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Bartonella species are vector-borne infectious pathogens with a severe impact on animal and human health. This comprehensive
systematic review aimed to perform a meta-analysis to evaluate the global impact of this pathogen on pet health. A literature search
was performed on electronic databases (Web of Science, PubMed, and Scopus) to find relevant peer-reviewed published papers
(n= 131). A random-effects model was employed to calculate pooled prevalence estimates, and Q-statistic and I2 index were used
to assess the heterogeneity. Based on 20.133 cats and 9.824 dogs, the global prevalence estimates were 15.3% and 3.6%. The
heterogeneity was significantly high in both species, with I2= 95.8%, p-value<0.0001, and I2= 87.7%, p-value<0.0001 in cats and
dogs, respectively. The meta-analysis conducted using location coordinates showed a consistently high prevalence in regions
located between latitudes −40 to −30 or latitudes 30–40 in both populations, in agreement with the pure spatial analysis results,
which computed significantly high relative risk areas within these region coordinates. When analyzing cat data for other subgroup
moderators, Bartonella spp. prevalence was higher in animals of young age (<1 year, p-value= 0.001), with a free roaming lifestyle
(p-value <0.0001) and/or having ectoparasite infestation (p-value= 0.004). Globally, among the Bartonella species detected in cats,
Bartonella henselae was the most frequent (13.05%), followed by Bartonella clarridgeiae (1.7%) and Bartonella koehlerae (0.11%).
When considering Bartonella henselae genotype distribution, high heterogeneity (p<0:0001) was observed based on geographical
subgroups. Dogs displayed infection by Bartonella vinsonii subsp. berkhoffii (1.1%), B. henselae (1%), Candidatus B. merieuxii
(0.9%) and B. rochalimae (0.38%). The present study provides a global picture of the epidemiological distribution of Bartonella spp.
in cat and dog populations that may be pivotal for implementing proper preventive and control measures.

1. Introduction

Bartonella are fastidious small Gram-negative, facultative
intracellular bacteria included in the alpha-2 subgroup of
proteobacteria [1]. The genus Bartonella includes blood-
borne vector-transmitted pathogens that infect a wide range
of mammalian vertebrates, including wild and domestic car-
nivores [2–5]. Several Bartonella species and subspecies are
recognized, with some of them confirmed as zoonotic and
with companion animals reported as mammal reservoirs [6–9].
Cats act as primary reservoirs for the agents (i.e., B. henselae, B.
clarridgeiae, and B. koehlerae) of human cat scratch disease

(CSD) since they may have bacteremia persisting from weeks
to years [2, 7, 10]. CSD is a worldwide zoonotic disease charac-
terized bymild self-limiting signs to life-threatening syndromes,
including endocarditis, meningitis, or encephalitis [2, 11–13].
Sporadically, cats can host other species, including B. quintana,
B. elizabethae, B. grahamii, B. bovis, and B. rochalimae [4,
14–16]. Dogs host different Bartonella species, including
B. vinsonii subsp. berkhoffii, B. rochalimae, and C. B. mer-
ieuxii [6, 11, 17–19]. In dogs, these bacterial species can
induce asymptomatic infections or severe clinical manifesta-
tions, including endocarditis, splenomegaly, or vasculitis, as
observed in humans [4, 7, 20, 21].
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Currently, a rapid increase in the number of dogs and
cats kept as family pets is being observed. Although compan-
ion dogs and cats provide their owners with substantial posi-
tive psychological and physiological benefits [22], they might
act as sources of several pathogens, including zoonotic, thus
posing a threat to human health [14, 23–25].

This study aimed to perform a systematic review of the
existing literature reporting prevalence estimates of Bartonella
spp. in cat and dog populations and to explore potential risk
factors. Drawing a global picture of the risks posed by Barto-
nella spp. in pets is pivotal for implementing proper preventive
and control measures under the One Health paradigm.

2. Materials and Methods

2.1. Protocol and Search Strategy. A systematic review was
conducted with a meta-analysis of the studies on the molec-
ular prevalence of Bartonella spp. and its determinants in cat
and dog populations. Our protocol sticks to the guidelines of
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA 2020) and the Statement protocol [26–28].
The research protocol is available in the International Prospec-
tive Register of Systematic Reviews (PROSPERO) under the
Registration number CRD42022290813.

Three electronic databases, including Scopus (https://
www.scopus.com/), Web of Science (https://apps.we
bofknowledge.com/), and PubMed (https://pubmed.ncbi.
nlm.nih.gov) were investigated to retrieve relevant studies
from their inception to November 2021. The search strategy
was developed by combining the following descriptors (med-
ical subject headings, MeSH) and their cross-referencing
synonyms: (((“molecular” OR “survey” OR “occurrence”
OR “prevalence”)) AND ((“Bartonella ∗” OR “bartonellosis”
OR “B. hensela” OR “B. clarridgeiae” OR “B. vinsonii subsp.
Berkhoffii” OR “B. koehlerae” OR “Candidatus Bartonella
merieuxii” OR “C. B. merieuxii”)) AND ((“dog” OR “dogs”
OR “domestic dogs”OR “Canis lupus familiaris”OR “canine”
OR “Canis” OR “feline” OR “felines” OR “cat” OR “cats” OR
“pets” OR “Felis catus” OR “domestic cat” OR “companion
animals”))). After screening the matching studies, the rele-
vant variables of interest were extracted for analysis [29].

2.2. Eligibility Criteria. The search was limited to the English
language. Only studies based on molecular detection (poly-
merase chain reaction assays) of Bartonella spp. in cats and
dogs consisting of observational research (cross-sectional)
were included. Studies based on serological screening, case
reports, clinical trials, workshop presentations, and opinion
articles were excluded (Figure 1).

2.3. Selection of Studies and Reliability. Two reviewers (AZ
and AEO) working independently considered the potential
eligibility of each title and abstract based on the inclusion
criteria (PICOTS Element). In case of disagreement, the third
author (GG) judged and decided (the eligible articles were
reviewed in full-text versions).

2.4. Data Extraction. Using a standardized data extraction
form and working in duplicate, the following data were
extracted from each study: (a) details of the publication (title,

authors, and year); (b) full description of the enrolled ani-
mals, including species, timeframe of prevalence estimate (e.
g., annual prevalence), animal population (cat or dog); (c)
sample size; (d) prevalence estimates; (e) Bartonella species
or variants (where available) detected; (f ) possibly determi-
nants for the Bartonella occurrence (e.g., age, gender, ecto-
parasite infestation, animal lifestyle, and geographic origin).

2.5. Risk of Bias (Quality) Assessment.Despite there are many
specific tools available to assess the risk of bias in individual
studies, these were not suitable for our research query. Thus,
to minimize the risk of bias, a comment section was added to
data extraction where the authors wrote any comments that
could affect the interpretation of prevalence. Furthermore,
the risk of bias was determined based on the sample selection
process. Studies without sample selection criteria were con-
sidered at high risk of bias and removed from the analysis.

2.6. Summary Outcomes. The primary outcomewas the pooled
global molecular prevalence estimates of Bartonella spp. in cat
and dog populations. A descriptive summary was constructed to
present the results and the variations between studies according
to the geographical subgroups. The further outcome was the
variation of prevalence estimates of the B. henselae genotypes
(based on 16S rRNA variability) in cat and dog populations on
the basis of geographical subgroups. Location coordinates for
each study and case were also extracted. Furthermore, modera-
tors affecting the Bartonella spp. estimates were investigated.

2.7. Data Analyses and Synthesis of Results. For the eligible
studies, meta-analysis was conducted using the Comprehen-
sive Meta-Analysis (CME) software, version 3, following
instructional guidelines [30]. Analyses were conducted for
the two animal species separately. In case of more prevalence
data reported from a single article (e.g., different host species
and/or origin country), the information was considered as
derived from separate studies.

The overall pooled prevalence of all sampled studies for
each variable of interest was estimated with a random-effects
meta-analysis of proportions using the Freeman–Turkey
double arcine transformation with 95% exact confidence
intervals [31–33]. Effect estimates and confidence intervals
were presented in the forest plots. To obtain the 95% confi-
dence interval, the random-effects model considers both
within-study and between-study variability and assumes
that the true effect sizes may vary across studies due to fac-
tors such as differences in study design, populations, or inter-
ventions. The 95% confidence interval provides a range
within which can be 95% confident that the true effect
size lies. The heterogeneity of the studies, expressed as the
I-squared statistic, was assessed using a random-effects
model [34], where the I-squared statistic represented the
proportion of total variation in effects due to variation in
true effects rather than sampling error.

2.7.1. Spatial Statistics and Coordinate-Based Meta-Analyses.
A retrospective purely spatial scan analysis to identify clus-
ters with high likelihood probability was computed using
SaTScan version 9.1.1 (SaTScan™ statistics software) using
the Bernoulli probability model as described by Martin
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Kulldorff [35]. Clusters were outputted as a cylindrical win-
dow with a circular (or elliptical) geographic base, and the
most likely cluster (based on likelihood-ratio test statistics)
was identified as the principal cluster, which was reported
when found to be statistically significant at p<0:05. All sta-
tistically significant non-overlapping primary and secondary
clusters were visualized using ArcGIS software (version
10.1). The relative risk (RR) statistic was used to assess the
risk of feline and canine Bartonella infections in different
spatial clusters. To obtain the RR, a comparison was made
between the risk of Bartonella infection in the identified
spatial clusters and a control group, which were negative
for Bartonella spp. The RR was calculated by dividing the
risk of feline and canine Bartonella infections in the exposed
group (spatial clusters) by the risk of the control group.

A meta-analysis was conducted on all global studies
retrieved using the location coordinates as a subgroup crite-
rion. The analyses were performed on the samples based on
two categories, namely countrywide and individual sample
studies. The prevalence of Bartonella species was categorized
into four geographic regions known as a first band (between
latitudes −20 to 20), second band (between latitudes −30

to −20 or latitudes 20–30), third band (between latitudes
−40 to −30 or latitudes 30–40) and fourth band (lesser than
latitude −40 or greater than latitude 40), respectively.

The different Bartonella species occurrences and fre-
quencies were geographically mapped using ArcGIS software
(version 10.1).

2.8. Additional Analyses

2.8.1. Geographical Distribution of the Bartonella henselae
Genotypes. For B. henselae, prevalence estimates, mean effect
sizes, and heterogeneity tests related to the geographical dis-
tribution of several genotypes were computed under the ran-
dom effect models and expressed as odds ratios (OR).

2.8.2. Moderator Analysis. The potential influences on Bar-
tonella spp. prevalence estimates in cat populations were
investigated using subgroup analyses ((gender, age class (≤
or >12 months old), ectoparasite infestation (yes or no),
lifestyle (free-roaming or indoor), and geographic origin),
and meta-regression. For dogs, due to the paucity of such
studies and patchy information, the investigation for mod-
erators was restricted to the geographic origin.
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FIGURE 1: Flowchart for the selection of the studies included in the systematic review and meta-analysis of Bartonella infections in cat and dog
populations.
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For each moderator, a random-effects model was built to
combine studies within each subgroup; mean effect size and
heterogeneity tests were computed and expressed as ORs.

All studies for which information about the subgroup
was lacking were omitted from the analysis.

3. Results

3.1. Literature Investigation. As shown in Figure 1, a total of
1553 records were retrieved from the electronic databases
and 16 from citation lists. After removing duplicates (n=625),
944 papers were submitted for title and abstract screening.
The reasons for exclusion are listed in the selection process
flowchart (Figure 1). A total of 131 papers met our eligibility
criteria. Out of the 131 included articles, 74 papers described
Bartonella spp. occurrence in cats, 43 in dogs, and 14 in both
the carnivore species. Furthermore, a unique study on dogs
[36] was considered twice due to samples coming from dif-
ferent countries. Collectively, a total of 88 studies from cats
and 58 from dogs were submitted to meta-analysis.

3.2. Risk of Bias. No relevant risk of bias was identified by the
authors.

3.3. Geographical and Overtime Distribution of Studies. Since
1996, out of 88 studies retrieved reporting on Bartonella spp.
prevalence estimates in cats, the highest number of studies
were from Europe (n= 29, 33%), followed by the Americas
(North, Central, and South) (n= 27, 30%), Asia (n= 22,
25%), Africa (n= 7, 8%), and Australia (n= 3, 3.4%) (Table
S1). The annual frequency of studies retrieved in cats ranged
from 1 to 9, with the highest number of studies performed
during 2016 (n= 9), 2019, and 2021 (n= 8 per year). After
one decade, surveys on Bartonella prevalence estimates in
dog populations started, with Asia (n= 18, 31%) and Amer-
ica (n= 17, 29.4%) registering the highest number of studies,
followed by Europe (n= 13, 22.4%) and Africa (n= 10, 17.2)
(Table S2), with a peak of seven studies published in 2021.

3.4. Meta-Analysis of Bartonella spp. Prevalence Estimates
Based on Individual Studies and Continent and Subcontinent
Stratification. Eighty-eight and 58 prevalence estimates (from
74 and 43 articles) were included in the meta-analysis for cats
and dogs, respectively (Tables S1 and S2). The pooled preva-
lence of Bartonella spp. based on 20,133 and 9,824 cats and
dogs by using the random-effects model for individual studies
was 15.03% and 3.6% (Figures S1 and S2), with significantly
high heterogeneity, with values of I2= 95.8%, p-value <0.0001
and I2= 87.7%, p-value <0.0001 in cat and dog populations,
respectively. Meta-regression analysis results of the Bartonella
spp. prevalence estimates based on continent and subconti-
nent stratification for cat and dog populations are detailed
in Tables S3 and S4, respectively. In feline populations,
continent-wise meta-regression analysis revealed high hetero-
geneity (I2= 81.29–99.16) with the prevalence estimates of
Bartonella spp. being as high as 24.3% in studies conducted
in the Americas (North, Central, and South), 16.6% in Asia,
15.8% in Australia, 14.5% in Europe, and 6.2% in Africa
(Table S3).

In dog populations, continent-wise meta-regression
analysis revealed high heterogeneity in America and Asia,
while moderate and low heterogeneity was detected in Eur-
ope and Africa (Table S4). The Bartonella spp. prevalence
was as high as 6% in the Americas, 4.2% in Asia, 2.8% in
Africa, and 0.6% in Europe (Table S4).

3.4.1. Meta-Analysis of Prevalence Estimates Based on
Location Coordinates (Country and Sampling Site) and
Spatial Distribution of Pure Spatial Clusters. The results of
meta-regression analyses of the Bartonella spp. prevalence
estimates based on countrywide location coordinates are
shown in Figures S3 and S4 for cats and dogs, respectively.
In addition, the results of the meta-analysis based on the
location coordinates of the sampling area (individual study)
for each animal host species (cat and dog) are detailed in
Figures S5 and S6. The total feline Bartonella spp. prevalence
for the first, second, third, and fourth bands were 15.1%,
6.6%, 24.8%, and 18.3%, respectively. Moreover, the total
feline Bartonella spp. prevalence estimates based on the loca-
tion coordinates of the collection sampling area (individual
study) (Figure S5) for the first, second, third, and fourth
bands were 5.1%, 6.9%, 8.3.0%, and 6.3%, respectively. A
similar trend was also observed in the distribution of canine
Bartonella infection across the four bands (Figures S4 and
S6). Like what was observed for cats, the value registered in
the third band was consistently higher in both categories (i.e.,
countrywide and sampling area) with an overall prevalence
of 4.4% and 4.0%, respectively.

Table S5 provides the characteristics of the statistically
significant (p<0:05) pure spatial scan statistic results. Fifteen
and three significant clusters were identified for feline and
canine Bartonella infections, respectively (Figure 2), Table
S5. The RR for the identified spatial clusters for feline Barto-
nella infection ranged from 1.71 to 12.01 across approximate
latitudes 57°N and 29°S, with the highest risk corresponding
to regions located in the third band. In comparison, three
significant clusters were calculated for canine Bartonella
infection, with the RR ranging from 2.60 to 6.36 across
regions lying between approximately latitudes 32°N to
38°S. Once again, the highest observed RR corresponded to
regions of the third band. Comparatively, it revealed a ten-
dency for increased overlap of feline and canine Bartonella
infections in Europe and North and Central America, with
nonsignificant clusters of feline Bartonella infection located
in the regions of Brazil and Argentina in contrast with sig-
nificant clusters spreading more north of the equator when
compared with canine infections (Figure 2). However, this
seems to be the reverse in Asia and Australia, as significant
clusters occurred more south of the equator than observed in
canine infections, with little or no overlap between both
infections.

3.5. Total Prevalence of Different Bartonella Species Detected
in Cats. Out of a total of 20,133 cats, B. henselae was the
predominant species, with a prevalence estimate of 11.08%
(n= 2331), followed by B. clarridgeiae (1.7%, n= 345) and
B. koehlerae (0.12% n= 24). Moreover, other species were
sporadically detected from cats, such as B. vinsonii subsp.
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berkhoffii (n= 3) (Thailand and Chile) and B. schoenbuchen-
sis-Like (n= 2) (Lithuania). Uncharacterized Bartonella spe-
cies (1.5%, n= 293) and coinfections (0.21%, n= 42) were
less common (Table S6). Figure 3 shows the Bartonella spe-
cies globally detected in cat populations according to the
sampling site coordinates and the prevalence estimates per
country.

3.6. Total Prevalence of Different Bartonella Species Detected
in Dogs. Out of 9,824 investigated dogs, B. vinsonii subsp.
berkhoffii (n= 105, 1.07%), B. henselae (n= 73, 0.74%), and
C.B. merieuxii (n= 96, 0.98%) were recorded with almost
similar low frequencies, followed by B. rochalimae (n= 23,
0.23%), B. clarridgeiae (n= 23, 0.23%), B. vinsonii subsp. aru-
pensis (n= 21, 0.21). Other Bartonella species included a
novel species (<90% similarity to B. vinsonii subsp. berkhoffii)
(n= 18, 0.18%), B. elizabethae (n= 15, 0.15%), B. koehlerae

(n= 11, 0.11%), B. taylorii (n= 8, 0.08%), uncharacterized
Bartonella spp. (n= 17, 0.16%), B. volans-like (n= 2), B. bovis,
and B. grahamii (n= 1). Coinfections were also reported
(n= 20, 0.20%) (Table S6). The global distribution of different
Bartonella species according to the coordinates of the sam-
pling sites is mapped in Figure 4.

3.7. Additional Analyses

3.7.1. Analysis of the Spatial Distribution of Bartonella
henselae Genotypes. On the basis of 25 (22 from cats and
three from dogs) eligible studies (Table S7) reporting the
occurrence of different B. henselae genotypes, high heteroge-
neity was observed according to geographical subgroups
(I2= 92.865, p<0:0001), with B. henselae genotypes I (12%)
more frequent than genotype II (1.7%) in Asia countries
(Figure S7). On the opposite, in European countriesB. henselae
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genotype II (9.6%) was more frequent than genotype I (5.4%).
Both genotypes I and II were equally distributed in the Amer-
icas (7.4% and 6.8%, respectively) and Africa (6.2% and 4.1%,
respectively) (Table S7, Figure S7).

3.7.2. Moderator Analysis. A limited number of studies in
cats detailing subgroup moderators (18 for lifestyle, 17 for
age, 26 for sex, and 12 for osteoporosis) were available
(Figure S8, panels (a)–(d)). The analyses for subgroup mod-
erators revealed a significant difference in lifestyle (I2= 83.36,
p-value<0.0001), with stray cats being six times more at risk
of exposure to Bartonella infection than cats living indoors
(Table S8). In addition, there were significant differences
in ectoparasite infestation (I2= 62.4, p-value= 0.004) and
age (<year; I2= 44.89, p-value= 0.001). Cats infested with

ectoparasites or younger than 1 year old had a two-fold higher
risk for Bartonella spp. infection than non-infested or elderly
cats, while no significant effect was observed for gender (Table
S8, Figure S8). Due to the scarcity of reports on canine species,
the analysis could not be conducted.

4. Discussion

Bartonella spp. infection represents a threat to the health of
cats and dogs but also can impact public health. Therefore,
mapping the risks posed by Bartonella spp. in cat and dog
populations globally may be pivotal for implementing proper
control measures. Studies summarizing published materials
on cat and dog Bartonella infections are restricted to a few
countries (i.e., California, Italy) [37, 38] or continent
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(Europe) [4]. The current systematic review andmeta-analysis
provide a comprehensive synthesis of evidence regarding the
prevalence, diversity, and risk factors of Bartonella spp. infec-
tion in cats and dogs worldwide.

Molecular methods for Bartonella spp. have become the
standard in diagnostics since culture-based methods are
time-consuming and may not discriminate at or under the
species level [39]. Accordingly, only relevant papers based on
molecular diagnostics (PCR assays) were considered for the
present study.

Bartonella spp. in cats was first identified in a 1996 study
in Sydney [40] and subsequently in 1997 in studies from the
Netherlands, New Zealand, and the USA [41–44]. Since then,
the awareness of bartonellosis in cats has risen over time [4].
Furthermore, since dogs and cats share a vast repertoire
of infectious pathogens [45], although with one-decade

delay surveys for Bartonella spp. have been extended to
dogs [4, 46, 47].

This meta-analysis study showed that the global pooled
prevalence of Bartonella spp. was higher in cats (15.3%)
compared to dogs (3.6%), with significantly higher heteroge-
neity being recorded in both species. In addition, in the cat
populations, high heterogeneity was observed between dif-
ferent continents based on the meta-regression analysis with
the highest pooled prevalence estimates of Bartonella spp.
computed in the Americas (24.3%) (North, Central, and
South) compared to Asia (16.6%), Australia (15.8%), Europe
(14.5%), and Africa (6.2%). Nevertheless, the prevalence esti-
mates for the various continental areas were based on previ-
ously published works, and hence, the interpretation of
comparisons across regions should be made with caution
due to the differences in the number of studies and the
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sampling size. Furthermore, being Bartonella spp. infection a
no-mandatory reportable disease either in humans or ani-
mals, available epidemiological data are based on purely vol-
untary surveys. Out of the studies investigating the feline
Bartonella spp. infection, the majority has been conducted
in Europe, the Americas, and Asia compared to Africa and
Australia. Southern European countries appeared to enact
more intense molecular surveillance for Bartonella spp.,
with the majority of studies from Italy and Spain and with
a subregional prevalence estimate of 8.4%, close to the esti-
mates from Eastern Europe (8.2% in the Czech Republic)
[48]. Noteworthy, Western Europe, which includes preva-
lence studies performed in the Netherlands [42], Denmark
[49], Germany [50, 51], and France [15, 41, 52], accounted
for the highest pooled Bartonella spp. prevalence (18.9%). A
lower prevalence of 5.7% was documented in Northern Eur-
ope (Lithuania, Ireland, and the United Kingdom) [53–55].
As outgroups, studies from Poland and Portugal recorded
the greatest (40.5%) and the lowest (2.9%) estimates of infec-
tion across the European continent, respectively [56–58].
Similarly, high interest in this topic was documented in the
American continent, counting 27 studies (p= 24.3%), with
the highest number from South America (66.6%, p= 26.1%),
including Brazil (52%), Chile (7.4%) [59, 60] and Argentine
(3.7%) [61]. The North American continent, based on stud-
ies from the USA and Canada [62–68], recorded lower
pooled prevalence (22.3%) compared to Central areas,
including the Caribbean Islands (Saint Kitts) and Guatemala
(33.8%) [69, 70]. Studies from Asia recorded significantly
high heterogeneity with the highest Bartonella spp. pooled
prevalence estimates of 27.3% and 24.2% from Western Asia
(Middle East) and Southeast Asia, respectively. Of interest,
the Philippines had the highest Bartonella spp. prevalence
(61.3%) [43], followed by Turkey (40.1%) [71], Korea
(33.6%) [72, 73] and Israel (28.6%) [3, 74]. Furthermore,
other studies reported lower Bartonella prevalence rates
varying between 9.1% and 19.6% in China [69, 75–77], Thai-
land [78–81], Saengsawang et al. [82], Taiwan [83, 84],
Malaysia [85], Japan [86]; Sato et al. [87], Saudi Arabia
[88].

Finally, Africa paid sparse surveillance on feline Barto-
nella spp. and restricted to a few countries from Northern-
(Morocco and Algeria) [89–91] and Southern Africa (South
Africa and Angola) [92–95], displaying pooled prevalence
estimates of 19.2% and 3.8%, respectively. Similarly, there
were only three studies from Oceania, in New Zealand and
Australia, with prevalence estimates of 16.7% and 15.5%,
respectively [40, 44, 96].

In dogs, compared to cats, there were a very low number
of studies in the field, with the first case reports recorded in
the early 2000s [97–99], followed by surveys performed in
the USA and Brazil in 2007 [17, 100]. As observed in cats,
continent-wise meta-analysis highlighted high heterogeneity
in dog populations. The highest pooled Bartonella spp. prev-
alence estimates were recorded in the American continent
(6%), followed by Asia (4.5%), Africa (2.8%), and Europe
(0.6%). Asia recorded a high number of studies in dogs,
with studies spread in Southeast, Western, and East Asia.

The prevalence estimates through the countries varied
between 0% to 37.1%, with the highest prevalence detected
in free-ranging dogs in Iraq [18], Jordan [101], Iran
[19, 102], Turkey [103], and China [76]. In the American
continent, based on studies performed in southern and
northern areas, the Bartonella spp. pooled prevalence esti-
mates in dogs ranged between 4% and 8.4%. The USA
recorded the highest number of studies in dogs, followed
by Mexico, with pooled prevalence estimates of 8.3% and
12%, respectively. Prevalence estimates of Bartonella spp.
ranged from 0.6% to 14.7% in South America, including
studies from Brazil [17, 104], Chile [105, 106], Argentina
[61, 107], Ecuador [108], Peru [109], and Colombia [109].

In Europe, Southern countries paid higher attention to
this health topic than Central and Northern countries,
recording low pooled Bartonella spp. prevalence estimates
of 1.2%, 0.3%, and 0.1%, respectively. Country-wise investi-
gations reported the highest prevalence of Bartonella spp.
infection in rural or hunting dogs, compared to companion
dogs, from Mediterranean countries, including Italy (5%)
[36, 110–113] and Greece (4%) [36]. The prevalence was as
low as 0.3% in Poland [114, 115] and was 0% in dogs from
Portugal [116], Finland [117], and Spain [118, 119]. In the
African continent, like what was observed for cats, studies
were rare and mainly restricted to animals involved in gov-
ernmental rabies control programs in Algeria [90, 120, 121]
and Tunisia [122], with prevalence estimates of 4.4% to
14.8%. Surprisingly, Bartonella spp. was not detected in stud-
ies from Egypt [123], Morocco [91], Angola [95], Uganda
[124], Maio Island, and Ghana [125].

In this meta-analysis study, it was shown that the preva-
lence estimates of Bartonella spp. infection globally varied in
different geographical properties, including country. As Bar-
tonella is a vector-borne transmitted pathogen, the factor
“country” could be explicated with many factors, such as
different local vector control measures and/or ecological
contexts that can affect the spread rates of infection [126].

Furthermore, in the meta-analysis study based on both
countrywide and individual studies (sampling site), location
coordinates for the global distribution of feline and canine
Bartonella spp. infection, it was shown a consistently higher
prevalence (24.8%, 4.4%) in regions located at latitudes −40
to −30 or latitudes 30–40 (i.e., the third band) compared to
regions lying in other latitudes. This agreed with the results
of the space scan analyses that yielded statistically significant
clusters for feline and canine Bartonella infection across
approximate latitudes 57°N and 29°S and latitudes 32°N to
38°S, respectively, with the highest risk corresponding to
regions located once again in the third band. Comparatively,
there appears to be a correlation between the infection of
Bartonella in cats and dogs, as the global distribution based
on latitude coordinates followed the same pattern in both
animal species. Once again, this may be due to a suitable
ecological condition for the development and survival of
the different arthropod vectors [127]. These findings provide
a basis for further investigation on the possible reasons for
this spatial behavior of Bartonella spp. infection, therefore,
recommend investigating further components, including
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mean temperature, annual rainfall, sea level, and humidity,
which can help elucidate possible predisposing factors, pro-
vide the evolution of infection over space and time, and thus
guide improved control and prevention strategies.

The analysis for other subgroup moderators in cat popu-
lations revealed heterogeneity for ectoparasite infestation,
free-roaming lifestyle, and age. The results of our meta-
analysis significantly drive to the key role that ectoparasites
play in the cycle of Bartonella infection since this study sta-
tistically provided that cats infested with ectoparasites had a
two-fold higher risk of Bartonella infection. Indeed, fleas
such as Ctenocephalides felis have a well-recognized active
role in the transmission of Bartonella spp. that can multiply
in flea stomachs [128–131]. Moreover, ticks have been pro-
posed as vectors for the transmission of Bartonella species
among cats, humans, dogs, and other mammalian hosts
[132]. Furthermore, based on the present meta-analysis,
cats with an outdoor lifestyle (pet or free-roaming) were
six times more at risk to be bacteremic than indoor cats,
with a further possible link to ectoparasite exposition.
Indeed, the currently high permissiveness in some human
communities, mainly in Western cultures, toward an out-
door lifestyle of dogs and cats, can perpetuate their exposi-
tion risk to ectoparasites and pathogens they transmit [133].
Finally, cat age significantly influenced the occurrence of
Bartonella infections, with juvenile cats (less than 1 year)
being two times more at risk than adults in terms of active
infection by CSD agents, according to previous studies
[126, 134–136]. Likely due to the scarcity or paucity of
reports, the analysis for moderators in dog populations did
not provide significant results.

A wide variety of Bartonella species, in most cases with
known zoonotic potential, have been found to circulate
among cats and dogs worldwide [6, 7, 9, 137–141]. Globally,
B. henselae (13.05%) is the Bartonella species most frequently
detected in cat populations, followed by B. clarridgeiae
(1.7%) and B. koehlerae (0.11%) in the USA [66], Brazil
[142, 143], Greece [144], and Australia [96]. Based on the
variability of the 16S ribosomal DNA sequence and of
Pap31gene, two main genotypes, designated as Huston I
(genotype I) and Marseille II (genotype II), have been
described in the B. henselae species [134, 145]. When con-
sidering the genotype distribution, high heterogeneity was
observed according to geographical subgroups. The distribu-
tion of B. henselae types I (12%) and II (1.7%) in Asian
countries differed from the distribution observed in Euro-
pean countries, where the type II (9.6%) was dominant com-
pared to the type I (5.4%). Both genotypes were almost
equally distributed in Africa (type I= 7.4% versus type
II= 6.8%) and the Americas (type I= 6.2% versus type
II= 4.1%). Of note, cats and humans can be infected with
either genotype I or II and occasionally with a coinfection of
both genotypes. In addition, types I and II seem to have dif-
ferent pathogenic roles in human bartonellosis, with type I
appearing more pathogenic than type II [7, 146, 147], thus
supposing a higher risk for human populations from Asia,
where genotype I is more common.

Bartonella spp. is considered an emerging pathogen in
dogs worldwide [6]. Dog is considered the primary host of
B. vinsonii subsp. berkhoffii, Candidatus B. merieuxii, and
possibly B. rochalimae [18]. Furthermore, dog can sporadi-
cally be infected with B. henselae and B. koehlerae, as
reported in a few studies from Spain [148] and the USA
[16, 149, 150].

Bartonella vinsonii subsp. berkhoffii, is the most fre-
quently detected species in different (hunting, rural, or free-
roaming) dog populations worldwide [17, 19, 36, 59, 103, 105,
109, 111, 112, 120, 148, 150–152] and encompasses four gen-
otypes on the bases of the variability of the 16S-23S intergenic
spacer region and the Pap31 gene [153]. Geographically, B.
vinsonii subsp. berkhoffii genotype I was reported in Brazil
and the USA [16, 17], the rare genotype II was detected in
rural dogs from Italy [36], while the genotype III was more
common globally, being detected in Iran, Turkey, Italy,
Mexico, and USA [19, 100, 103, 112, 150, 152]. Finally, the
rare genotype IV was reported only from two dogs in Algeria
[120]. Collectively, B. vinsonii subsp. berkhoffii infection has
been described in healthy dogs but often has been associated
with endocarditis, arrhythmias, myocarditis, granulomatous
lymphadenitis, and granulomatous rhinitis [4, 7, 20, 21].

B. rochalimae, an agent of splenomegaly in animals, was
reported in dog populations with lower frequency (p¼
0:38%) [7, 19, 154, 155]. Furthermore, the HMD strain, later
characterized as C. B. merieuxii, was reported in dogs from
Italy and Greece [36]. Subsequently, C. B. merieuxii has been
increasingly reported in domestic dogs and/or wild canids
from Mediterranean and Middle East Asian countries,
including Iraq [18], Tunisia [122], Iran [19, 102], Jordan
[101], Italy [5] but rarely in Sri Lanka [109], and in a Ct.
felis flea from an Indonesian dog [131]. Furthermore, wild
canids, including coyotes, gray foxes, and wolves, have also
been considered as possible reservoirs for both B. vinsonii
subsp. berkhoffii and B. rochalimae [5, 7], thus representing a
high threat at wild-domestic interfaces.

Bartonella species are highly adapted to one or more mam-
malian reservoir hosts and within which these bacteria have
most probably coevolved to cause a long-lasting, relapsing,
intraerythrocytic bacteremia [156]. Cats and dogs act as reser-
voir hosts for B. henselae and B. vinsonii subsp. berkhoffii,
respectively. Noteworthy, dogs and cats, yet sporadically, can
be infected with the rodent Bartonella species as a result of their
predation activities [133]. In detail, dogs from Thailand were
infected with rodent Bartonella spp., including B. vinsonii
subsp. arupensis, B. elizabethae, B. grahamii, and B. taylorii
[157], while Pérez et al. [149] described B. volans-like in dogs
from the USA. Likewise, B. quintana, the agent of trench fever
that has humans as natural reservoirs [158], was described in
cats from France [15] and dogs from Thailand [157]. More-
over, Bartonella species usually identified in ruminants, such as
B. schoenbuchensis and B. bovis, were detected from cats in
Lithuania [55] and from dogs in the USA [149]. Finally, un-
characterizable Bartonella species were also reported in both
species, thus highlighting the necessity for persisting surveys in
the field.
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5. Conclusion

Cats and dogs globally may host as a reservoir or accidentally
a variety of Bartonella species, with cats significantly more
likely to harbor these pathogens than dogs. Nevertheless,
there appears to be a correlation between the infection of
Bartonella in cats and dogs, as the global distribution based
on coordinates followed the same pattern for both animal
species. Indeed, this study identified spatial clusters for
Bartonella infection across approximate latitudes −40 to
−30 or latitudes 30–40 in both populations, revealing sig-
nificantly higher risks within these region coordinates. Fur-
thermore, the results of ourmeta-analysis significantly stress the
central role of ectoparasites in the cycle of Bartonella infection
since animals infested with ectoparasites had a two-fold higher
risk of infection. Several Bartonella species from cats and dogs
are zoonotic vector-borne pathogens; thus, mapping their global
distribution in cat and dog populations and their risk factors
may be pivotal for implementing proper control measures.
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Figure S3: meta-analysis of Bartonella spp. prevalence estimates
in cats based on the category of countrywide location coordi-
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category of individual study/sampling site location coordi-
nates. Figure S7: forest plot of the random-effect meta-
analysis on the association of B. henselae genotypes I and
II and continental distributions. Inverse variance index
(I2= 92.865), variance between studies (τ2= 3.037), p-value
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