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Circoviruses are a group of small circular, single-stranded DNA viruses that belong to the family Circoviridae. They are known to
infect a wide variety of animals. Rhizomys sinensis is a species of rodent that is the reservoir of many zoonotic pathogens. Our
previous study identified many sequencing reads mapped to the genome of viruses in Circoviridae in R. sinensis. However, little is
known about the circulation and genetic characterization of circoviruses in R. sinensis. This study identified three different
circoviruses in samples from 195 R. sinensis. First, the bamboo rat circovirus is widely prevalent in R. sinensis in Guangdong
Province, and all strains could be divided into three clades based on nucleotide substitutions at specific sites. Second, and more
important, porcine circovirus 2 (PCV2) was isolated for the first time from R. sinensis, which expanded the host range of PCV2 and
indicated extra procedures would be required to protect livestock from this virus. Finally, a novel circovirus phylogenetically close
to the dromedary stool-associated circular ssDNA virus was detected in 86 (44.1%) samples, which may represent a new circovirus
species. These results not only expand our understanding of the circovirus diversity in rodents, particularly in R. sinensis, but also
underscore the importance of continued surveillance of viruses in wildlife populations, particularly in rodents, to prevent and
control the spread of zoonotic pathogens.

1. Introduction

Circoviruses are the smallest known viruses with a small,
circular, single-stranded DNA (ssDNA) genome [1]. The
family Circoviridae was established in the mid-1990s [2].
Its members have ambisense genomes of ∼1.7–2.1 kb in
length, containing two major open reading frames (ORFs).

The replication-associated (Rep) gene lies in the viral sense
strand, and the capsid (Cap) gene lies in the complementary
sense strand, encoding the Rep and Cap proteins, respec-
tively [2]. Recently, some new circular ssDNA viruses with
genome sizes of more than 2.1 kb were also classified into the
family Circoviridae [3–5]. Due to the high diversity of animal
viruses with circular ssDNA genomes, members of the family
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Circoviridae have been further classified into two genera,
Circovirus and Cyclovirus [2].

In the past decade, benefiting from the development
of high-throughput sequencing technologies and metagen-
omes, many circoviruses have been identified in multiple
new hosts [6], ranging from mammals (bats, dogs, minks,
rodents, etc.) [7–10], birds [1], fishes [6], to even insects [11].
Due to being associated with several zoonotic diseases in ver-
tebrates [12, 13], circoviruses have emerged as an economic
concern over farmed livestock and poultry and a health con-
cern over wildlife and humans [14].

Rodents (order Rodentia) are the most diverse and wid-
est distributed mammals, with 33 families and 2,277 species
(∼43% of all mammal species) [10]. They are a natural res-
ervoir of many zoonotic viruses and intermediate reservoirs
that serve as a bond between humans, domestic animals,
arthropod vectors (ticks, mites, fleas), and other wildlife and
cause the transmission of viruses [15]. Therefore, virus iden-
tification in rodent populations is of great value for public
health. Over 200 rodent species from 12 families have been
found in China [16]. Viral metagenome suggests that rodents
can be infected by or carry numerous vertebrate-associated
viruses, many of which can cause severe human diseases
[10, 17–19].Most virome studies have been focused on rodent
species such asMus musculus, Rattus norvegicus, Rhombomys
opimus, and Urocitellus undulates. However, there is still a
shortage of studies investigating virome associated with the
Rhizomys sinensis species widely distributed in southern
China. Recently, virome analysis by He et al. [20] identified
seven vertebrate-associated RNA viruses in Rhizomys pruino-
sus (a species of bamboo rat). In one of our studies, more
abundant vertebrate-related viruses covering 22 viral families
were found in R. sinensis from Guangdong Province [21].

Interestingly, among many identified DNA viruses from
R. sinensis, Circoviridae dominated more than 75% of the
total viral reads. To further investigate circoviruses’ circula-
tion and genetic characterization in R. sinensis, 195 animals
across Guangdong Province in China were sampled by
throat and anal swabbing. Based on previous virome data,
we redescribed viral composition in R. sinensis from Guang-
dong, focusing on the family Circoviridae. Various circo-
viruses were identified in bamboo rat populations, among
which the bamboo rat circovirus (rodent-associated circo-
virus 7) was found widely throughout this region. Notably,
the PCV2d genotype was identified for the first time in
healthy R. sinensis, with the same antibody recognition
regions, immunodominant decoy epitope, and a heparin
sulfate-binding motif as observed in PCV2d of porcine ori-
gin. All findings in this study would significantly expand our
understanding of virome characterization, especially the
genetic diversity of circoviruses in R. sinensis.

2. Materials and Methods

2.1. Sample Collection. During February 17–24, 2020, 345
samples, including 186 throat and 159 anal swabs, were col-
lected from 195 R. sinensis in 10 different farms in Guang-
dong Province, China (Figure 1).

2.2. Sequence Reads Classification and Assembly. Using high-
throughput sequencing results from the previous study
(the accession number of the NCBI sequence archive is
PRJNA751997), we redescribed the characteristics of the
virome in R. sinensis. Briefly, high-quality clean reads were
obtained using SOAPnuke software version 1.5.6 [22].
Ribosome and host sequences were removed using Burrows–
Wheeler Alignment (BWA) software version 0.7.17 [23].
Then, clean reads were mapped to the virus reference data
derived from the GenBank nonredundant nucleotide (NT)
database by BWA software. Viral reads were preliminarily
identified and counted at the level of the viral family. Reads
of Circoviridaewere further assembled by MEGAHIT version
1.1.2 [24], and contigs greater than 300 bp were compared to
the GenBank nonredundant nucleotide and protein databases
using BLASTn and BLASTx, respectively (the threshold of
E value is 10−5).

2.3. Molecular Detection of Circoviruses in Rhizomys sinensis.
Specific PCR was setup to determine the prevalence rate of
the three identified circoviruses by viral metagenomic anal-
ysis. Primers were designed by Primer 5 software (Premier
Biosoft International, Palo Alto, CA, USA) according to the
contigs assembled above. In addition to the above three
circoviruses, our PCR screening included rodent-associated
circovirus 1–6. All primers are listed in Table S1.

Viral nucleic acid was extracted using RaPure Viral DNA/
RNA Kit (Magen R4410-02, Guangzhou, China) according to
the manufacturer’s instructions, and target fragments were
amplifiedwith 2×TaqPlusMasterMixⅡ (VazymeP213,Nanj-
ing, China). Purified PCR fragments by FastPure® Gel DNA
Extraction Mini Kit (Vazyme DC301, Nanjing, China) were
sequenced by the Tsingke Biotechnology (Guangzhou, China).

2.4. Genome Sequencing of Circoviruses in Rhizomys sinensis.
Nine representative positive samples for circovirus were
selected for whole-genome sequencing. In detail, the loca-
tions of contigs and the distance between contigs of the same
virus were determined using the alignment results from
MEGA 11. Then, the partial genome was amplified based on
accurate genomic locations of contigs. Finally, based on the
determined partial genomic sequences, the whole viral genome
was amplified by using inverse PCR and genome walking. The
purified genomic DNA using FastPure® Gel DNA Extraction
Mini Kit (Vazyme DC301, Nanjing, China) was sequenced by
the Tsingke Biotechnology (Guangzhou, China).

2.5. Sequence Comparison and Phylogenetic Analyses. The
genomic sequences were assembled by SeqMan NGen®,
version 7.1 (DNASTAR, Madison, WI) and aligned using
MAFFT version 7.487 with the parameter L-INS-I [25].
Megalign (Lasergene, version 7.1) was used to determine
the similarity of nucleotide and amino acid sequences, and
MEGA11 to determine the evolutionary relationships between
strains of the present study and those from the GenBank
database through phylogenetic analysis by the maximum
likelihood (ML) method. ModelFinder Plus [26] was used
to determine the most suitable evolution model for the
phylogenetic tree of the whole and partial circoviral
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genome. The CLC sequence viewer software version 8.0
(QIAGEN Bioinformatics, Hilden, Germany) was used for the
multiple sequence alignment of whole genome and PCV2d cap
protein amino acid sequences.

Rep gene phylogenetic analysis included representative
species of Circovirus genera. For the rodent-associated
circovirus 7, all genomes and capsid protein (Cap) genes
from the GenBank database were included as reference
sequences. For PCV2, the phylogenetic analysis based on
full genome and Cap genes included representative species
of every subgenotype and other strains that infect nonpig
species, especially rodents. Information on the reference

genome retrieved from GenBank in this study is listed in
Table S2.

2.6. Nucleotide Sequence Accession Numbers. All sequences
obtained in the present study were submitted to GenBank
under accession numbers OQ388322–OQ388330, and the pre-
vious metagenomic data have been deposited into the NCBI
sequence archive under accession number PRJNA751997.

3. Results

3.1. Viral Metagenomic Overview. The throat and anal swabs
analysis from R. sinensis revealed remarkable viral diversity.
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A total of 5,349,877 reads, which accounted for only 0.27% of
the clean reads, had the best matches with viral genes or
proteins using BLASTx and BLASTn. These viral reads were
classified into 43 virus families, of which 4,480,983 matched
22 mammalian-related viral families, with DNA virus-related
sequences being the most prevalent (90%) (Figure 2). Among
mammalian DNA virus reads, viral sequences related to the
Circoviridae family were the most abundant (89%) followed
by Genomoviridae and Parvoviridae.

In light of the abundance of reads within the family
Circoviridae, our attention was acutely directed toward the
circoviruses. These samples from R. sinensis engendered an
astonishing aggregation of 3,593,892 Circoviridae-related
reads (Figure 2). These reads were distributed across seven
distinct species: bamboo rat circovirus (3,590,165), rodent
circovirus (607), porcine circovirus 2 (1,281), porcine
circovirus-like virus (44), human fecal virus Jorvi2 (379),
dromedary stool-associated circular ssDNA virus (85), and
Circoviridae spp. (1,331). After merging the reads mentioned
above, 36 contigs were assembled, with lengths ranging
from 309 to 4,382 nucleotides (Table 1). The reclassification
results showed that certain contigs initially identified as cir-
coviruses may be erroneous sequences. This conclusion was
reached because the contigs had limited nucleotide similarity
with the reference sequence, and only a small portion could
align with the reference sequence (Table 1).

3.2. Detection of Circoviruses in Rhizomys sinensis. In this
study, we utilized specific primers to screen for the presence
of bamboo rat circovirus, bamboo rat respiratory tract-
associated circular ssDNA virus, and PCV2. We employed
PCR to perform circoviruses tests on 345 samples (Figure 1
and Table 2). Among the R. sinensis of Guangdong Province,
China, our results showed that the overall positive rates of
bamboo rat circovirus, bamboo rat respiratory tract-associated
circular ssDNA virus, and PCV2 were 64.1%, 44.1%, and 0.5%,
respectively. Moreover, all regions were positive for bamboo
rat circovirus and bamboo rat respiratory tract-associated
circular ssDNA virus. Notably, over one-third of the 158 cir-
covirus DNA-positive bamboo rats were coinfected with
bamboo rat circovirus and bamboo rat respiratory tract-
associated circular ssDNA virus (54/158). Conversely, PCV2
had an extremely low prevalence, and we detected its
nucleic acid only in the throat swabs of one bamboo rat
from Meizhou City, Guangdong Province. Furthermore, we
also investigated the presence of rodent-associated circo-
virus 1–6, and our results demonstrated that all bamboo
rats in this study were negative for these viruses.

3.3. Genetic Characterization of Bamboo Rat Circoviruses in
Rhizomys sinensis. To investigate the genetic characteristics
of prevalent bamboo rat circoviruses in South China, seven
representative positive samples from different regions were
utilized to obtain the complete genome sequences with a
length of 2,111 or 2,112 nt (Figure 3(a)) and deposited in
the GenBank database under accession number OQ388322-
OQ388328. Notably, the ORF2 gene encoding the Cap pro-
tein had a length of either 906 or 657 nt, the latter due to a
frameshift mutation caused by a one-base deletion at

position 2,032 (Figure 3(b)). Pairwise sequence comparisons
of the seven novel strains revealed a nucleotide sequence
identity range of 95.8%–100% for the complete genome,
95.6%–100% for the Rep region, and 69.1%–100% for the
Cap region. Furthermore, these strains showed a nucleotide
sequence identity of 95.4%–99.5% for the complete genome,
95%–99.7% for the Rep region, and 68.2%–99.4% for the Cap
region compared to the reference sequences obtained from
GenBank data.

The results of the phylogenetic analysis showed that all
bamboo rat circoviruses were divided into three clades
(clades I, II, and III), and the seven Guangdong strains in
our study were distributed in all three clades (Figures 3(c)
and 3(d)). Remarkably, the alignment analysis of the com-
plete genome and ORF2 gene sequences revealed unique
nucleotide sequence characteristics in the three clades. Based
on the complete genome, the phylogenetic tree indicated that
clade I had ACA and CGC at positions 199–201 and
676–678, respectively. In contrast, clade II had ACC and
AGA in these regions, while clade III had ACT and CGG
(Figure 3(c)). In the ORF2 gene phylogenetic tree (Figure 3(d)),
clade I was distinguished by GAGG, GGG, GGGT, and
AAAG at positions 1,268–1,271, 1,346–1,348, 1,373–1,376,
and 1,412–1,415, respectively. Conversely, clade II had TAGG,
CGG, TGGG, and AAAT in these regions, and clade III had
TAGA, TGG, GGGG/GTTG, and GAAG. These findings
suggest distinctive nucleotide replacements across the three
clades in these regions.

3.4. First Detection of Porcine Circovirus Type 2 in Rhizomys
sinensis. We have identified a PCV2-like virus in R. sinensis
samples using viral metagenomics analysis and specific PCR
detection. Multiple sequence comparisons indicate that the
R. sinensis origin (RS origin) PCV2 strain shares 94.9%–
99.5%, 96.8%–99.8%, and 88.9%–99.3% nucleotide similarity
with previously reported PCV2 sequences in the complete
genome, ORF1, and ORF2, respectively, from diverse species
in the GenBank database. Based on the guidelines from the
ICTV report [1], this isolate was classified as PCV2 and
designated RtRs-PCV2/2020. To our knowledge, this repre-
sents the first report of a PCV2 strain detected from R. sinen-
sinensis. We have obtained the complete genome sequence of
this RS-origin PCV2 strain, which spans 1,767 nucleotides.
The sequence has been deposited in the GenBank database
under accession number OQ388329. Notably, the RS-origin
PCV2 strain exhibits 95%–97.6% (complete genome), 98.1%–
99.8% (Rep), and 89.9%–94.4% (Cap) nucleotide sequence
identity with other rodent-origin PCV2 strains. Moreover, it
shows 97.5%–98.9% (complete genome), 99.0%–99.6% (Rep),
and 94.4%–98.9% (Cap) nucleotide sequence identity with
porcine-origin PCV2 strains from Meizhou City.

Compared to the amino acid sequences of PCV2d strains
from different origins (n= 16), the ORF2-encoded 234 amino
acids of the RS-origin PCV2 strain were relatively conserved
without any specific substitution (Figure 4). In this study, the
RS-origin PCV2d strain also possessed the typical motifs for
PCV2d, and four antigenic domains (designated as epitopes
a–d), one immunodominant bait epitope within epitope c,
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and one heparin-binding motif were the same as the PCV2d
strains from other species. In this study, the RS-origin
PCV2 strain also possessed the typical motifs 53IGYTVK58,
130VTKAN134, and 185LRLQTT190 for PCV2d.Moreover, four

antigenic domains (designated as epitopes a–d), one immu-
nodominant bait epitope within epitope c, and one heparin-
binding motif were identified in the predicted amino acid
sequence of the Cap protein of the RS-origin PCV2 strain
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(Figure 4). Furthermore, the same critical amino acid residues
were found in the four antigenic domains, including D-70,
M-71, N-77, and D-78 in epitope a, Q-113, D-115, and D-127
in epitope b, Y-173, F-174, Q-175, and K-179 in epitope c, as
well as E-203, I-206, and Y-207 in epitope d (Figure 4).

To determine the genetic relationships of the RS-origin
PCV2 strain compared to other representative PCV2 strains,
two phylogenetic trees based on the complete genome and
ORF2 gene were constructed separately. Our phylogenetic
analysis revealed that RtRs-PCV2/2020 belongs to the PCV2d
genotype (Figure 5), first identified in R. sinensis. The RS-origin
PCV2 strain and the porcine-origin PCV2 strain (GD-MZ-
2020) clustered in the same subclade (Figure 5).

3.5. A Novel Rodent-Associated Circovirus Was Identified
in Rhizomys sinensis. A 593-nucleotide contig was obtained
from R. sinensis by Illumina sequencing, which was identified
as a member of the Circoviridae family (Table 1). This contig
matched the ORF1 gene (Rep) of dromedary stool-associated
circular ssDNA virus isolate DcSCV_c1000 (KM573764)
(Figure S1(a)), and there was 74.87% nucleotide identity
between them. Although efforts were made to obtain the
complete genome sequence through inverse PCR and gene-

walking strategies, whole genome amplification failed due to
low viral copy numbers and limited fluid availability in the
collected swab samples. Phylogenetic analysis of the partial
putative replicase protein gene revealed that the virus
belonged to a distinct clade within the Circoviridae family,
along with camel-origin circovirus DcSCV_c1000, two
BatACV-13 strains, and whale-origin circovirus IP13001
(Figure S1(b)). In summary, we speculate that this virus repre-
sents a novel species within the family Circoviridae and is
named bamboo rat-associated circular ssDNA virus isolate
BrRCV-GD/X15.

4. Discussion

To identify all viruses through sequence similarity searches,
viral metagenomics provides an opportunity to comprehen-
sively investigate the viral community composition of a par-
ticular host species or environment [27, 28]. Over the past
two decades, it has successfully identified the etiological
agents of emerging or reemerging infectious disease out-
breaks in humans and animals [10, 20, 29, 30]. Previous
studies have characterized the viral flora of several species
of rodents and uncovered a significant diversity of novel

TABLE 1: The information of the contigs assembled from circovirus reads in this study.

Reference virus
Number of matched

contig
Contigs length

(nt)
Nucleotide identity

(%)
Query cover

(%)
Geographical location

Bamboo rat circovirus 17 357–2,239 68.32–100 9–100
Shaoguan, Zhanjiang,

Yunfu
Porcine circovirus 2 2 496, 1,105 97.30–99.8 100 Meizhou
Dromedary stool-associated
circular ssDNA virus

1 593 74.87 100 Zhanjiang

Rodent circovirus 7 448–3,615 68–94.74 1–33
Shaoguan, Zhanjiang,

Yangjiang
Porcine circovirus-like virus 2 472, 476 70.3–88.71 7–11 Shaoguan
Human fecal virus Jorvi2 1 3,628 74.05 3 Shaoguan
Circoviridae spp. 6 309–4,382 64.19–90.57 1–30 Shaoguan, Zhanjiang

TABLE 2: Results of detection of multiple circoviruses nucleic acids in different cities in Guangdong.

City Region
No. positive/no. of Rhizomys sinensis (%)

Bamboo rat circovirus
Bamboo rat-associated circular ssDNA

virus
PCV2

Zhanjiang W01 16/20 (80) 5/20 (25) 0/20 (0)
W03 20/20 (100) 2/20 (10) 0/20 (0)

Yangjiang W07 18/20 (90) 2/20 (10) 0/20 (0)
Yunfu W09 9/21 (42.9) 13/21 (61.9) 0/21 (0)

W10 18/21 (85.7) 13/21 (61.9) 0/21 (0)
Guangzhou Z03 17/21 (80.9) 13/21 (61.9) 0/21 (0)
Shaoguan N01 17/20 (85) 11/20 (55) 0/20 (0)

N05 4/20 (20) 15/20 (75) 0/20 (0)
Heyuan E10 5/15 (33.3) 5/15 (33.3) 0/15 (0)
Meizhou E02 1/17 (5.9) 7/17 (41.2) 1/17 (5.9)
Total 125/195 (64.1) 86/195 (44.1) 1/195 (0.5)
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FIGURE 3: Continued.
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viruses [10, 20, 31], highlighting the importance of these
animals as reservoirs of zoonotic pathogens such as hantavi-
rus [32], arenavirus [17, 33], hepatitis E viruses, and coro-
naviruses [10]. Therefore, the risk of emerging infectious
diseases in rodents should be considered.

In this study, we investigated the features of the vertebrate-
associated viral community in pharyngeal and anal swabs
from R. sinensis in Guangdong Province. Our findings
showed that the identified viral sequences were closely or
distantly related to known viruses. Surprisingly, we detected
a high abundance of DNA viral sequences in R. sinensis, espe-
cially those belonging to the family Circoviridae, which dif-
fered significantly from the results reported by He et al. [20].
These differences may be attributed to variations in the
sampling techniques, sample types, health status of the ani-
mals, and/or research methodologies between the two studies.
Additionally, the findings of this study align with prior research
suggesting the prevalence of plant and insect viruses in rodents,
emphasizing the importance of dietary patterns when consider-
ing the viral communities associated with these animals [31].

Recently, many Rep-containing circular DNA genomes
have been discovered in diverse animals and environments,

considerably expanding the genetic diversity within the
Circoviridae family. Consequently, we became interested
in exploring the genetic diversity of circoviruses carried
byR. sinensis after identifying numerous circovirus nucleotide
sequences within this species using viral metagenomics.

Our results indicated that bamboo rat circovirus is widely
prevalent in R. sinensis in Guangdong, and seven complete
genome sequences of bamboo rat circovirus were identified,
consisting of two lengths, 2,111 and 2,112 nt, with the shorter
sequence exhibiting a frameshift mutation in the ORF2 gene
due to a single base deletion. These strains shared high nucle-
otide identity with reference sequences at the whole genome
level. Phylogenetic analysis revealed that bamboo rat circo-
viruses were grouped into three main clades, and those
strains identified in this study were distributed across all
three clades, with clade I being dominant. Interestingly, spe-
cific nucleotide substitutions were found at multiple loca-
tions in the viral genome, corresponding to different clades
of bamboo rat circovirus. We hypothesize that these sites are
essential for the evolutionary clustering of bamboo rat cir-
covirus, but this hypothesis requires further confirmation
with more extensive data.
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FIGURE 3: Identification of bamboo rat circoviruses in Rhizomys sinensis. (a) Genome schematic illustrating bamboo rat circoviruses’ major
open reading frames (ORFs) characteristics. Members of the species have two major ORFs and a conserved nonnucleotide motif marking the
origin of replication. (b) Nucleotide sequence alignment of the partial region from all bamboo rat circoviruses was the only region in which
single base deletions were present. (c and d) Phylogenetic analysis of the identified bamboo rat circoviruses by MEGA 11 software and the
nucleotide sequence features observed by CLC sequence viewer software on the right side. The trees were constructed from the nucleotide
sequences of the complete genome (c) and ORF2 (d). Bootstrap values expressed as percentages of 1,000 replications are shown at the branch
nodes. The red circles represent bamboo rat circoviruses in this study. Nucleotide sequence features corresponding to each clade are displayed
to the right of the phylogenetic tree, with regions marked by red boxes.
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Our study identified PCV2 in R. sinensis, which repre-
sents the first report of PCV2 in bamboo rats. Our findings
confirm the presence of PCV2 in rodents and provide evi-
dence of cross-species transmission of PCV2 from swine to
bamboo rats, consistent with previous reports of PCV2 cir-
culation in rodents [34, 35]. Furthermore, our multiple
sequence alignment and phylogenetic analysis indicate that
the RS-origin PCV2 strain shares high similarity with
porcine-origin PCV2 strains, particularly those prevalent in
local swine herds, consistent with previous reports [34, 36].
Our phylogenetic analysis revealed that RS-origin PCV2
belongs to the PCV2d genotype, distinct from the PCV2b
and PCV2e genotypes previously identified in rodents [36].
The finding is consistent with a recent report by Zhao et al.
[37] who detected PCV2d in wild rats collected in 2021,
further supporting the ability of PCV2d to cross the species
barrier between pigs and rodents. Our results suggest that the
strain of PCV2d from rodents in China can be traced back to
at least 2020. However, the exact time when PCV2d acquired
the capacity for cross-species transmission between pigs and
rodents remains to be discovered, even though the earliest
detection of PCV2d in swine herds dates back to 2002 [38].
Therefore, retrospective studies on rodent samples are nec-
essary to identify the temporal node at which PCV2d
acquired the capacity for interspecies transmission. These
findings will expand our understanding of the host range
of PCV2 and provide insight into the genetic evolution and

epidemiology of rodent-origin PCV2, which is essential for
disease control and prevention.

In addition, through metagenomic sequencing on bam-
boo rat samples, we identified a circovirus sequence with the
highest nucleotide identity (74.87%) to the partial Rep gene
of the dromedary stool-associated circular ssDNA virus.
Based on the guidelines from the ICTV report [1], we
hypothesized this to be a novel circovirus and named it
bamboo rat-associated circular ssDNA virus, which was sup-
ported by phylogenetic analysis based on the partial putative
Rep protein gene (ORF1). This virus is distinct from rodent-
associated circovirus 1–7 obtained in a previous study [10]. It
appears closely related to circoviruses from dromedaries,
bats, and whales. Despite our efforts to obtain the complete
genomic data of GD/BrRCV-X15 detected in R. sinensis, we
were unsuccessful, which restricted the analysis of the genetic
diversity of circoviruses. We could not obtain additional
samples for further analysis due to the ban on farming
wild animals in China since February 24, 2020. Therefore,
while the data we have collected are valuable, caution should
be exercised in their interpretation.

5. Conclusions

In summary, this study characterized the virome ofR. sinensis
sinensis in Guangdong Province and identified the genetic
diversity of circoviruses in this species for the first time.
Bamboo rat circovirus was the most prevalent, and all strains
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FIGURE 4: Multiple sequence alignment of Cap protein amino acid sequences from PCV2d strains of diverse origins. The alignment includes
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indicated by red, purple, and blue boxes, respectively. The red squares indicate the strain of this study.
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exhibited specific nucleotide substitution patterns, which
allowed us to divide them into three distinct evolutionary
groups. For the first time, we also report the presence of
the PCV2d genotype in R. sinensis, which enriches our

knowledge of the genetic diversity and host range of PCV2.
At the same time, the Cap proteins of RS-origin and porcine-
origin PCV2d share common antibody recognition domains,
immunodominant decoy epitope regions, and heparin sulfate-
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FIGURE 5: Phylogenetic analysis of our RS-origin PCV2 strain and reference PCV2 strains. (a) Phylogenetic tree based on PCV2 complete
genome sequences; (b) phylogenetic tree based on PCV2 Cap gene sequences. Both phylogenetic trees were constructed by the ML method
with the TN93 model using MEGA 11 software. One thousand bootstrap replications were used. The RS-origin and other rodent-origin
PCV2 strains were indicated by red and black squares, respectively. The host origin of each strain was marked to the right of the strain with
the corresponding species shadow.

10 Transboundary and Emerging Diseases



binding motifs, indicating conserved structural features of
this viral protein among these strains. Finally, we identified
a novel circovirus species in R. sinensis, closely related to
circoviruses from camels, bats, and whales. Overall, for
the first time, the findings of this study provide important
insights into the pathogen background of R. sinensis
and shed new light on the diversity, evolution, and inter-
species transmission of circoviruses, highlighting the sig-
nificance of continued surveillance of viruses in wildlife
populations.
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