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Treponeme-associated hoof disease (TAHD) is an emerging disease of conservation concern in elk (Cervus canadensis) in the
Northwest USA. Elk with TAHD exhibit characteristic hoof lesions that are often accompanied by lameness and limping. The gold
standard approach traditionally used for infectious disease surveillance is laboratory confirmation, which for TAHD is a histologic
examination of abnormal elk hooves submitted by wildlife agencies. Diagnostic evaluation affords certainty in confirming TAHD;
however, these examinations are also labor and resource intensive, and therefore, not conducive to the collection of sufficient data
for epidemiologic investigations. In response, two community science (CS) surveillance strategies have been implemented in
Washington State: public observations of limping elk from a web-based reporting tool and hunter reports of hoof abnormalities
on harvested elk. Surveillance using CS strategies can be implemented widely and may be useful for describing broad distributional
patterns of TAHD, despite their unknown relationship to laboratory-confirmed cases. We described and compared the
spatial–temporal distribution of TAHD in western Washington game management units (GMU) using the two CS strategies to
assess congruences and discrepancies between observed patterns. We used spatial scan statistics to identify possible core-affected
and newly emerging areas at the GMU level. Lastly, we contrasted CS observations against confirmed case data to examine possible
delays in TAHD detection and co-occurrence among surveillance strategies. We found public observations of limping elk often
predated TAHD confirmations in GMUs by several years, while hunter-reported abnormalities predated confirmations in GMUs by
several months. High co-occurrence between the presence of apparent and confirmed cases under different surveillance strategies
further supports the use of CS sources. This study capitalizes on wide-reaching CS data to provide new and complementary
epidemiological information that can help guide future surveillance, management, and research efforts for this novel elk hoof
disease.

1. Introduction

Emerging diseases in wildlife are challenging to monitor and
manage, in part because wildlife populations are often spread
over vast or remote areas and are difficult to observe and
sample. As a result, data on the abundance and distribution
of affected wildlife populations are often limited, making it
difficult to track the spread of disease and implement control
measures [1]. Timely management responses are also often

expected or required despite limited disease surveillance data
or scientific knowledge about the biological and ecological
factors associated with disease transmission. Ideally, research-
ers have access to large surveillance datasets, which are key to
assess the distribution of disease in space and time and under-
stand disease transmission dynamics with diverse analytical
techniques [2]. For example, such datasets have been used to
identify high-risk areas where disease occurrence might be
aggregated [3] or determine demographic and environmental
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drivers of transmission [1, 4, 5]. However, acquiring large
datasets for such analyses can be labor and resource intensive,
particularly when surveillance approaches are reliant on labora-
tory diagnosis of disease. Thus, identifying cost-effective surveil-
lance methods that can be readily applied to emerging wildlife
diseases is critical to support evidence-based management.

Community science (CS) strategies can serve as low-cost,
wide-reaching data collection methods for wildlife disease
surveillance and monitoring [6, 7]. Community (or citizen)
science broadly describes the concept of conducting scientific
research using data collected by volunteers who may not
necessarily be trained scientists. Community science is com-
mon in ecology because many wildlife species and ecological
processes can be sampled or observed by both scientists and
nonscientists, such as hunters, landowners, and other local
observers [6, 8, 9]. For instance, even simple public observa-
tions of wildlife may be effective for surveilling and improving
understanding of some diseases, particularly those character-
ized by obvious gross deformities or disabilities [7, 10, 11].
Community science strategies offer complementary informa-
tion to data collected directly by wildlife managers [12] and
increase the geographic extent of surveyable areas, including
public and private lands. Nevertheless, caution is warranted
when interpreting results from CS strategies [8], particularly
for hypothesis-driven research [13]. Sampling biases from
uneven participant interest and training over time or concen-
tration of records near human settlements or roadways [14]
may affect the accuracy of inferences [15]. Similarly, diseased
individuals may become more vulnerable to sampling from
hunter harvest [16] or opportunistic mortalities [17, 18]. Thus,
researchers often use expert-collected data (when available) to
identify and adjust for biases in CS data [19–21].

In 2008, the Washington Department of Fish and Wild-
life (WDFW) received an increase in public reports of limp-
ing elk (Cervus canadensis) and elk with hoof abnormalities
in southwestern Washington, USA, although some reports
date back to the early 2000s. Field investigations in this index
area revealed a local abundance of elk with unique hoof
lesions, including severe sole ulcerations and overgrown,
deformed, and sloughed hoof capsules, of unknown etiology
[22, 23]. Further investigations identified an association with
Treponema spp. bacteria in lesions [24], leading to the
designation as treponeme-associated hoof disease (TAHD;
[25]). Recent experimental challenges provided direct evi-
dence that TAHD is an infectious, transmissible disease in
elk [26] and that lesions follow a predictable progression of
gross deformities [25, 26] directly related to lameness and
limping in captive elk [26]. The gold standard strategy tra-
ditionally used for surveillance of infectious diseases in wild-
life involves diagnostic confirmation of pathogens in samples
that are usually submitted by wildlife management agencies.
In the case of TAHD, confirmation is conducted using his-
tologic examination to identify characteristic suppurative
inflammation and the presence of spirochetes using silver
stain [25]. Enhanced surveillance efforts using this strategy
led to the confirmation of TAHD in four Pacific Northwest
states: Washington, Idaho, Oregon, and California [27].

Although such surveillance data (hereafter, “Confirmed
Cases”) provide evidence-based information and can be
used to describe the geographic range of TAHD in a broad
sense, they are not conducive to identifying spatial–temporal
patterns for improving TAHD management due to the cur-
rent resource-intensive diagnostic approach. Because elk
with TAHD exhibit hoof abnormalities and associated limp-
ing, WDFW developed two CS surveillance strategies to cap-
ture additional TAHD “cases” from: (i) public observations
of limping elk from a web-based reporting tool and (ii)
hunter reports of hoof abnormalities in harvested elk.

Surveillance data collected under WDFW’s CS strategies
lack laboratory-confirmed diagnoses; however, they may still
be useful for exploring general distributional patterns of
TAHD and guiding hypothesis formation [13]. In this study,
we aimed to describe broad spatial and temporal distribu-
tions of TAHD based on CS data in Washington. We inves-
tigated congruences and discrepancies in observed patterns
in TAHD surveillance data across western Washington game
management units (GMUs) over time, including a 6-year
span when CS collection periods overlapped (2016–2021).
We used the spatial and temporal patterns derived from
the CS data to identify apparent core-affected and newly
emerging areas of TAHD, as well as time periods with higher
occurrence of apparent cases. Lastly, we contrasted CS data
with Confirmed Case data to examine possible delays in
confirmed TAHD detection and co-occurrence between dif-
ferent surveillance strategies. In doing so, we identify parallel
and complementary epidemiological value in existing data-
sets and provide useful information and insights for guiding
future TAHD surveillance, management, and research.

2. Materials and Methods

2.1. TAHD Surveillance Data Sources. A web-based reporting
tool was one of the two CS surveillance data sources evalu-
ated. The web-based tool allows the public to record and
geolocate observations of limping elk and dead elk with
hoof abnormalities (Figure S1; [28]). TheWDFW-maintained
website has been continuously accessible upon web search
since its inception in late 2012 (Table 1). From 2012 to
2017, WDFW promoted the website at public meetings and
in hunting regulation pamphlets. More recently (2017–pres-
ent),WDFW advertised the website in various outreachmate-
rials (e.g., pamphlets and presentations) and by word of
mouth. Available data on how reporting parties heard about
the tool indicated most were directed from the WDFW web-
site (60%), followed by WDFW representatives (15%), social
media (5%), news outlets (1%), and other unspecified routes
(19%) (WDFW, Unpubl. data). For the current study, we
removed records describing dead elk with hoof abnormalities
(8.5% of total) to retain only observations of limping elk; we
refer to these data as “Public Observations.” Although Public
Observations contained coordinates for estimated counts of
total elk observed and the number seen limping, we converted
these cases to simple presence-only records and upscaled them
to the GMU-level to minimize opportunities for errors in esti-
mated counts, geolocations, or observer effects [29].
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The second CS surveillance strategy relied upon reports
from hunters and was previously described by Wild et al.
[30]. Briefly, WDFW collected data using mandatory hunter
reports to assess whether harvested elk had hoof abnormali-
ties. These data, referred to as “Hunter Reports” (Table 1),
are collected statewide at the GMU-level and contain indi-
vidual elk information, including harvest details and disease
case data in the form of hunters’ responses of “Yes,” “No,” or
“Unknown” to the question: “In your opinion, did any of the
hooves from the elk you harvested appear to be deformed or
exhibit any abnormalities?” The WDFW educated hunters
on TAHD using written and illustrated materials before har-
vest seasons through hunting regulations and email less than
1 week before the first day of elk season. Hunter Reports for
harvest years 2018–2021 were collected near the end of the
year’s harvest. Data from 2016 and 2017 harvest seasons
were retrospectively collected in 2018 and relied on hunter
recall of the previous 2 years. Omitting “Unknown” responses
(0.8% of total), we refer to the proportion of cases (i.e., hoof
abnormalities) in the total number of reports in a given GMU
as the “apparent” TAHD prevalence of the GMU because
samples did not undergo diagnostic testing.

Finally, “Confirmed Case” data were obtained from field
collection of hooves that were examined histologically to diag-
nose TAHD (Table 1). These data were discussed in length by
Wild et al. [27]. Briefly, abnormal hooves were opportunisti-
cally submitted by hunters to wildlife management agencies
or collected from elk that were culled for research or manage-
ment actions since approximately 2009 [22, 27]. Hooves were
submitted to veterinary diagnostic laboratories for case con-
firmation by a veterinary pathologist. Confirmed Cases from
2009 to 2014 were largely collected for diagnostic evaluation
and disease description purposes [22, 24, 25]. Subsequently,
Confirmed Cases through 2021 were solicited to expand sam-
pling coverage for delineating the extent of TAHD’s regional
distribution [27]. Due to the sampling approach, these data are
not representative of TAHD prevalence [27]; theymost appro-
priately serve the current study as evidence of TAHD being
confirmed in certain GMUs.

2.2. Study Area. We delineated our study area as all GMUs
that contained documented elk herd areas in western
Washington, i.e., “areas west of the Pacific Crest Trail and
west of (and including) the Big White Salmon River in Klick-
itat and Skamania counties” [32]. These portions of the state
correspond to areas where TAHD was first detected and
contain higher concentrations of surveillance data ([27];
Figure S2). Data analyses were focused on this study area.

2.3. Spatial–Temporal Patterns of CS Data

2.3.1. Distributions and Trends of Public Observations. We
mapped Public Observations over time at the GMU-level to
document the spatial coverage of limping elk reports across
the study area. Public Observation data were reported
throughout the year and included the date of the report
(Table 1). This allowed us to investigate the seasonality of
observations by evaluating the monthly count of limping elk
observations within the study area via evidence of temporal
autocorrelation using the acf function in the R stats package
([33]; v4.0.5). We also assessed whether the frequency of
Public Observations across the study area broadly remained
consistent over time using univariate linear regression, where
the number of monthly observations was the response vari-
able and time was the predictor variable.

2.3.2. Distributions and Trends of Hunter-Reported Prevalence.
We calculated and mapped the crude apparent prevalence
fromHunter Reports (hereafter, Hunter-Reported prevalence)
on an annual basis at the GMU-level to explore baseline prev-
alence and trends across units. However, given the high vari-
ability in sample sizes among GMUs, we further evaluated
general trends in herd-level prevalence over time by aggregat-
ing Hunter Reports from GMUs into their larger correspond-
ing elk herd areas ([32]; Figure S2). We calculated crude
annual herd-level prevalence and modeled prevalence over
time with a binomial generalized linear model (GLM). We
held prevalence as the dependent variable and included an
interactive effect between herd and harvest year as covariates
to test for differences in prevalence in herds over time. Lastly,

TABLE 1: Data properties for three Washington treponeme-associated hoof disease surveillance strategies, 2009–2022.

Public Observations Hunter Reports Confirmed Cases

Description
Public observations of limping elk
reported on online mapping tool

maintained by WDFW

“Yes”/“No” responses to whether
hunters observed hoof

abnormalities on harvested elk

Expert-solicited elk hoof samples
used in formal diagnostic

investigations

Data type, collection scheme Presence-only, passive Presence–absence, active
Presence–absence, mixed active/

passive
Spatial scale Coordinates Game management unit (GMU) GMU/county/coordinates
Temporal scale, collection
period

Continuous, 2012–present Annual (seasonal), 2016–present Continuous, 2009–present

Diagnostic sensitivity Unknown 60% overall1 79%2

Diagnostic specificity Unknown 96%1 100%
Geographic extent Washington Washington Regional (Multi-state)3

Note. 1Unpublished data, Washington Department of Fish and Wildlife (WDFW). Sensitivity of Hunter Reports varied by lesion severity and is with respect to
gross observation by an expert observer; Wild, Sargeant et al. [30]. 2Sensitivity from a similar technique in bovine digital dermatitis model by Krull et al. [31].
3i.e., Washington, Idaho, California, and Oregon; Wild, Taylor et al. [27].
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given management interests, we also evaluated differences in
apparent prevalence between sexes, using a chi-square test and
a binomial GLM to calculate odds ratios (OR) with 95% con-
fidence intervals (CIs).

2.3.3. Spatial Clusters in CS Strategies. We described the
spatial distribution of CS data within the study area by first
evaluating the extent of spatial aggregation of cases from
each CS strategy by calculating the Moran’s I statistic with
the R package spdep [34], which assesses the spatial autocor-
relation in the number of events. We also plotted distances at
which spatial autocorrelation occurred with univariate cor-
relograms in the R package ncf [35].

Next, we examined whether signs consistent with TAHD
occurred in local spatial or spatial–temporal clusters using
spatial scan statistics [36–38]. We used Kulldorff spatial scan
statistics in SaTScan software (v10.2, http://www.satscan.
org), which evaluated the number of apparent cases counted
within multiple circular (or cylindrical) windows. Using an
inferred spatial process that results in an expected number of
cases, we compared the observed number of cases against
those outside of the scanning window using likelihood ratio
testing. The scanning window that maximized the log-likelihood
ratio was defined as the most likely (i.e., primary) local cluster
[39, 40]. We tailored the type of analysis and spatial process
probability model for identifying statistically significant clus-
ters to the type of CS data described above. More specifically,
we tested for evidence of local clusters in the number of hoof
abnormalities given the underlying harvested elk population
in Hunter Reports with the Poisson purely spatial scan statis-
tic [39]. By contrast, we used the retrospective space-time
permutation model to assess spatial–temporal clusters in
monthly Public Observations at the GMU-level because we
did not have data for the underlying elk population abun-
dance from which Public Observations were made [40]. For
parameterizing all models and calculating statistical signifi-
cance, we limited maximum cluster size to 50% of the popu-
lation and used 999 replicates of Monte Carlo simulations to
generate cluster-specific p-values; for space-time tests, we lim-
ited temporal clusters to no more than 50% of the study
duration. Ultimately, we defined GMUs that contained pri-
mary clusters under both CS strategies as potential “core-
affected” GMUs. We also report statistically significant sec-
ondary clusters that did not overlap with primary clusters to
identify other areas of concern, such as locations where
TAHD may be newly emerging [39].

2.3.4. Comparison of the Number of CS Cases. Washington’s
CS strategies overlapped during the 2016–2021 harvest sea-
sons, allowing us to compare the number of apparent cases in
GMUs reported in each of these datasets. However, given the
differences in spatial and temporal resolutions of CS datasets
(Table 1), we grouped Public Observation data to an annual
harvest season basis at the GMU-level so they could be com-
patible with the format of data from Hunter Reports. That is,
observations of limping elk that occurred after the conclu-
sion of a harvest season were grouped with the subsequent
season.

We evaluated the extent to which the number of appar-
ent cases from Hunter Reports and Public Observations cor-
related and agreed with each other on an annual basis at the
GMU level. We calculated Spearman’s rank correlations (r)
to quantify the correlation between the number of cases as
well as the relationship between Hunter-Reported prevalence
and the number of Public Observations. To evaluate agree-
ments (i.e., the similarity between measurements) between
the number of apparent cases, we constructed Bland–Altman
plots (Tukey mean difference plots), which have been used
for comparing observations in CS programs [9]. We calcu-

lated both the means of ðμi; j ¼ ðHRi; jþPOi; jÞ
2 Þ and differences

between ðdi; j ¼HRi; j −POi; jÞ the number of cases from CS
strategies in GMUs over time, where HR and PO represent
the number of apparent cases from Hunter Reports and
Public Observations, respectively, in a given GMU, i, for
harvest year, j. After verifying differences were normally dis-
tributed with a Shapiro–Wilk test [41], we calculated the
mean difference (d) and standard deviation of differences
(s) to define the limits of agreement (LoA; d Æ 2× s). Fol-
lowing Bland and Altman [42], we considered CS strategies
to be in agreement with each other if ≥95% of their differ-
ences were within the LoA.

2.4. Contrasting Confirmed Case Data against CS Patterns.
We aimed to identify possible delays in confirmed TAHD
detection when surveillance strategies overlapped in time by
contrasting the harvest year in which CS strategies first
detected apparent cases to the harvest year in which the first
Confirmed Case was described in each GMU. For this, we
calculated the average difference between the earliest years of
CS detections from the earliest year of a Confirmed Case in
GMUs. Additionally, to examine the general co-occurrence
of detections under the different surveillance strategies, we
coded the occurrence of apparent cases from the two CS
strategies and the occurrence of Confirmed Cases as simple
presence–absence data at the GMU-level. These data were
placed in contingency tables for Fisher’s exact tests. Next, we
qualitatively compared the GMUs that comprised the core-
affected area as well as primary and secondary clusters from
Section 2.3.3 and the geographic distribution of Confirmed
Case data. Finally, because Bland–Altman plots can indicate
GMUs that were outliers of agreement (calculated in Section
2.3.4), we evaluated the confirmation status of GMUs that
occurred outside of the LoA to explore if a history of con-
firmed TAHD corresponded with agreement between CS
strategies.

3. Results

3.1. Distributions and Trends of Public Observations. The
spatial distribution of Public Observations expanded from
southwestern Washington to most GMUs in the study area
during the 2012–2021 harvest years (Figure 1(a)). Temporal
autocorrelation analyses revealed temporal dependence in
the monthly frequency of Public Observations at 6-month
intervals (i.e., 6, 12, 18 months). Reports increased prior to
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FIGURE 1: Expanding spatial distribution and seasonality of Public Observations of limping elk. (a) Maps show the expanding spatial
distribution of Public Observations from 2012 to 2021. Darker blue colors in polygons represent relatively larger numbers of observations
at an annual scale. Areas outside the Washington Department of Fish and Wildlife jurisdiction are shown in striped polygons; neighboring
states (Oregon to south) and other GMUs outside of the study area in gray. Interstate highways shown in thick red lines are included as
landmarks. (b) Time series displays signs of a cyclic, seasonal pattern in the monthly number of Public Observations from late 2012 to early
2022 (i.e., the 2021 harvest season). Gray portions of the time series represent harvest season months (September–January). The pattern of
annual peaks aligned with thicker bars in the autocorrelation plot (bottom panel), indicating statistically significant monthly lags that would
be consistent with seasonality in reporting. Public Observations are displayed as raw, unadjusted values because the observer population,
sampling effort, and detection probabilities were unknown.

Transboundary and Emerging Diseases 5



and peaked during harvest months (i.e., September–January)
(Figure 1(b)). The univariate linear regression model revealed
a decreasing but not significant trend (p-value> 0.05) in the
number of monthly observations over time during the study
period.

3.2. Distributions and Trends of Hunter-Reported Prevalence.
Hunter Reports of hoof abnormalities occurred in most
(80%) GMUs of the study area (Figure 2). Of the GMUs
with apparent cases, the median crude annual prevalence
was 11.58%. When analyzed by herd area, we detected sev-
eral significant trends in prevalence over time (Figure 3). We
observed a non-zero positive slope in prevalence in North

Rainier and Mount St. Helens herd areas and a non-zero
negative slope in prevalence in elk from the Willapa Hills
herd area (Figure 3). Trends in prevalence over time for
the Olympic, South Rainier, and North Cascades herd areas
were not statistically clear (Table S1). Finally, we identified a
significant difference in apparent prevalence between sexes
(χ2= 7.984, df= 1, p-value= 0.005), with female elk having
slightly higher relative odds for hoof abnormalities (OR=
1.16, 95% CI: 1.048–1.290).

3.3. Spatial Clusters in CS Strategies. We found significant
positive spatial autocorrelation in the number of apparent cases
from CS strategies at the GMU-level (Public Observations
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FIGURE 2: Spatial–temporal distribution of Hunter-Reported prevalence. Western Washington game management unit (GMU) maps show
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Moran’s I: 0.309, p-value< 0.001; Hunter Reports Moran’s I:
0.572, p-value< 0.001). Similarly, correlograms revealed consis-
tent positive spatial autocorrelation at smaller lagged distances
for Hunter-Reported hoof abnormalities; by comparison, signif-
icant spatial autocorrelation in Public Observations was wide-
spread across the study area (Figure S3).

We identified primary clusters from each CS dataset (i.e.,
those with the highest log-likelihood ratios) consisting of 14
unique GMUs in southwestern Washington (Figure 4). The
primary cluster of Hunter Reports contained GMUs in elk
herd areas of Mount St. Helens, Willapa Hills, and South
Rainier (Figure S2). The primary space-time cluster of Public
Observations consisted of six GMUs in elk herd areas of
Willapa Hills and Mount St. Helens (Figure 4). As we defined
the core-affected area as the GMUswhere CS primary clusters
overlap, five contiguous GMUs in southwestern Washington
were considered the core-affected area (Figure 4). We also
detected multiple secondary clusters in CS data distant from
the south-central portion of the study area (Figure S4).

3.4. Comparison of the Number of CS Cases. We found a
moderate, significant correlation between the number of Public
Observations and the number of Hunter Reports on an annual
basis at the GMU-level (Spearman r= 0.513, p-value< 0.001),
but a weaker relationship between crude annual Hunter-

Reported prevalence and number of Public Observations
(Spearman r= 0.301, p-value< 0.001). Further, results from
Bland–Altman analysis revealed 95.27% of differences in the
number of apparent CS cases were within the LoA (Figure 5).

3.5. Contrasting Confirmed Case Data against CS Patterns.
We found the earliest year of Public Observations often predated
Confirmed Cases in a GMU, with a mean difference of 2.32
years. Similarly, Hunter Reports often predated Confirmed
Cases with a mean difference of 0.56 years (Figure 6). While
we identified a significant association between the presence of
Confirmed Cases and Public Observations at the GMU level
(p-value=0.008, Fisher’s exact test), the presence of apparent
cases from Hunter Reports and Confirmed Cases were not sig-
nificantly associated (p-value=0.094, Fisher’s exact test). We
also identified significant co-occurrence between both CS strate-
gies (p-value < 0.001, Fisher’s exact test) at the GMU-level. We
observed the highest concurrence of Confirmed Cases and
apparent cases derived from CS data in primary clusters and
core-affected GMUs identified in the previous spatial analyses
(Figure 4). Confirmed Cases were present in 5/6 (83.3%) and
8/13 (69.2%) GMUs comprising the primary clusters based on
Public Observations andHunter Reports, respectively, and Con-
firmed Cases were present in 4/5 (80%) of core-affected GMUs
(defined as the areas in which both primary clusters overlap). By
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contrast, lower concurrence was found in secondary clusters
(which are potential areas of newly emerging disease occur-
rence): Confirmed Cases were described in 12/21 (57.1%) of
the GMUs included in the secondary clusters identified using
Public Observations, and in 9/15 GMUs (60%) of the second-
ary clusters identified using Hunter Reports (Figure S4).
Finally, all GMUs that were outside of the LoA in the
Bland–Altman plot comparing the agreement between the
number of apparent cases in CS strategies had confirmed
TAHD (Figure 5).

4. Discussion

Community science strategies revealed distributional pat-
terns and trends in elk with signs of TAHD within the study
area that were not evident using Confirmed Cases alone and
that are worthy of exploration in future studies. We highlight
three main findings from our analyses: (i) apparent cases

occurred in spatial clusters and expanded from southwestern
Washington to most GMUs in the study area, (ii) the two CS
strategies had congruences in the number of cases and loca-
tions of spatial clusters as well as high co-occurrence with
confirmed TAHD at the GMU level, and (iii) discrepancies
were found in detections at the GMU level between Con-
firmed Cases and apparent cases from CS strategies, includ-
ing within secondary clusters identified by spatial analyses.

Washington’s CS strategies provided new and supporting
insights into the spatial distribution of TAHD by identifying
spatial clusters of apparent disease. Apparent cases were first
reported and remained concentrated in GMUs in the south-
central portion of the study area. This portion ofWashington
has high public awareness of TAHD [43], and many of these
GMUs were within the original study area, or index area,
where the hoof disease was first identified and investigated
[22, 25]. This concentration of apparent cases generally
aligns with a high number of Confirmed Cases in this region
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FIGURE 4: Core-affected game management units based on community science data. Blue polygons represent game management units
(GMUs) that contained the most likely space-time cluster from Public Observations (blue circle). Yellow polygons represent the GMUs
contained within the most likely spatial cluster from Hunter Reports (yellow circle). Defined as core-affected GMUs, five GMUs (green
polygons) show the spatial overlap between both primary clusters on either side of the interstate highway (red lines). Striped polygons
represent jurisdictions outside of Washington Department of Fish and Wildlife GMUs, including tribal reservations and national parks.
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[27], which were collected, in part, to aid those initial inves-
tigations. Our use of spatial scan statistics identified local
clusters of apparent disease that can be useful targets for
management actions by providing inferences beyond simple
visualization of data [36–38]. Primary clusters from each CS
dataset (and the core-affected area) contained portions of the
index area. This result supports previous evidence that
TAHD is established in this region. There were, however,
some differences in the GMUs comprising primary clusters
from each CS dataset. The cluster of Hunter Reports con-
tained more than double the number of GMUs found in the
cluster of Public Observations. Reasons for these differences
are possibly numerous and warrant further investigation of
reporting behaviors by the general public versus hunters.
Differences could be associated with, but not limited to,
restricted visibility of elk by the general public, hunting
access, and reporting fatigue.

Community science strategies also revealed signs consis-
tent with the expansion of TAHDover time. Apparent TAHD
cases were broadly recorded across GMUs in the inaugural
year that CS surveillance strategies were deployed. After 2012,
Public Observations of limping elk appeared to have
expanded in spatial distribution over time from the index
area. The expansion of apparent cases from this CS strategy
may be clearer because of its longer collection period relative
to Hunter Reports (2016–present). Still, several secondary
clusters from both CS sources were observed directly adjacent
to the index area, as would be expected with the spread of a
transmissible infectious disease such as TAHD [26]. However,
spatial scan statistics applied to each CS strategy also identified
a distant cluster in GMUs from the North Cascades elk herd

area (Figure S4). The source of TAHD in this disjunct area is
unknown. It is currently unclear whether TAHD distribution
represents an expansion from the index area through natural
or human-assisted movement or multiple sites of origin, e.g.,
potential spillover events from livestock. The disease may have
been unintentionally introduced in 2003 or 2005 when, prior
to disease discovery, elk were translocated from the Mount St.
Helens herd to the North Cascades to increase herd size [44].
However, apparent geographic leaps in TAHD occurrence
were also detected in other areas (e.g., Idaho and California
[27]) with no known human-assisted movement of live elk.
Restriction on the movement of cervid carcasses from affected
areas is commonly employed in attempts to limit the spread of
chronic wasting disease-associated prions [45], although the
number of states where chronic wasting disease has been
detected continues to increase. Similarly, a regulation prohibit-
ing the transport of hooves from carcasses of elk harvested in
affected GMUs (WAC 220-413-200) failed to prevent the
expansion of TAHD in Washington. Although best practices
support the proper disposal of potentially infectious material
from carcasses, the causative agent(s) of TAHD may not sur-
vive for extended periods outside living hosts [26, 46]. If this is
the case, disease expansion is more likely occurring through
exposure to or movement of live animals.

The combination of congruences in CS strategies found
using a range of analyses and evidence of high co-occurrence
with confirmed TAHD cases lends support for the use of CS
sources. The number of apparent cases identified by CS strat-
egies were moderately correlated and agreed with each other
during the 6-year period when both datasets were available
for direct comparison. The two CS datasets also identified
spatial clusters in similar GMUs across the study area. Com-
munity scientists may misattribute other unrelated causes of
limping or hoof abnormalities (e.g., trauma, foreign body,
metabolic) to TAHD, but these occurrences are assumed to
be relatively constant. Further, observed congruences occurred
despite CS strategies collecting data on different visual signs of
disease. The combination of this evidence and our observation
of high co-occurrence between apparent cases and Confirmed
Cases provides confidence in CS strategies appropriately iden-
tifying TAHD in our study area. While the CS datasets might
not have been completely independent from hoof submissions
and subsequent case confirmation (e.g., biologists increasing
vigilance to collect samples for case confirmation following
public reports), the lack of a systematic sampling strategy for
the latter during the study prompted the co-occurrence analy-
ses to examine the association between the datasets at the
GMU level. Most conventional validation (or verification) of
CS observations requires comparable data collected by scien-
tists [8, 20], but acquiring sufficient “gold standard” data has
not been feasible for labor-intensive laboratory confirmations
or for opportunistic sightings that often occur on private lands.
Instead, observations of abnormal hooves by hunters provided
a useful alternative as apparent TAHD cases. As discussed by
Wild et al. [30], the accuracy of hunter observations was highly
specific (96%) for identifying uninfected hooves and hooves
with severe lesions (92%) when compared to visual examina-
tion by experts (WDFW, Unpubl. data). These comparisons
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ferences between the number of apparent cases measured from CS
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also suggested Hunter Reports underrepresent TAHD preva-
lence because hunters oftenmissed early lesions. Public Obser-
vations may be similarly biased toward advanced disease
because limping and lameness in captive research elk increased
(and thus became more obvious) with lesion severity [26].

We show that collecting observations of limping elk may
be a useful early indicator for the presence of TAHD, as
indicated by such apparent cases predating TAHD confirma-
tion in GMUs by several years. The online reporting tool
facilitated data collection at relatively high spatial and tem-
poral resolutions. These details can aid in focusing sample
collection for diagnostic examinations and confirming TAHD.
In some other states without public reporting systems aimed at
detecting TAHD, the disease was first identified through
ConfirmedCases submitted for enhanced regional surveillance
[27]. Managers in at-risk locations for TAHD occurrence may
consider implementing education to increase disease aware-
ness and CS surveillance to enhance early detection.

The opportunity to detect temporal trends in apparent
case occurrence, both seasonally and across years, is another
advantage of this continuously accessible CS strategy. We
found an apparent seasonality in observations of limping
elk, but the reason for observed increases in Public Observa-
tions during harvest seasons requires further investigation.
Given the opportunistic nature of the dataset, our analyses
were restricted to describing patterns in reporting rather
than patterns of disease. Seasonality in reporting could be

indicative of time periods with higher risk of TAHD, times
with higher movement and visibility of elk (e.g., during the
rut), or seasonal activity of observers. More participant infor-
mation, such as affiliations with recreational activities and
reporting behaviors, could provide confidence in differenti-
ating disease trends from patterns in observations of limping
elk [47, 48]. For instance, whether disease losing novelty in
an area reduces public motivation to report observations (i.e.,
reporting fatigue) or determining how many observers of
limping elk were also hunters could help disentangle tempo-
ral trends in limping elk from possible reporting biases
[47, 49], such as attributing observations to hunter activity.
Hunters generally spend more time outdoors before and
during fall harvest seasons to scout areas and hunt. These
outings could lead to opportunities for observing limping elk
and explain the seasonality we observed if hunters are rou-
tinely using the online reporting tool. Additionally, the
public’s threshold and motivations for reporting limping
elk are unknown but could be useful for interpreting evi-
dence of TAHD spread in the study area. That is, changes
in either observer awareness of TAHD or abilities and
motivations to report limping elk could also result in the
expanding distribution of apparent cases [50]. Understand-
ing such motivations and reporting behaviors will be
important for keeping CS participants engaged in the
data collection process [51, 52] as well as achieving deeper
inferences from their data.
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FIGURE 6: Maps of harvest years with earliest game management unit-level detection from TAHD surveillance strategies. Panels show the
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game management units (GMUs). GMUs were colored to represent older (dark blue) to more recent (yellow) harvest years in which
respective cases were first identified. For community science strategies, many detections were first recorded in the year they were developed
(i.e., Public Observations—2012, Hunter Reports—2016).
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Data from Hunter Reports, as currently collected, are
valuable for monitoring TAHD prevalence and understand-
ing trends in disease. Female elk had relatively higher odds
for Hunter-Reported hoof abnormalities than males, sug-
gesting a sex-specific predilection in TAHD occurrence.
This higher relative prevalence in females may be a result
of increased susceptibility to the disease, risk of transmission
from social grouping behaviors, or differences in habitat
selection [5, 53]. However, we cannot exclude potential sam-
pling bias from differential harvest opportunities due to
hunting regulations. Additionally, Hunter Reports allowed
us to identify trends in prevalence for individual elk herd
areas in the 2016–2021 harvest seasons. These trends provide
a useful baseline of prevalence trajectories for comparisons
and evaluations of future management actions. Although
minor changes in hunting regulations occurred over time,
we observed increasing trends in apparent TAHD prevalence
for Mount St. Helens and North Rainier elk herd areas and a
decreasing trend in prevalence for the Willapa Hills herd
area. Prevalence estimates for other herd areas over time
were less clear, presumably due to variability from small
sample sizes given low hunting effort/success.

Enhancing the data collected from Hunter Reports in
three ways could allow additional inferences for manage-
ment. First, someWashington hunters do not submit Hunter
Reports after the harvest season. The number of hunters who
fail to report is estimated to be substantial. Likewise, of the
successful hunters who do submit a report, most (about 92%)
do not provide fine-scale spatial coordinates of their harvest
locations as requested in follow-up surveys (WDFW, Unpubl.
data). This results in most Hunter Reports being collected at
the coarse spatial resolution of GMUs, which can hinder
examinations of fine-scale spatial patterns (e.g., hotspots
and spread patterns [36]). Limited fine-scale data restricts
investigations of influential risk factors for disease occurrence
[54–57] and predicting risk on landscapes [58, 59]. Collabo-
ration with trusted organizationsmay be a way to promote the
collection of these missing data [43, 60]. Communicating the
importance of hunter information for TAHD surveillance and
decision-making and providing practical examples of how
such data are used may be helpful in promoting collaboration
and augmenting reporting [61, 62]. Also, framing the impor-
tance of hunter data as a means of empowering conservation
and promoting long-term hunting opportunities should be
continued and expanded [60]. Second, more detailed meta-
data on elk age could allow adjustment for a possible con-
founding variable in sex-specific prevalence. If the probability
of acquiring TAHD increases with age, as observed in some
other infectious wildlife diseases [63], differences in age-
related harvest (or vulnerability to harvest) may have had a
confounding effect on observed sex-related differences in
apparent prevalence. That is, considering males rarely reach
older ages due to harvest pressures in western Washington,
higher prevalence in females may relate to their age rather
than sex. Finally, we examined prevalence at the relatively
coarse scale of Washington’s elk herd areas. These designa-
tions are administrative areas designed for coordinated elk
management rather than true delineations of elk populations;

therefore, though logistically challenging to obtain, estimates
of elk herd abundance would provide more realism to trends
in prevalence at the herd level [64].

We found that CS data provide complementary informa-
tion to the regional gold standard surveillance strategy of
confirming cases through histologic diagnosis of submitted
hooves. The absence of Confirmed Cases in some GMUs
with Public Observations and Hunter Reports likely resulted
from a lack of sample submission for diagnostic confirmation
rather than a “false positive” area designation by CS strategies
in our study area. In contrast to areas with TAHD-negative
submissions, several GMUs within the southern portion of
the study area lacked Confirmed Cases despite biologists and
stakeholders suspecting the presence of TAHD given observa-
tions of elk with characteristic signs of TAHD and proximity
of GMUs to areas with confirmed disease. Confirming TAHD
may be perceived as having little practical benefit for manag-
ing resources in an area if managers are aware of its likely
occurrence, particularly when coordination and resources are
needed to submit hoof samples for laboratory confirmation of
TAHD cases [27]. However, disease confirmation may have
the added value of positive social and biological impacts. Sta-
keholders’ trust in agency vigilance in disease management
may be enhanced when concurrence is observed between
areas of Confirmed Cases illustrated on disease distribution
maps and areas where they suspect TAHD occurs based on
observations of elk with signs of TAHD. Also, analyses of
disease spread or origins (e.g., [65]) may be improved by
documenting geographic distribution in disease occurrence
in a more systematic manner. Finally, as evidenced in this
study, the co-occurrence of confirmed TAHD with apparent
cases can provide a means of supporting CS strategies. In
addition to providing initial confirmation of TAHD in new
areas, continued monitoring through case confirmation in
known areas provides evidence-based information to corrob-
orate CS surveillance strategies and limit chances for false
positives from other diseases with similar signs that might
occur over time.

5. Conclusion

Given the obvious visual signs of disease in a species that is
highly valued for wildlife viewing and hunting, TAHD pre-
sents an ideal system for conducting disease surveillance
with the assistance of community scientists. We report the
expanding spatial distribution of apparent cases from the
core-affected area in southwestern Washington to additional
GMUs. Our analyses provide insights for developing wide-
reaching and complementary TAHD surveillance programs.
Considering Public Observations of limping elk generally
predated confirmations of TAHD by several years, wildlife
agencies may benefit from raising public awareness of the
disease and providing an online platform for collecting
observations of limping elk as an early warning indicator
of TAHD, as has been done by WDFW. Such reports from
the public may trigger the collection of samples for diagnos-
tic examinations, which are required to confirm TAHD in an
area and corroborate observations from CS strategies. Our
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results show that TAHD prevalence and trends of disease can
be broadly understood with Hunter Reports of hoof abnor-
malities. However, deeper understandings of TAHD dynam-
ics and spread could be supported by ensuring Hunter
Reports collect enhanced information with fine spatial reso-
lution and, when possible, detailed metadata of elk demo-
graphics. Consistent with other CS programs, efforts to
understand the motivations and identities of participants
and to communicate the need for data will be needed for
long-term TAHD surveillance and monitoring in Washing-
ton and likely other areas with TAHD.
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