verify the feasibility of RAA-
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CRISPR/Cas12a-based methods, different combinations of
RAAprimer set and crRNAwere screened usingC. perfringens
perfringens (CVCC 2015) genomic DNA as the template of
RAA assay. As shown in Figure 2(c), the combination of
F1/R1 and CR3 triggered a stronger fluorescence signal than
other combinations. Meanwhile, the feasibility of RAA-
CRISPR/Cas12a-LFSmethod in the detection ofC. perfringens
perfringens using F1/R1-CR3 combination was also verified,
and the results showed that the test band only appeared in the

C. perfringens genomic DNA group (Figure 2(d)). Therefore,
CR3 and its corresponding primer set, F1/R1, were selected as
the optimal crRNA and primer set and used to perform the
follow-up assays.

3.2. Optimizing RAA Reaction Time and Cas12a Cleavage
Time. A time-course study of the RAA reaction and
Cas12a cleavage was conducted to optimize the assay time
and achieve an ideal assay performance. To obtain an
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4 Transboundary and Emerging Diseases



optimal RAA reaction time, different points of RAA reaction
time (0, 5, 10, 15, 20, 25, 30, 35, and 40min) were tested,
while 45min was chosen as the Cas12a cleavage time. As
shown in Figure 3(a), although the fluorescence signal was
on the increase with time, fluorescence intensity reached a

plateau after 20min; hence, 20min was selected as the opti-
mal time of the RAA reaction. Moreover, as for Cas12a
cleavage time, fluorescence signals of different points of
Cas12a cleavage time (0, 5, 10, 15, 20, 25, 30, 35, 40, and
45min) were detected, and the results showed that the
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FIGURE 3: Optimization of the assay time of RAA-CRISPR/Cas12a system in the detection of C. perfringens. The RAA-CRISPR/Cas12a-FL
assays were conducted using 1× 105 copies/μL of C. perfringens genomic DNA as the template to obtain the optimal time of RAA reaction
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Cas12a cleavage efficacy was essentially completed within
30min (Figure 3(b)). Consequently, the optimal detection
time of the RAA-CRISPR/Cas12a system was considered as
50min (20min for RAA reaction and 30min for Cas12a
cleavage), which was adopted for subsequent experiments.

3.3. Sensitivity of RAA-CRISPR/Cas12a-Based Methods for
Detecting C. perfringens. To investigate the sensitivity of
the RAA-CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS
methods in the detection of C. perfringens, the C. perfringens
genomic DNA (ranging from 100 to 106 copies/μL) were seri-
ally diluted for the evaluation of their limit of detection (LOD).

About 2 μL of genomic DNA and an equal volume of
nuclease-free H2O were used as templates to perform the
RAA-CRISPR-based assays. As shown in Figure 4(a), fluo-
rescence signals could be generated by all the C. perfringens
DNA samples but not by H2O according to the results of
RAA-CRISPR/Cas12a-FL assays, suggesting that the LOD
of this method for the detection of C. perfringens was
2 copies/reaction. As for the other RAA-CRISPR/Cas12a-based
method, RAA-CRISPR/Cas12a-LFS, which is more conve-
nient for on-site detection of C. perfringens, the results
showed that only these 101 to 106 copies/μL C. perfringens
DNA samples could trigger the appearance of the test band in
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the LFS (Figure 4(b)), suggesting that the LOD of this method
was 20 copies/reaction.

To evaluate the sensitivity difference between the devel-
oped methods and other methods in the detection of C. per-
perfringens, the LOD of qPCR assay and RAA assay in the
detection of C. perfringens was assessed. As shown in
Figure 4(c), qPCR assay could detect all the C. perfringens
DNA samples, indicating that the LOD of the RAA-CRISPR/
Cas12a-FL method is the same as that of qPCR. As for the
RAA assay that was conducted using the same condition as
the RAA-CRISPR/Cas12a system, the LOD of the RAA assay
was 200 copies/reaction (Figure 4(d)), which is significantly
lower than that of the RAA-CRISPR/Cas12a-FL and RAA-
CRISPR/Cas12a-LFS. Therefore, these two developed meth-
ods, RAA-CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-
LFS showed high sensitivity in the detection of C. perfringens.

3.4. Specificity of RAA-CRISPR/Cas12a-Based Methods for
Detecting C. perfringens. To investigate the specificity of the
RAA-CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS
methods in the detection of C. perfringens, 6 C. perfringens
strains, and 10 other related zoonotic bacterial pathogens—
that were used as a control in this test—were selected as the
detection samples of these 2 methods. As shown in Figure 5,
the tubes with C. perfringens genomic DNA generated a strong
fluorescence signal (Figure 5(a)) and colorimetric signal in the
test band of LFS (Figure 5(b)), whereas no signals were observed
fromnon-C. perfringens strains. These data clearly demonstrated
that the RAA-CRISPR/Cas12a-based methods showed high
specificity in the detection of C. perfringens.

3.5. Detection of C. perfringens in Clinical and Spiked Samples
with RAA-CRISPR/Cas12a-Based Methods. According to the
above results, two rapid RAA-CRISPR/Cas12a-based C. per-
perfringens detection methods with high sensitivity and spec-
ificity have been established. Finally, the performance of
these two methods in the detection of clinical and spiked
samples was evaluated. Twelve tissue samples, including
the lung, heart, liver, spleen, kidney, and jejunum from two
abnormal death Milu (one of which was diagnosed as C. per-
perfringens infection) were used to retrospectively test C. per-
perfringens. As shown in Figures 6(a) and 6(b), either the
RAA-CRISPR/Cas12a-FL method (Figure 6(a)) or RAA-
CRISPR/Cas12a-LFS method (Figure 6(b)) could only detect
all sixC. perfringens-infected samples, which was consistent with
the results of qPCR assay (Figure 6(c)). These findings were in
linewith the results of the traditional culture-basedmethod (data
not shown). These results demonstrated that these developed
methods could resist the influence of Milu genomic DNA and
be used to detect C. perfringens-infected Milu.

For spiked samples, blood and fecal samples collected from
three volunteers and contaminated with low levels of C. perfrin-
perfringens (1× 103CFU) were detected with RAA-CRISPR/
Cas12a-FL (Figure 6(d)) and RAA-CRISPR/Cas12a-LFS
(Figure 6(e)) methods. These results showed that only the spiked
samples could be detected and demonstrated that the developed
methods could also be used to diagnose patients infected with
C. perfringens.

Taken together, the developed RAA-CRISPR/Cas12a-based
methods presented a significant advantage over existing meth-
ods, allowing rapid, sensitive, specific, and instrument-free

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

16,000

12,000

8,000

4,000

400

20,000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Samples 

FL
 in

te
ns

ity
 (a

.u
.)

ðaÞ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ðbÞ
FIGURE 5: Evaluation of the specificity of RAA-CRISPR/Cas12a-based methods for detecting C. perfringens. Six C. perfringens strains and
10 other related zoonotic bacterial pathogens were used to evaluate the specificity of RAA-CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS
methods in the detection of C. perfringens, and the fluorescence signals were detected with a multifunctional microplate reader (upper) or a UV
flashlight (below). 1, Salmonella typhimurium; 2, Vibrio parahaemolyticus; 3, Edwardsiella piscicida; 4, Escherichia coli; 5, Staphylococcus
aureus; 6, Pseudomonas aeruginosa; 7, Bacillus cereus; 8, Aeromonas hydrophila; 9, Vibrio vulnificus; 10, Vibrio harvey; 11, C. perfringens strain
MLa; 12, C. perfringens strain MLb; 13, C. perfringens Type A; 14, C. perfringens Type B; 15, C. perfringens Type C; 16, C. perfringens Type D.
n= 3 technical replicates; bars represent meanÆ SEM.

Transboundary and Emerging Diseases 7



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

16,000

12,000

8,000

4,000

400

20,000

0

Samples 

FL
 in

te
ns

ity
 (a

.u
.)

ðaÞ

1 2 3 4 5 6 7 8 9 10 11 12

ðbÞ

10 20 30 400

1,500

1,000

500

0

2,000

1
2
3

4
5
6

Cycles 

RF
U

7–12

ðcÞ

Blood Stool

Spiked sample
Negative control

16,000

12,000

8,000

4,000

400
0

20,000

FL
 in

te
ns

ity
 (a

.u
.)

1 2 3 4

∗∗∗

∗∗∗

ðdÞ

1 2 3 4

ðeÞ
FIGURE 6: Evaluation of the practicability of RAA-CRISPR/Cas12a-based methods for detecting C. perfringens in clinical and spiked samples.
Genomic DNAs were extracted from the tissues of two abnormal death Milu and then were detected using RAA-CRISPR/Cas12a-FL (a),
RAA-CRISPR/Cas12a-LFS (b), and qPCR (c) assays. 1–6 were lung, heart, spleen, kidney, liver, and jejunum, respectively, collected from the
Milu dying of C. perfringens; 7–12 were lung, heart, spleen, kidney, liver, and jejunum, respectively, collected from the Milu dying of non-
C. perfringens pathogen. (d and e) Human blood and fecal samples were collected and used to evaluate the practicability of RAA-CRISPR/
Cas12a-based methods in the diagnosis of patients infected with C. perfringens. Blood samples and fecal samples were contaminated with
1× 103 CFU C. perfringens, and then the spiked samples and normal samples were detected using RAA-CRISPR/Cas12a-FL (d) and RAA-
CRISPR/Cas12a-LFS (e) methods. 1, spiked blood sample; 2, normal blood sample; 3, spiked fecal sample; 4, normal blood sample. n= 3
technical replicates; two-tailed Student’s t test; ∗∗∗p<0:001; bars represent meanÆ SEM.
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detection of C. perfringens in clinical Milu samples and spiked
human samples.

4. Discussion

C. perfringens is responsible for many histotoxic and enter-
otoxic infections in humans and many animals [32]; for
example, hemorrhagic enteritis caused by C. perfringens
has become one of the most important diseases of Milu
[9, 35, 36]. Therefore, strengthening the research on the
key technology for the prevention and control of this bacteria
has been gaining widespread attention. Currently, the detec-
tion methods of C. perfringens mainly rely on conventional
culture technology and NAT (real-time PCR, PCR, and
LAMP) [13, 16, 17, 21]. Although the real-time PCR method
has been widely validated and is considered the gold stan-
dard test for C. perfringens, it still has some shortcomings
because of the complicated operation and sophisticated
equipment. Other molecular detection methods, PCR and
LAMP, depending on the gel electrophoresis analysis and
lateral flow dipstick, show lower sensitivity than the real-
time PCR method [13, 21]. In addition, fully equipped diag-
nostic laboratories are usually far from Wild Animal Park
and breeding bases for endangered wild animals, which is dif-
ficult to conduct the above methods in these places and may
lead to delayed diagnosis. To address these shortcomings, two
novelC. perfringens detectionmethods, RAA-CRISPR/Cas12a-
FL and RAA-CRISPR/Cas12a-LFS (Figure 1), were developed,
which can be used for on-site C. perfringens detection with
time-saving (Figure 3), instrument-free, high sensitivity
(Figure 4), and high specificity (Figure 5). To our knowledge,
this research is the first time to report the RAA-CRISPR-
Cas12a-based methods for the detection of C. perfringens.

It is well known that the pathogenicity of C. perfringens is
determined by multiple toxins [3]. All types of C. perfringens
isolates produce cpa gene-encoded α-toxin, which possesses
phospholipase C and sphingomyelinase activity and plays
key roles in the pathogenicity of C. perfringens [31, 32, 34].
The feature of cpa gene exhibits the high sequence conserva-
tion and species specificity and has been widely used as a
target gene to identify C. perfringens [13, 21, 22]. Therefore,
in this study, cpa gene was selected for detecting C. perfrin-
perfringens. The published cpa sequences in GenBank were
downloaded and aligned, and then RAA primers and
crRNAs were designed according to the conserved region
(Table S1; Figure 2(b)). Twelve combinations of RAA primer
set and crRNA were obtained, and upon screening using
RAA-CRISPR/Cas12a-FL assay, one combination, F1/R1-
CR3, exhibited the highest activity among these 12 combina-
tions (Figure 2(c)). Meanwhile, the activity of the F1/R1-CR3
combination was also verified using RAA-CRISPR/Cas12a-
LFS method (Figure 2(d)). The validity of the F1/R1-CR3
combination was further confirmed in the specificity test of
two RAA-CRISPR/Cas12a-based methods, which shows that
only six C. perfringens strains could be detected using the
established methods, RAA-CRISPR/Cas12a-FL (Figure 5(a))
and RAA-CRISPR/Cas12a-LFS (Figure 5(b)).

Previously, RAA assay coupled with CRISPR/Cas12a sys-
tem has been established for pathogen detection and showed
high sensitivity [28, 29]. In this study, these results demon-
strated that RAA-CRISPR-Cas12a-FL and RAA-CRISPR/
Cas12a-LFS methods based on fluorescence signal and col-
orimetric signal detected the C. perfringens genomic DNA
at a sensitivity level of 2 copies/reaction (Figure 4(a)) and
20 copies/reaction (Figure 4(b)), respectively. The sensitivity
of these two methods was nearly equal to that of real-time
PCR but higher than RAA assay (Figure 4(d)) and LAMP
assay [13, 21]. Because C. perfringens could cause diseases
in Milu and humans [32, 35], the practicability of these
proposed methods in clinical Milu samples and spiked
human samples was investigated. Using RAA-CRISPR/
Cas12a-FL and RAA-CRISPR/Cas12a-LFS methods, C. per-
perfringens detection from clinical and spiked samples could
be completed in 1 hr. Although the detection results between
RAA-CRISPR-Cas12a-based methods and real-time PCR
were 100% consistent, the RAA-CRISPR-Cas12a-based meth-
ods spent less time.

In summary, the current study first presented RAA-
CRISPR/Cas12a-FL and RAA-CRISPR/Cas12a-LFS methods
for C. perfringens detection with time-saving, instrument-
free, and high sensitivity. They may serve as an alternative
scheme for the rapid diagnosis of patients and animals
infected with C. perfringens to prevent its spread at an early
stage.
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