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The last decades have seen major efforts to develop new and improved tools to maximize our ability to detect tuberculosis-infected
animals and advance towards the objective of disease control and ultimately eradication. Nevertheless, there is still uncertainty
regarding test performance due to the wide range of specificity and especially sensitivity estimates published in the scientific
literature. Here, we performed a systematic review of the literature on studies that evaluated the performance of tuberculosis
diagnostic tests used in animals through Bayesian Latent Class Models (BLCMs), which do not require the application of
a (fallible) reference procedure to classify animals as infected with tuberculosis or not. BLCM-based sensitivity and specificity
estimates deviated from those obtained using a reference procedure for certain antemortem tests: an overall lower sensitivity of
skin tests and serology and a higher sensitivity of interferon-gamma (IFN-y) assays was reported. In the case of postmortem
diagnostic tests, sensitivity estimates from BLCMs were similar to estimates from studies based on other methodologies. For
specificity, the range of BLCM-based estimates was narrower than those based on a reference test, reaching values close to 100%
(but lower in the case of IFN-y assays). In conclusion, Bayesian methods have been increasingly applied for the evaluation of
tuberculosis diagnostic tests in animals, yielding results that differ (sometimes substantially) from previously reported test
performance in the literature, particularly for in vivo tests and sensitivity estimates. Newly developed models that allow ad-
justment for relevant factors (e.g., age, breed, region, and herd size) can contribute to the generation of more unbiased estimates of
test performance. Nevertheless, although BLCMs for tuberculosis do not require the use of an imperfect reference procedure and
are therefore not influenced by its limited performance, they require careful implementation, and transparent systematic reporting
should be the norm.

1. Introduction

Bovine tuberculosis (bTB) is one of the most important
diseases affecting cattle worldwide [1]. Because of its im-
portance, over 636 million euros were invested between 2007
and 2020 in member states of the European Union on
national bTB eradication, control, and surveillance pro-
grammes [2]. However, the disease is still endemic in several
of the contributing member states [3, 4].

One of the main issues associated with the lack of success
of eradication programs is the limited performance of bTB
diagnostic tests [1, 5]. A recently published meta-analysis
showed that estimates of specificity and particularly sensi-
tivity are highly variable; for example, the median sensitivity
for the single intradermal comparative cervical tuberculin
skin test (SICCT) with standard interpretation reported in
this study was 0.50, and was accompanied by a very wide
95% posterior interval (0.26-0.75) [6]. Low sensitivity is
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problematic since false negative-infected but undetected-
animals that are not removed early may perpetuate the
disease in a herd. However, false positive animals can be
a major issue as well since although reported median
specificity estimates for most tests are in general high (above
88%) [6], in scenarios with relatively low prevalence (as in
most European regions), the positive predictive value of tests
is necessarily low; thus, a limited specificity can lead to the
unnecessary culling of noninfected animals and restriction
of movements in a herd, undermining the confidence of
stakeholders, and increasing the costs associated with the
eradication program due to compensations for culled live-
stock paid by national governments.

The large variability observed in the sensitivity and
specificity estimates of bTB diagnostic tests may be due to
the wide disparity in study designs, particularly regarding
the gold standard reference procedure used to classify an
animal as infected or not. Ideally, a gold standard reference
must be infallible (sensitivity and specificity equal to 100%).
However, this is particularly unrealistic in the case of bTB,
since all currently available diagnostic tests have important
limitations in their ability to accurately detect infected an-
imals. For instance, bacteriological culture, the most widely
used reference procedure in the literature, can have perfect
specificity (100%) but typically has low sensitivity, partic-
ularly in the early stages of disease [7]. In this context, the use
of Bayesian Latent Class Models (BLCMs), which are not
based on the comparison of a test result to a reference test, is
particularly well suited [8-10]. Still, to date the number of
studies that have used BLCMs for estimating the perfor-
mance of bTB diagnostic tests is much lower than those
based on an (imperfect) gold standard.

We conducted a systematic review of the scientific lit-
erature to identify studies that used BLCMs to estimate
parameters of test accuracy for TB diagnostic techniques in
the absence of a gold standard. Our specific aims were: (i) to
describe the models and methodologies applied and quality
of reporting in this field using published guidelines [11], (ii)
to compare estimates of sensitivity and specificity obtained
for different diagnostic tests, different species, and with
different prior distributions, and (iii) to identify future
opportunities to help establish the performance of diagnostic
tests currently used in the field in different countries.

2. Materials and Methods

2.1. Systematic Review and Data Extraction. The literature
search review was conducted according to the guidelines in
PRISMA [12] and MOOSE [13], and carried out in the search
engines PubMed (MEDLINE), Web of Science (WOS), and
Scopus on the 14™ of March of 2022. The aim was to retrieve
studies that assessed the accuracy of diagnostic tests for de-
tection of tuberculosis in livestock or wildlife based on the use
of BLCMs in the absence of a gold standard. The search strings
used in each database were as follows:

(i) (Animal OR Animals [MeSH]) AND (Bayes The-
orem [MeSH] OR “Bayesian”) AND (“Mycobacte-
rium tuberculosis complex” OR “Mycobacterium
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bovis” OR “Mycobacterium caprae” OR “bovine
tuberculosis” OR “Tuberculosis, Bovine” [MeSH])
(PubMed)

(ii) TS =(Animal AND Bayes AND (“Mycobacterium
tuberculosis complex” OR “Mycobacterium bovis”
OR “Mycobacterium caprae” OR bovine tubercu-
losis)) (WOS)

(iii) TITLE-ABS-KEY (animal AND Bayes AND
(“Mycobacterium tuberculosis complex” OR “My-
cobacterium bovis” OR “Mycobacterium caprae”
OR tuberculosis)) (Scopus).

Articles retrieved from each search were exported to
a spreadsheet and duplicates were removed. The title and
abstract of the remaining articles were screened by two
authors (AGB and JA) according to the inclusion and ex-
clusion criteria in Table 1.

References that did not fulfil these criteria according to both
reviewers were removed. If there was a disagreement between
the reviewers, a third author (PP) made the final decision.

In a second stage, the full text of the remaining references
was reviewed by one author (AGB), for the extraction of the
following information:

(i) Year of publication

(ii) Place where the study was conducted (where the
population under study was located)

(iii) Host species tested
(iv) Sample size

(v) Test(s) evaluated, cut-off points used, and kit
where applicable

(vi) Statistical model used (number of populations and
tests, see below) and assumptions about the con-
ditional independence or dependence between test
results

(vii) Statistical software used for Bayesian analysis

(viii) Prior distributions used and source of information
for their construction (where applicable)

(ix) Posterior estimates for sensitivity and specificity
and (when performed) prevalence

(x) Use of sensitivity analysis to assess the impact of
prior assumptions

The BLCMs used in each study were classified following
the methodology proposed by [14] according to the number
of tests applied (one, two, etc.), the number of populations
under study (one, two, etc.), and whether the test results
were assumed to be conditionally independent or de-
pendent. Certain articles included the application of more
than one BLCM (or the independent analysis of more than
one population/test), in which case they were subdivided
into several “trials” (i.e., independent analyses leading to
independent results for a given population/test).

All relevant references cited in the reviewed articles were
also screened following the same process. The flow of in-
formation for the different phases of the systematic review is
shown in Figure 1.
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F1GURE 1: Flow of information followed during the systematic review process.

In order to compare the estimates of different TB tests,
an average posterior median (APM) and average 95%
posterior probability interval (APPI), considering all median
and lower and upper bounds for the 95% PPIs reported for
each test, were calculated. To evaluate the relationship be-
tween prior and posterior distributions, the Spearman
correlation coefficient between their 95% probability interval
widths (PIWs) was calculated. For this, 95% prior PIW's were
obtained by generating 100.000 random numbers from their
beta distributions. The PIWs of the posterior distributions
were calculated using the “epi.betabuster” function from the
R package “epiR” [15] using the median and 5% percentile
reported in the studies. Further, the degree of similarity
between prior and posterior distributions was measured by
estimating the percentage of overlap between the distribu-
tions using an in-house overlap function in R [16] (Sup-
plementary Material 1). In addition, the Spearman
correlation coeflicient between the 95% posterior PIW and
the sample size was calculated. All statistical analyses were
performed in R [16].

2.2. STARD-BLCM Guidelines. Articles were assessed
against the Standards for the Reporting of Diagnostic ac-
curacy studies that use Bayesian Latent Class Models
(STARD-BLCM [11], https://www.equator-network.org/

reporting-guidelines/stard-blem/). 'The STARD-BCLM
guidelines consist of an extension of the original STARD-
checklist [17] developed to facilitate complete and trans-
parent reporting of diagnostic accuracy studies based on
BLCMs in the absence of a gold standard. Three authors
(AGB, CPR, and PP) evaluated in parallel each of the full
texts selected in the literature review to determine whether
they met each of the standards described in the checKklist.
When there was a disagreement, the options were discussed,
and a consensus decision was reached.

3. Results

A total of 239 references were identified using the search
engine programs (PubMed: n=284; WOS: n=74; Scopus:
n=_81). Additionally, one European Food Safety Authority
(EFSA) scientific opinion was included in the review, leaving
127 records after duplicates were removed.

After the first screening, 99 records were excluded be-
cause they discussed topics or were focused on populations
not related with the objective of this review (animal
movement and within and between-herds transmission
models [n =21, 21.2%], Mycobacterium tuberculosis complex
genomics [n=18, 18.2%], diagnostic test evaluation for
other mycobacterial species [n =13, 13.1%], Bayesian models
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for drug development against TB [n =11, 11.1%], diagnostic
tests for TB in humans [n=9, 9.1%], spatial-temporal var-
iations in animal TB [n=9, 9.1%], new statistical methods
for the evaluation of diagnostic tests within a Bayesian
context [n=5, 5.1%], and 13 other reasons affecting one
article each [n=13, 13.1%]).

Out of the 28 articles with the full text reviewed, three
were discarded: two described the use of Bayesian models for
a purpose other than the assessment of sensitivity and
specificity in the absence of a gold standard [18, 19], and the
third evaluated a novel BLCM by using TB as an example
and not as the subject of study [20]. Consequently, 25 articles
(19.7% out of the references initially found) were included in
the systematic review.

The characteristics of the studies included in the sys-
tematic review are presented in Table 2. All 25 studies were
published after January 2009 and originated from Europe
(n=11, 44%), North and South America (n=6, 24.0%),
Africa (n=4, 16.0%), or Asia (n=4, 16.0%). Most studies
(n=19, 76.0%) were focused on cattle, while the remaining
were based on the analysis of wildlife (wild boar, badger,
bison, meerkat, and elk) and swine.

Approximately two-thirds of the studies considered ei-
ther only antemortem (n =12, 48.0%) or postmortem tests
(n=5, 20.0%), whereas eight studies assessed the perfor-
mance of both antemortem and postmortem tests (32.0%).

The antemortem tests evaluated in the studies were
typically skin and serology-based tests (assessed in 13 articles
each, 65.0% of the 20 studies considering antemortem tests)
and IFN-y assays (n =11, 55.0%). Postmortem tests included
direct polymerase chain reaction (PCR) tests (n =10, 76.9%
of the 13 studies considering postmortem tests), bacterio-
logical culture (n =9, 69.2%), meat inspection (n =5, 38.5%),
histopathological examination (n=2, 15.4%), or a combi-
nation of culture and meat inspection (n=1, 7.7%).

Bayesian modelling was typically implemented using
WinBUGS (13/25, 52.0%), with the remaining studies using
OpenBUGS (n=7, 28.0%) or JAGS (n =5, 20.0%). Priors for
the sensitivity and specificity of each test under evaluation
were generally based on previous literature (13, 52.0% of all
the studies) or a combination of previously published es-
timates with expert opinion (7, 28.0%), while weakly in-
formative priors were used for all tests evaluated in the
remaining five (20.0%) studies. In 12 articles (48.0%), diffuse
priors (uniform (0, 1) distributions) were used for the
sensitivity and/or specificity of at least one test. Eighteen
articles (72.0%) included a sensitivity analysis based on the
replacement of informative priors by diffuse priors to assess
the impact of prior selection as an additional analytic step.

Multiple studies (15, 60.0%) included more than one
analysis (e.g., different models applied in different pop-
ulations/tests), and therefore the 25 articles were divided
into 71 trials. Among them, over two-thirds (49, 69.0%)
considered conditional dependence between test results. Out
of these, more than two-thirds (32/49, 65.3%) assessed the
use of a skin test and an IFN-y assay in parallel and based the
assumption of conditional dependence on the consideration
that both tests are designed to detect a cell-mediated im-
mune response.

3.1. Antemortem Tests. The 264 Bayesian estimates of the
performance of antemortem TB diagnostic tests extracted
from the studies selected in the literature review are sum-
marized in Table 3. One hundred and sixty (71.4%) of these
estimates were obtained using BLCMs with informative
priors. The posterior estimates for the sensitivity of skin
purified protein derivative (PPD)-based tests had a wide
range of values, varying between 40.0% and 93.0% (Fig-
ure 2). The highest APM sensitivity estimate (72.9%) among
the skin-based tests was obtained for the caudal fold test
(CFT). When only studies in cattle were considered, the
APM for the sensitivity of CFT was similar (73.3%; 95%
APPI: 58.3-89.4%). For specificity, overall the cervical skin
tests had an APM of 99.2% (95% APPI: 98.7-99.5%), in
contrast to CFT, which had the lowest APM (78.7%, 95%
APPI: 64.3-94.1%).

Posterior estimates of the sensitivity and specificity of
IFN-y tests were highly variable depending on the kit used.
BOVIGAM™ TB Kit (BOVIGAM) yielded a much higher
estimated sensitivity compared to the ID Screen® Ruminant
IFN-y (IDVet, evaluated in just one study) and, in contrast,
had a lower estimated specificity. Most of the APM sensitivity
estimates for IFN-y tests were higher than for skin tests,
except for the only study assessing the performance of the
IDVet test [21]. However, the APM estimates of specificity for
IFN-y tests were lower than those for skin tests (Figure 2).

In the case of serology-based tests, a wide range of es-
timated sensitivities and specificities was observed (Fig-
ure 2), potentially due to the large variety of species in which
these tests were applied. In general, lower sensitivity esti-
mates were reported than for the other antemortem tests,
and higher estimated specificity was reported compared to
those obtain for IFN-y, but lower than for skin tests. These
and additional numerical summaries are presented in
Table 3.

Overall, posterior probability intervals were narrower for
specificities than for sensitivities for all the assessed tests
(Figure 2).

3.2. Postmortem Tests. Thirteen articles evaluated the per-
formance of TB postmortem tests using BLCMs, of which
120 estimates were extracted. Of these, only 30.0% (36/120)
were determined with Bayesian models that used in-
formative prior distributions. The posterior probability in-
tervals for the sensitivity of the postmortem tests were wide,
while the posterior medians of specificity were 100% in most
of the studies (Figure 3 and Table 4). Direct PCR had the
highest APM sensitivity among all the postmortem tests
(80.6%; 95% APPI: 54.4-92.3%), while meat inspection had
the lowest (53.7%; 95% APPI: 49.9-54.8%). A higher APM
for sensitivity was reported for cattle populations in the case
of bacteriological culture, with an estimated sensitivity of
88.9% (95% APPI: 65.5-97.5%) compared to an overall
estimate of 79.2% (95 APPI: 64.8-88.7%).

3.3. Prior and Posterior Distributions. For studies that used
informative prior distributions for sensitivity and specificity
parameters, the correlation between 95% prior and posterior
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TaBLE 2: Characteristics of the studies included in the systematic review.

Categor Number Number

gory of articles (25) of trials (71)
Europe 11 44
South America 4 13
Origin of the study North America 2 3
Africa 4 5
Asia 4 6
Bovine 19 63
Wild boar 1 2
Elk/deer 1 2
Animal species Swine 1 1
Bison 1 1
Meerkat 1 1
Badger 1 1
" Yes 20 49
Conditional dependence No 1 2
1 15 42
Number of populations 2 5 19
Multiple 5 10
1 2 6
Number of tests 2 5 17
Multiple 18 48
Antemortem 20 61
(i) Skin test 13 49
(ii) IFN-y 12 44
(iii) Serology 13 39
. . Postmortem 13 30
Diagnostic test (i) Culture 9 17
(ii) Direct PCR 10 21

(iii) Pathology

[\
—
o

(iv) Meat inspection 5 9

(v) Culture + Meat inspection 1 3

Unspecified 0 0

Source of priors Literature . 13 26
Expert knowledge and literature 7 26

Weakly-informative 5 19

Win BUGS 13 33

Software Open BUGS 7 17
JAGS 5 21

Skin test-IFN-y 7 26

Skin test-serology 1 1

Test dependence Serology-serology 5 6
PCR-culture 5 7

PCR-meat inspection 2 3

PCR-pathology 1 2

probability interval widths was 0.53 for sensitivity and 0.41
for specificity (Figure 4). In general, prior probability in-
tervals were wider for both sensitivity (median PIW =0.37;
interquartile range (IQR): 0.18-0.47) and specificity
(median =0.15; IQR: 0.06-0.20) than posterior probability
intervals (median for sensitivity=0.24, IQR: 0.10-0.40;
median for specificity = 0.04; IQR: 0.01-0.10).

The overlap between prior and posterior distributions
was higher for sensitivity (median overlap =61.0%; 95%
range: 55.3-66.7%) than for specificity (29.9%; 95% range:
23.6-36.2%), indicating that posterior distributions shifted
away from the corresponding informative prior distribu-
tions as a result of information supplied by the data,

particularly for the specificity (Figures 5 and 6). Lastly, there
were moderate negative correlations between sample size
and PIW for sensitivity (r=—0.27) and specificity (r = —0.64)
(Supplementary Material 2).

3.4. STARD-BLCM Checklist Review. Fourteen (56.0%) ar-
ticles were published after the release of the STARD-BLCM
guidelines in 2017. Three of these articles submitted the
checklist as supplementary information, while four others
stated that the guidelines were followed.

Overall, 570 (81.4%) of the 700 possible evaluations per-
formed on the articles selected in the systematic literature
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TABLE 3: Average posterior median (APM) and 95% average posterior probability intervals (APPI) of the Se and Sp of antemortem
diagnostic tests for tuberculosis in the articles reviewed.

APM and APM and
Test N' Se estimates* 95% A PPI Sp estimates® 95% .APPI Species
Se estimates Sp estimates
(%)° (%)°
Skin test (PPD-based) 13 49 66.3 (52.5-74.6) 49 99.1 (98.6-99.5)
Cervical 10 43 66.1 (49.3-72.0) 43 99.2 (98.7-99.5) Cattle
SIT standard interpretation 6 12 63.9 (46.6-84.0) 12 96.9 (96.3-97.4) Cattle
SIT severe interpretation 6 10 69.8 (46.0-91.8) 10 99.4 (98.8-99.9) Cattle
SICCT standard
. : 5 13 57.5 (52.5-66.6) 13 99.1 (98.2-99.7) Cattle
interpretation
SICCT severe interpretation 4 8 70.4 (66.8-75.6) 8 99.2 (98.7-99.6) Cattle
Caudal fold 3 6 72.9 (57.6-86.6) 6 78.7 (64.3-94.1) Cattle, bison
IFN- y blood test 12 44 78.1 (70.5-89.7) 44 89.3 (86.9-91.7)
BOVIGAM (OD 0.05) 5 10 88.7 (80.1-96.2) 10 88.1 (85.6-91.1) Cattle
BOVIGAM (OD 0.1) 7 23 75.1 (69.1-81.3) 23 88.2 (86.6-89.6) Cattle
BOVIGAM (OD 0.2) 1 1 83.3 (74.2-93.5) 1 23.5 (17.4-30.3) Cattle
IDvet 1 3 49.0 (24.9-94.1) 3 97.9 (97.4-98.4) Cattle
Antigen TB-feron (OD 0.1) 1 1 97.0 (86.0-100) 1 97.0 (91.4-98.5) Cattle
ESAT6/CFP10 2 5 66.0 (61.7-72.5) 5 95.3 (95.0-95.5) Cattle
In-house 1 1 79.9 (68.8-89.5) 1 95.0 (91.4-98.5) Badger
Serology test 13 39 52.2 (39.9-67.4) 39 95.5 (92.0-98.8)
ELISA 6 15 53.9 (33.1-73.4) 15 95.5 (91.7-98.8) Cattle, wild boar
Multiplex immunoassay 5 16 51.3 (45.8-56.4) 16 98.7 (97.4-99.5) Cattle, elk, badger, meerkat, bison
FPA 3 5 38.0 (21.0-54.7) 5 94.0 (92.0-95.0) Cattle, bison, elk
LST 1 2 71.0 (55.0-84.0) 2 79.0 (76.0-81.0) Elk
Rapid lateral flow 1 1 93.0 (31.0-99.0) 1 99.0 (95.0-100) Cattle

"Number of articles that evaluate each test. “Number of trials from which sensitivity and specificity estimates were extracted. *Sensitivity and specificity

average posterior median and 95% average posterior probability interval of each test. Nature of the test is indicated in bold.

review (28 items applicable assessed in 25 articles) were
considered fulfilled. The item that was most often not
addressed satisfactorily was number 18 (“Intended sample size
and how it was determined”), with only three studies reporting
it. Also, items 19 (“Flow of participants, using a diagram”), 25
(“Report any adverse events from performing the tests under
evaluation”), and 17 (“Any analyses of variability in diagnostic
accuracy”) were seldom reported (12.0%, 36.0%, and 52.0%,
respectively) compared with the other items (Figure 7). As
stated in the STARD-BLCM checklist, item number 21
(“Distribution of the targeted conditions”) was not applicable
in the evaluated studies, as the target condition to be detected
is unknown, as well as item number 28 (“Registration number
and name of registry”) as it applies to clinical trials, which is
not the case for the studies assessed here.

4. Discussion

The limitations of currently available TB diagnostic tests are
among the main factors hampering disease control [22, 23].
This problem is exacerbated by the lack of consensus on the
accuracy of TB diagnostic tests, with widely different esti-
mates being reported, likely due to differences in study
design and study populations, protocols followed, and ref-
erence test used (or not) in the analysis. Given the limita-
tions of all available reference tests for TB, here our purpose
was to review the literature on the performance of TB di-
agnostic tests for studies that used Bayesian analysis in the
absence of a reference procedure.

Even though there is still a limited number of studies
using Bayesian latent class methodology compared to tra-
ditional gold-standard-based approaches (6 out of 113 pa-
pers found in a systematic review published in 2018 [6]),
Bayesian methods have become more widespread in the last
decade, with 14 of the 25 studies retrieved in this literature
review being published in the last four years. As expected,
studies were performed mostly on cattle (19/25), although
several well-known wildlife reservoirs such as wild boar,
deer, and badger were also considered (one article each).
Interestingly, goats were not the subject of any study in our
review, even though they constitute an important reservoir
in several regions of the world [24-27]. Also as expected,
diagnostic tests based on a cellular immune response were
the most commonly assessed techniques, although the in-
creasing usefulness of BLCMs for test evaluation is also
demonstrated by its application in the new generation of
serology-based tests recently developed for TB (13/25),
which were the subject of most studies involving wildlife
(5/6) [28, 29] in our review.

Although all studies included in our literature review
used BLCMs for data analysis, several differences regarding
the priors and specific models considered were found. Re-
garding prior distributions, almost half of the articles used
diffuse priors for at least one of the tests considered, and five
out of the 25 studies used only diffuse priors. While diffuse
priors may be a reasonable option for the evaluation of newly
developed tests [30], four of the five studies that used only
difftuse priors evaluated well-established diagnostic
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FIGURE 2: 95% posterior probability intervals for the sensitivity and specificity estimates obtained for antemortem tests in the studies

retrieved in this study.

techniques (skin tests or IFN-y assays), and therefore
published information or expert opinion was likely available
[6, 29, 31]. Still, the impact of (informative) priors should
always be assessed through a sensitivity analysis [11, 32],
which was not done in seven out of the 25 studies.

The development of statistical software that allows fitting
BLCMs has been crucial in increasing the application of
these approaches. All the studies here were based on BLCMs
with codes that are publicly available (e.g., https://cadms.
vetmed.ucdavis.edu/diagnostic/software [14]), and were
implemented using open-source Gibbs samplers (Win-
BUGS, OpenBUGS, and JAGS). Interestingly, the use of Stan
[33, 34], another open-source statistical modelling software
that allows fitting complex Bayesian models [35-37], has not
been explored to date in our context.

Results for all antemortem and postmortem techniques
were consistent to some extent, suggesting that in general
most techniques (with the possible exception of CFT and the
IFN-y assay) had high specificity (>90% in 141/192 esti-
mates) while sensitivity estimates were lower and more
highly variable. Average posterior median estimates of the
sensitivity of skin tests were at or below 70% except for CFT
(73%). These estimates are lower than those obtained from
the literature based on the use of a reference test, particularly
for the SIT test, for which the median estimated sensitivity
reported in a recent meta-analysis was 81% or 94%
depending on the analysis [6], compared to the 64-70%

range from BLCM-derived estimates described here. In the
case of SICCT, Bayesian estimates of sensitivity were more
consistent across studies than published frequentist esti-
mates, with the former ranging between 52.5 and 66.6%
(APPI for standard interpretation) or 66.8 and 75.6% (APPI
for severe interpretation), whereas frequentist estimates
ranged between 50 and 100% [5, 6, 31]. In contrast, Bayesian
estimates for the specificity of the skin tests reviewed in this
study agreed with previously reported values close to 100%
[31, 38] with the exception of CFT. In this case, the fre-
quentist and Bayesian estimates are different for both sen-
sitivity and specificity, with frequentist estimates being
higher (85.7% mean vs. 72.9% APM for sensitivity, and
92.8% mean vs. 78.7% APM for specificity) [39]. Counter-
intuitively, according to the APM, the SIT test using a severe
interpretation was the most specific skin test, what could be
due to the specific animal populations being tested, but in
any case, APPIs for the specificity of most skin tests were
largely similar (Table 3).

Interestingly, Bayesian estimates of sensitivity reported
for IFN-y tests were in general higher and more consistent
(ranging from 71 to 90% [95% APPI]) than those obtained
through comparison with a gold standard (with a 95%
posterior interval of 49-82%) [6]. This could be in part due
to the more recent nature of Bayesian studies that thus
would have (i) been based on more optimized IFN-y tests
and (ii) evaluated using similar cut-off points (as opposed to
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some of the references based on a gold standard, some of
which were published before the 2000s and were often based
on widely different interpretation criteria). In contrast,
Bayesian estimates of specificity were lower than those
obtained using a gold standard. Some of these were based on
testing officially tuberculosis free (OTF) populations, what
would indicate that these OTF herds were systematically
different in some unknown characteristics (or exposure to
certain antigens) from the infected herds where IFN-y test
have been typically applied, thus limiting the external val-
idity of these studies. Nevertheless, to date, few articles have
studied the use of IFN-y in OTF herds, and these were based
on the use of different commercial kits, cut-offs, and pop-
ulation characteristics (e.g., production type and age)
[40-43]. Other estimates based on the use of a gold standard
(typically a postmortem test such as bacteriological culture)
with limited sensitivity may have led to the misclassification
of some truly infected animals and therefore should be
interpreted with care since this would lead to under-
estimating the specificity of the test.

A wide range of serology-based test sensitivities were
estimated through BLCMs (Figure 2), which could be at-
tributable to the large number of species to which these tests
were applied. BLCM-derived sensitivity estimates were
lower than those obtained in previous studies, which re-
ported sensitivity estimates above 63% [28, 44-47] when
using bacteriological culture and the presence of visible
lesions as the gold standard, or up to 75% when compared

with IFN-y [45, 48]. In contrast to the articles included here,
these studies were performed in animal populations with
a suspected high prevalence (i.e., high proportions of skin
test or IFN-y reactors, herds subjected to depopulation due
to a TB outbreak) or subjected to experimental infections
[46, 48]. Serology tests are known to perform very well in
these high prevalence settings where the infection is typically
at an advanced stage [49, 50], which could lead to an
overestimation of their sensitivity for lower prevalence
populations. In fact, sensitivity estimates below 35% have
been reported in low-prevalence settings [28, 51], demon-
strating how sensitivity varies depending on the prevalence
of the population tested. Furthermore, sensitivity is known
to increase due to the anamnestic effect of a skin test prior to
the sampling, which was the case for some studies in our
review [28, 46, 48], and this could also partially explain the
difference between the estimates presented here and in
previous literature. [28, 51] In contrast, specificity estimates
obtained using BLCMs (ranging between 90-100%) were
aligned with previous estimates obtained from TB-free cattle
herds [5, 6, 28, 46, 48] and wildlife populations [52-54].
Regarding postmortem tests, meat inspection (i.e., ab-
attoir surveillance) had the lowest sensitivity (53.7%; 95%
APPI: 49.9-54.8%). BLCM estimates were consistent with
other estimates [55, 56], with values at or below 60%, al-
though other studies have reported even lower (<40%) es-
timates [57-60]. Differences between estimates from these
studies may be attributable to multiple factors, such as the
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studies that used informative prior distributions.

quantity and training of inspectors and the amount of time
spent on each animal inspection [60-62], rather than to the
methodology used to assess test performance, given that this
diagnostic test is particularly difficult to standardize under
field conditions. Regardless, passive surveillance has an
important role as a monitoring tool, particularly when
disease is absent or at very low levels, and therefore the
continued assessment of its performance is highly relevant
[63, 64]. Bacteriological culture has traditionally been used
for the confirmation of TB and as a reference for the
evaluation of other diagnostic techniques. Nowadays, direct
PCR has been introduced in many laboratories as an al-
ternative to culture for TB confirmation. Interestingly, both
tests showed similar APM in terms of sensitivity, although
specificity was slightly lower for direct PCR (but still close to
100%). Frequentist-based sensitivity estimates described in
the literature are variable, ranging from 30 to 100% for
culture [65-68] and 63 to 100% for direct PCR [69-72]. This
heterogeneity between estimates from different studies was
also observed in BLCM-based estimates (Figure 3), with
median posterior sensitivity values for culture and direct
PCR in tissues varying between 8 and 97% for culture and 61
and 91% for direct PCR depending on the study. These wide
ranges could be due to the influence of several factors such as
the presence of compatible visible lesions and differences in
sample collection and preservation, as well as in the protocol
followed [65, 66, 71, 73]. In any case, the similar diagnostic
performance of culture and direct PCR found in our

analyses, coupled with the significantly lower turnaround
time for obtaining the results of the latter (days versus
weeks), suggests direct PCR can be a useful alternative for
postmortem confirmation of TB in the frame of eradication
programs as evidenced by its inclusion in Commission
Delegated Regulation (EU) 2020/689 (Article 9) as an official
diagnostic test.

Even though results obtained for each of the diagnostic
tests evaluated were somewhat consistent, indicating
a higher sensitivity of IFN-y assays compared with skin and
serology tests while the specificity would be higher for skin
tests, there was considerable variation between studies, with
e.g., median sensitivity estimates for the IFN-y assays
(BOVIGAM) ranging from 55.7% to 95.8% (Figure 2). This
could be due to the effect of local factors such as the presence
of nontuberculous mycobacteria, herd size or the production
type, and age of the animals, which also can influence es-
timates obtained through the comparison with a reference
procedure [74-76]. However, the limited number of studies
based on BLCMs conducted so far makes the identification
of these local factors and the characterization of their impact
challenging; nevertheless, they should be considered when
interpreting the results.

Transparency in reporting is key for the evaluation of
a study [77-80]. In the case of TB test accuracy BLCM
studies, only one-fifth of the articles published after the
STARD-BLCM guidelines were released (3/14 studies)
provided the checklist as supplementary material, with other
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four indicating the guidelines were followed. Among the
more problematic items in terms of compliance, the most
relevant one was the lack of justification for sample sizes
(only three out of 25 articles) and the assessment of vari-
ability in test performance in subpopulations, which could
be important in the case of TB given the known effect of
certain host characteristics (e.g., age and breed) [63, 81, 82]
for which there is often available information but that was

seldom incorporated in the analysis. Recently developed
models that allow for the inclusion of covariates in the
context of BLCMs could be a suitable analysis option
[82-84]. Other items that were underreported, such as the
flow diagram of participants or the occurrence of adverse
events associated with test administration, are probably less
significant in the assessment of TB diagnostic tests, which
could explain why they were typically not reported.
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FIGURE 7: Results of the STARD-BLCM checklist review by the authors. NA refers to articles where the item was not applicable.

5. Conclusions

Results from studies that used BLCMs to assess the perfor-
mance of TB antemortem diagnostic tests deviated consis-
tently from those obtained from analyses that used
(imperfect) reference procedures, particularly with regards to
their sensitivity: Bayesian posterior estimates of sensitivity
were overall lower for skin tests and serology and higher for
IFN-y assays. In contrast, estimates based on BLCMs and the
use of a reference test mostly agreed on the performance of
postmortem TB diagnostic tests. Given the limitations of all
available reference procedures for TB, BLCM-based estimates
may more accurately reflect the performance of tests in the
field, though the high variability observed between studies
suggests test performance may be affected by multiple factors
not related with the use of an imperfect reference procedure.
Newly developed models that allow for the inclusion of some
of these (often spatially structured) factors may help to
produce accurate estimates of test performance in the future,
thereby informing and optimizing control and eradication
programs based on test-and-cull strategies.
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