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The goal of this study was to evaluatematrix-assisted laser desorption ionization–iime of flightmass spectrometry (MALDI-TOFMS)
and Fourier-transform infrared spectroscopy (FTIR-S) as diagnostic alternatives to DNA-based methods for the detection of
Pseudomonas aeruginosa sequence type (ST) 175 isolates involved in a hospital outbreak. For this purpose, 27 P. aeruginosa
isolates from an outbreak detected in the Hematology department of our hospital were analyzed by the above-mentioned
methodologies. Previously, these isolates had been characterized by pulse-field gel electrophoresis (PFGE) and whole-genome
sequencing (WGS). Besides, eight P. aeruginosa isolates were analyzed as unrelated controls. MALDI-TOF MS spectra were
acquired by transferring several colonies onto the MALDI target and covering them with 1 µl of formic acid 100% and 1 µl of
α-ciano-3,4-hidroxicinamic acid matrix. For the analysis with FTIR-S, colonies were resuspended in 70% ethanol and sterile
water according to the manufacturer’s instructions. Spectra from both methodologies were analyzed using Clover Biosoft
Software, which allowed data modeling using different algorithms and validation of the classifying models. Three outbreak-
specific biomarkers were found at 5,169, 6,915, and 7,236m/z in MALDI-TOF MS spectra. Classification models based on these
three biomarkers showed the same discrimination power displayed by PFGE. Besides, K-nearest neighbor algorithm allowed the
discrimination of the same clusters provided by WGS and the validation of this model achieved 97.0% correct classification. On
the other hand, FTIR-S showed a discrimination power similar to PFGE and reached correct discrimination of the different STs
analyzed. In conclusion, the combination of both technologies evaluated, paired with machine learning tools, may represent a
powerful tool for real-time monitoring of high-risk clones and isolates involved in nosocomial outbreaks.

1. Introduction

Healthcare-associated infections are becoming one of the
major health concerns of the 21st century. This term groups
together infections developed during and/or resulting from a
hospital or nursing home stay that were not detected at the

time of admission [1]. They represent the most frequent
adverse event in healthcare settings (6.5% in acute care hos-
pitals in the European Union and 3.2% in hospitalized
patients in the United States) [2, 3]. Pathogens that cause
nosocomial infections can spread and cause outbreaks
among inpatients and staff members, requiring control and
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treatment measures and ultimately increasing resource costs
in hospital settings [4]. The emergence of multidrug resistant
microorganisms is another concern that arises in nosocomial
outbreaks, as they pose an added complication in relation to
the correct choice of antimicrobial treatment [5]. The control
of nosocomial infection caused by multiresistant bacteria and
outbreak surveillance programs should be implemented in
hospitals in order to reduce mortality/morbidity, length of
stay, and hospital costs [6].

Pseudomonas aeruginosa is one of the most frequent
pathogens involved in outbreaks in hospitals and long-
term care facilities [7]. This microorganism is an environ-
mental, gram-negative, nonfermenting bacterium that can
easily become a multidrug-resistant (MDR) and extensively
drug-resistant pathogen through mutations in chromosomal
genes in addition to its intrinsic resistance mechanisms [8].
Its wide range of virulence factors, such as its ability to pro-
duce biofilm and also its capacity to persist in moist envir-
onments, such as sinks and shower plates in hospitals,
coupled with its clonality and fast spread of high-risk clones,
make it an ideal candidate for being the cause of nosocomial
outbreaks [9, 10].

The reference method for outbreak characterization
remains pulse-field gel electrophoresis (PFGE) but it may
be insufficient for clone discrimination in some cases [11].
Multilocus sequence typing (MLST) provides complemen-
tary information to PFGE but it is still laborious and time
consuming [12]. Although the implementation of novel
approaches such as whole-genome sequencing (WGS) would
improve the follow-up of clinical outbreaks by increasing the
quantity and quality of the information obtained, it requires
expensive and sophisticated equipment and highly skilled
personnel, making it unaffordable in most clinical laborato-
ries nowadays.

Matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) is currently imple-
mented in most clinical microbiology laboratories for bacte-
rial species identification [13]. This technology has also been
evaluated for purposes beyond identification, such as antimi-
crobial resistance detection or bacterial typing [14–16].
Therefore, MALDI-TOF MS could be a rapid and available
alternative for outbreak characterization [17, 18]. In addi-
tion, Fourier-transform infrared spectroscopy (FTIR-S) has
emerged as a promising new tool for bacterial typing [19].
This methodology has been recently applied to Streptococcus
pneumoniae typing [20].

In this study, we evaluated MALDI-TOF MS and FTIR-S
coupled with machine learning classification methods for the
rapid detection and follow-up of a nosocomial outbreak
caused by a P. aeruginosa high-risk clone with the same level
of accuracy provided by advanced molecular methods.

2. Materials and Methods

2.1. Outbreak Description and Bacterial Isolates. Between
October 2013 and December 2014, a nosocomial outbreak
caused by P. aeruginosa showing an MDR phenotype was
detected in the Hematology ward of a Spanish tertiary

hospital (Hospital General Universitario Gregorio Marañon
(HGUGM), Madrid, Spain; 1,350 beds) [21]. Patients hospi-
talized at this ward showed an increased incidence of
P. aeruginosa bacteremia, while this was not reflected at
the overall hospital level. During this 15 month period, at
least one isolate of P. aeruginosa showing the same MDR
phenotype was detected in 14 patients, while this microor-
ganism was not found in the same ward during the previous
8 months. The isolates were resistant to carbapenems (imi-
penem and meropenem), antipseudomonal fluoroquino-
lones (ciprofloxacin and levofloxacin), and aminoglycosides
(gentamycin and tobramycin), fulfilling the criteria estab-
lished by Magiorakos et al. [22] for MDR microorganisms.

As a first approach, PFGE was performed on 23 P. aerugi-
nosa isolates: 12 available isolates out of the 14 outbreak-
suspected strains from 2013 to 2014, 2 of them sourcing from
the same patient; 5 controls strains related to the Hematology
ward and 6 unrelated strains from the same time period. More-
over, a reference P. aeruginosa strain (ATCC 27853) was also
included in the analysis in duplicate [21]. The methodology
applied for PFGE has been described before [23]. Briefly, the
strains were digested with SpeI overnight at 37°C and the DNA
fragments were separated by electrophoresis in a Chef DRII
instrument (Bio-Rad Laboratories, Inc., Hercules, CA) using a
1% agarose gel in 0.5X Tris-borate-EDTA buffer. The finger-
prints obtained were analyzed with Bionumerics Software 4.0
(bioMérieux, Marcy-l’Étoile, France). Strains were considered
to be identical when 99.9% similarity was achieved.

The strains that grouped in the outbreak-pulsotype (P1)
were further characterized by WGS (Table S1). This meth-
odology differentiated three clusters within pulsotype P1:
Group 1, which contained the P. aeruginosa strains corre-
lated to the outbreak, and Groups 2 and 3, where isolates
detected during the same period as the outbreak strains but
with enough single nucleotide polymorphisms (SNPs) to be
considered as nonoutbreak strains clustered (Figure 1) [21].

With the outbreak-specific SNPs detected by WGS analy-
sis, a multiplex allele-specific oligonucleotide polymerase chain
reaction (ASO-PCR) was designed for the rapid differentiation
of the outbreak-related P. aeruginosa isolates (Group 1). The
ASO-PCR was tested with a collection of isolates (n= 32) from
a broader period of time (2010–2018), allowing for the detec-
tion of new outbreak-related strains which were not considered
part of the outbreak initially (Figure 1) [21].

A total of n= 67 available P. aeruginosa strains from this
outbreak were included in this study (Table S1): 35 P. aeru-
ginosa isolates analyzed by WGS (27 outbreak strains–all of
them ST175–, and 8 control strains; Figure 1) and 32 isolates
(16 outbreak and 16 nonoutbreak strains) analyzed by ASO-
PCR. All strains sourced from inpatients from HGUGM and
were kept frozen at−80°C until further analysis. Isolates were
cultured on 5% Columbia sheep blood agar plates at 37°C in
aerobic conditions, metabolically activated after three pas-
sages and analyzed after a 24 hr overnight incubation period.

2.2. MALDI-TOF MS Identification. A small amount of bio-
mass from each isolate was spotted onto the MALDI target
plate, covered with 1 μl of formic acid 100% for on-plate
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protein extraction and allowed to dry. Then, 1μl of organic
matrix (α-ciano-3,4-hidroxicinamic acid) was added and
allowed to dry again before MALDI-TOF MS analysis. Strains
were identified with an MBT Smart MALDI Biotyper (Bruker
Daltonics, Bremen, Germany) using the updated database
containing 9,957 reference spectra profiles.

2.3. MALDI-TOF MS Spectra Processing and Data Modeling.
Spectra were acquired using default settings and visualized
with FlexAnalysis Software (Bruker Daltonics), where out-
liers and zero lines were removed. MALDI-TOF MS spectra
were exported to and further processed with Clover MS Data
Analysis Software (Clover Biosoft, Granada, Spain) as follows:
(a) variance stabilization, (b) smoothing by Savitzky–Golay
filter (window length: 11, polynomial order: 3), (c) baseline
subtraction using top-hat filter (0.02), and (d) TIC (total ion
current)-normalized (Figure S1). Replicated peaks were
aligned in the 2,000–20,000 Daltons region of the spectra—
were most bacterial proteins can be found—and then merged
in an average spectrum for each isolate according to the infor-
mation compiled in a previous study [24].

As a first approach, the mass spectra from the 35 strains
characterized by WGS were used as the training set for data
modeling. Two peak matrices were built: (a) using the
threshold method, which consisted of applying a 0.01 thresh-
old value to average spectra, which selected only the peaks
above 1.0% of the maximal intensity (Prominence: 0.01;
Distance: 1) within 2,000–20,000 Daltons range and (b) using
the biomarker selection method, that searches for specific
peaks for each category (“outbreak” or “control” P. aeruginosa
isolates). Peaks within the 2,000–10,000 Daltons range and
with an area under the received operating characteristic curve
(AUROC) higher than 0.85 were evaluated and selected for

the construction of the biomarker peak matrix (Figure S1).
The AUROC values were obtained by matching all samples of
both categories with peaks above 0.01 threshold.

Matrices built using both the threshold and biomarker
selectionmethods were used as input data for trainingmachine
learning: first, two unsupervised algorithms—principal com-
ponent analysis (PCA) and hierarchical clustering—were
applied to check the clustering between samples and categories
and settle their distances in a dendrogram and second, different
supervised algorithms—partial least squares discriminant anal-
ysis (PLS-DA); linear support vector machine (SVM); random
forest (RF) and neighborhood components analysis with
K-nearest neighbors (NCA-KNN)—were used as classifiers
to build predictive models. Supervised algorithms training
was carried out by systematically testing different combinations
of values for their respective hyperparameters. Each hyperpara-
meter is given a list of possible values, and all combinations are
tested for training. The combination which achieved the high-
est balanced accuracy was chosen. For SVM, we automatically
tuned the hyperparameter C, which controls the trade-off
between the training error and the classification error on
unseen data. Thus, a large hyperparameter C value indicates
a highly strict and potentially overfitting model whilst a lower
value leads to a more heavily regularized model which will
allow more misclassifications in the training set in exchange
for a better generalization to unobserved samples. For NCA-
KNN, this optimization is performed on the number of neigh-
bors used (K). On the other hand, for RF we automatically
tested a range of potential values in the following hyperpara-
meters: number of trees in the forest, number of features to
consider when looking for the best split, maximum depth of
each tree, minimum number of samples required to split an
internal node, and the minimum number of samples required
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FIGURE 1: Classification of Pseudomonas aeruginosa strains as “outbreak” by pulse-field gel electrophoresis (PFGE) and “not outbreak”
(in dark green). The three different groups obtained by whole-genome sequencing (WGS) are shown: Group 1, where the outbreak isolates
are clustered; Group 2, containing two isolates separated by 30 single nucleotide polymorphisms (SNPs) from Group 1; and Group 3, where
4 isolates separated by 104 SNPs from Group 1 clustered. According to WGS, Groups 2 and 3 are not part of the outbreak.

Transboundary and Emerging Diseases 3



to be a leaf node. Details on the values explored can be found in
Table S2. Cross-validation was performed for each model by
k-fold method (k= 10) as described previously [16] and leave-
one-out (LOO)method (Figure S1). The k-fold method divides
the dataset into k-stratified folds and tests all folds as the vali-
dation set using the remaining folds as the training set. With
the LOOmethod, each sample is used as a single set for valida-
tion and the rest as the training set. The final configuration of
each supervised algorithm was saved as a prediction model to
be validated.

For the validation of the predictive models described in
the previous paragraph, a total of 32 isolates, 15 “outbreak”
and 17 “control,” analyzed by ASO-PCR were included in the
validation set. Average spectra obtained from four replicates
analyzed twice for each isolate were preprocessed as described
in the creation of predictive models and used as input data to
be automatically classified by the prediction models.

2.4. Reproducibility Assessment. A reproducibility assay was
carried out with the 35 P. aeruginosa strains characterized by
WGS. Each isolate was spotted in quadruplicate (technical
replicates) to assess the interspot or the technical reproduc-
ibility of the method. Besides, two spectra were acquired per
spot to make an average spot spectrum. The biological repro-
ducibility was analyzed by subculturing overnight under the
same conditions as indicated above and acquiring protein
spectra again in quadruplicates [24, 25]. Data analysis was
carried out with Clover MS Data Analysis Software. The
pipeline described above was applied to the acquired spectra,
which were subsequently aligned to obtain an average spec-
trum per spot from two spectra per spot (shift medium;
linear mass tolerance 200 ppm). The same procedure was
applied to obtain a single average spectrum per day from
four spots for each isolate. This approach allowed the detec-
tion of common peaks present in all protein spectra. The
coefficient of variation (% CV) of the peak intensities regis-
tered for each common peak after a 0.1 threshold applied was
calculated from TIC-normalized spectra.

2.5. FTIR-S Spectra Acquisition and Processing. FTIR-S was
performed only on the strains which had combined PFGE
plus WGS information in the initial study by Acosta et al.
[21] (n= 20). FTIR-S spectra acquisition was performed
using IR Biotyper (Bruker Daltonics) following the manufac-
turer’s instructions. Briefly, a 1 μl loopful of biomass was
resuspended in 50 µl of 70% ethanol and homogenized
with metal rods (Bruker Daltonics). Then, 50 µl of sterile
water were added and 15 µl of the suspension were spotted
on a silicon plate. Samples were analyzed in triplicates in
three independent experiments along with two standards
(Bruker Infrared Test Standard 1 and 2, Bruker Daltonics).
FTIR-S spectra were visualized and processed using Clover
MS Data Analysis Software. The processing consisted on
standard normal variation followed by Savitzky–Golay filter
with nine smoothing points, polynomial order= 2 and sec-
ond derivative using the entire wavenumbers range. More-
over, spectra with valid target quality controls were further
analyzed using hierarchical cluster analysis (HCA) with
Euclidean distance and ward metric and PCA to evaluate

clustering of isolates according to molecular techniques
(Figure S1).

3. Results

A preliminary version of the results shown in this article have
been previously published as a preprint [26].

3.1. MALDI-TOF MS Analysis. All strains analyzed in this
study (n= 67) were identified by MALDI-TOF MS as
P. aeruginosa with a score ≥2.0, showing, therefore, correct
species-level identification according to the manufacturer’s
criteria [27]. Besides, this identification was the only one
provided by MALDI-TOF MS along the top 10 identifica-
tions given for each isolate.

3.1.1. Analysis of Outbreak Strains Characterized by WGS.
Firstly, a peak matrix was constructed using MALDI-TOF
MS spectra from the strains previously analyzed by WGS
(n= 35) by applying the threshold method with a total of
413 peaks as features. The isolates were initially classified
according to PFGE results, where the strains were grouped
as P1 (outbreak) and other pulsotypes considered as unre-
lated strains. The cross-validation of this approach (k= 10)
yielded 97.1% isolates correctly classified using PLS-DA, RF,
and NCA-KNN algorithms and 94.3% with SVM (Table S3).
Besides, using the biomarker selection method three poten-
tial biomarkers were found at 5,169, 6,915, and 7,236m/z.
The peak matrix constructed with these three peaks correctly
classified all strains (100%) in all prediction models tested
(PLS-DA, SVM, RF, and NCA-KNN) by k-fold validation
(k= 10). The implementation of unsupervised algorithms
also achieved optimal separation of the two main categories
(“outbreak” and “control” strains) displaying two well-
defined clusters in the PCA plot and HCA dendrogram
(Figure 2).

In a second step, MALDI-TOF MS spectra were further
compared according to WGS clustering, where the outbreak
strains clustered by PFGE in the pulsotype 1 (P1) were
divided into three outbreak groups: Group 1, considered
the main outbreak strains, Group 2 and 3 (separated by
<125 SNPs from Group 1) and Controls (>5.000 SNPs dif-
ference) (Figure 1). Differentiation of what WGS considered
the main outbreak (Group 1) from the rest of the strains
(“Controls,” “Group 2,” and “Group 3”) was attempted in
this step. For this purpose, a peak matrix was created by
applying the threshold method and used as input data to
PLS-DA, SVM, RF, and NCA-KNN algorithms. They
obtained a correct classification of 94.3% by SVM (C opti-
mized hyperparameter: 0.01), 85.7% by PLS-DA and NCA-
KNN (NCA component reduced to 3, neighbors optimized
hyperparameter: 3), and 88.6% by RF (number of estimators
optimized hyperparameter: 100) (Table S4; Figure S2).
Group 2 strains (n= 2) appeared closer to the outbreak
strains than Group 3 and control strains (Figure 2(c)), as it
is closer to the Group 1 strains in a number of SNPs
(50 SNPs).

3.1.2. External Validation of the Initial Model. Lastly, the
biomarker classification model—SVM, three biomarker
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peaks—(C optimized hyperparameter: 0.19) developed with
the strains characterized by WGS was blindly validated with
the isolates characterized by ASO-PCR (n= 32: 15 “out-
break” and 17 “control”). The validation of the model yielded
90.0% correct classification of the strains, misclassifying only
3/32 ASO-PCR strains (two outbreak isolates as nonout-
break, and one nonoutbreak as outbreak strain).

3.1.3. Reproducibility of the Method. The comparison of the 13
common peaks from protein spectra obtained from the different
spots in which the same isolate was smeared (interspot variabil-
ity) showed 11.0% and 14.5% of mean of their CVs values for
day 1 and day 2, respectively. Besides, the analysis of the variance
yielded a maximum of 20.5% CV for the most common peaks
detected within the 7,000–10,000m/z range, although most
peaks between 2,000 and 7,000m/z interval showed CV values
between 10.0% and 15.0% (Figure S3(a)). Themean andmedian
interday CV values were 9.2% and 5.8%, respectively. CV values
varied between 0.02% and 18.0%, a range considered as accept-
able by Pang et al. [28] (Figure S3(b)). The only exception here
was the 5,740m/z peak, whose interday CV was almost 30.0%.

The reproducibility of the specific biomarkers that
allowed the differentiation of the P. aeruginosa isolates
belonging to the outbreak was further analyzed. In this
case, three peaks were identified as potential biomarkers for
differentiation between outbreak strains and those not related
with the outbreak (peaks 5,169, 6,915, and 7,236m/z). The
average intraday CV for these peaks was 13.6% and this value
varied between 7.0% and 20.5% (Figure S3(c)). However, the
biomarker peak at 6,915m/z showed 32.5% interday CV var-
iability (Figure S3(d)).

3.2. FTIR-S Analysis. After analyzing different spectral ranges,
infrared absorbance in the lipid region (1,400–1,500 and
2,800–3,000 cm−1) showed the highest discriminatory power
for the correct classification of P. aeruginosa outbreak strains.
HCA using Euclidean distance andWard linkage differentiated
the outbreak strains (ST175) from control strains, which
belonged to different sequence types (STs) such as ST227,
ST253, ST381, ST557, and ST885 (Figure 3), with a discrimi-
natory power similar to PFGE classification. In this case, the
cut-off dendrogram distance for outbreak and controls differ-
entiation was 0.350. For isolate differentiation, the automated
cut-off distance assigned by IR Biotyper was 0.062. The two
strains belonging to the same patient were clustered together
with lower distance between them. Using PCA analysis in both
IR Biotyper Software and Clover MS Data Analysis Software,
ST175 strains were clustered together, distinctly from other STs
(Figures 4(a) and 4(b)). The specific differences in infrared
spectra absorbances among ST175 and other STs were found
in 1,445 cm−1 (Figure 5(a)), 2,925 and 2,955 cm−1 (Figure 5(b)).
The three subgroups inside the outbreak observed byWGSwere
not discriminated by HCA (Figure 3). In the PCA scatter plot
(Figures 4(c) and 4(d)), although WGS Group 2 was partially
separated from other groups, Groups 1 and 3 overlapped. Using
PLS-DA and RF algorithm (Figure S4), it was also shown that
Group 2 formed a distinct cluster, and the k-fold cross-validation
obtained for differentiation of the three groups were 91.1% and
97.8%, respectively (Table S5).

4. Discussion

The implementation of MALDI-TOF MS and FTIR-S tech-
nology, combined with machine learning algorithms,
allowed the correct classification of the MDR P. aeruginosa
isolates causing a nosocomial outbreak in 2013–2014: 97.0%
and 100% of the isolates were correctly classified by the
algorithms applied to the protein peaks by MALDI-TOF
MS with intensities above the established threshold (0.1) or
to the specific biomarker peaks found with this technology,
respectively. These results showed that MALDI-TOF MS
yields a discrimination power similar to PFGE, the reference
method for bacterial typing. Besides, the same protein spec-
tra were further classified according to the information pro-
vided by WGS analysis. In this case, PLS-DA and SVM
algorithms allowed a good classification of the P. aeruginosa
isolates specifically correlated with the outbreak (Group 1)
and showed that Group 2 was closely related with the out-
break strains, as the genomic analysis pointed out, and
Group 3 and the control group were clearly unrelated to
the outbreak. The validation of the classification models,
carried out with 32 P. aeruginosa isolates characterized by
ASO-PCR, yielded 90.0% correct classification of their pro-
tein spectra. Only three isolates were misclassified using the
developed models, which indicates that the methodology
described in this study may be applied as a rapid screening
method when an outbreak is suspected. The implementation
of FTIR-S technology showed the same discrimination
power as PFGE to differentiate P. aeruginosa outbreak iso-
lates. However, when the same level of classification pro-
vided by WGS technology was attempted with FTIR-S, the
control group and outbreak Group 2 were clearly defined but
Groups 1 and 3 overlapped. However, FTIR-S provided com-
plementary information to the classification obtained with
MALDI-TOF MS spectra by showing the correct classifica-
tion of the different STs analyzed.

Previous studies have demonstrated that specific bio-
marker peaks present in the protein spectra obtained by
MALDI-TOF MS could be used for the monitoring of
P. aeruginosa STs. Cabrolier et al. [14] described a specific
peak at 7,359m/z that, combined with the absence of peaks
at 7,329 and 12,154m/z was specific of P. aeruginosa ST175.
These results were further confirmed by Mulet et al. [29],
who also found the peak at 7,359m/z as a biomarker for
P. aeruginosa ST175 and described another peak at 6,911m/z
as specific for this ST. In the present study, a peak at 6,915m/z
has been described as a biomarker of the P. aeruginosa out-
break strains belonging to the same ST. Although the difference
of only 4m/z between both peaks fall within the accepted mar-
gin of error of the applied pipeline (Æ4.5m/z) and no other
marker peak has been found in the area, further analysis is
needed to confirm that both studies refer the same peak.
Finally, the other two potential biomarker peaks described
for the P. aeruginosa outbreak strains (5,169 and 7,236m/z)
have never been described before and, therefore, they might be
outbreak-specific markers.

The reproducibility of this MALDI-TOF MS-based
method for the rapid detection of a P. aeruginosa outbreak
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was evaluated. With the exception of the peak at 5,740m/z,
whose interday CV was just below 30.0%, the peaks located
between 2,000 and 7,000m/z—where the most common bac-
terial proteins locate—showed CV values ranging between
10.0% and 15.0% and have been considered as acceptable in
previous studies [28]. The specific biomarker peaks that

allowed the differentiation of the outbreak isolates showed
an average intraday CV of 13.6% (range between 7.0% and
20.5%). Again, these values can be considered as acceptable.
Only the biomarker peak at 6,915m/z showed an interday
CV variability CV of 32.5% (Figure S4(d)). Although this
value is above the established limit (20.0%), the peak was
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always detected in P. aeruginosa outbreak strains regardless
its intensity. Therefore, the presence of the 6,915m/z peak
can be reliably correlated with the outbreak along with the
detection of the other two biomarker peaks at 5,169 and
7,236m/z.

In recent years, FTIR-S has emerged as a reliable tech-
nology for outbreak analysis in clinical microbiology labora-
tories [30]. The simplicity and low costs of the sample
preparation procedure and interpretation of results allows
the follow-up of nosocomial outbreaks in real time since
the turnaround time for the analysis of 30 isolates with this
technology is approximately 3 hr. Although the most studied
microorganism so far is Klebsiella pneumoniae [31], FTIR-S
has been evaluated for typing other bacterial species such as
Salmonella [19] or Streptococcus pneumoniae [20].

In our study, FTIR-S was able to discriminate P. aerugi-
nosa outbreak isolates from nonoutbreak isolates at the same
level than PFGE, either by HCA with a cut-off score of 0.350
or PCA (Figures 3 and 4). In addition, the two strains

isolated from the same patient (numbers 139 and 143)
were clustered together with very low distance, which indi-
cates that this method recognizes them as the same strain
and is reproducible (Figure 3). For ST differentiation, the
lipid region (1,400–1,500 and 2,800–3,000 cm−1) showed
the highest discriminatory power and allowed the correct
classification of P. aeruginosa outbreak strains according to
PFGE results. However, when this classification was com-
pared with WGS information, the three outbreak subgroups
were not clearly differentiated by FTIR-S by applying HCA.
Similarly, the implementation of the PCA algorithm did not
cluster the three groups of isolates separately, although
Group 2 isolates were almost grouped apart (Figures 4(c)
and 4(d)). When using PLS-DA and RF analyses for differ-
entiation of these groups, it was also observed that Group 2
was clearly separated from the other outbreak groups accord-
ing to WGS and the biggest differences among them were
found in the 800–1,600 cm−1 region (Figure S5). It is impor-
tant to note that WGS groups are based on SNP distance, and
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FIGURE 4: Principal component analysis scatter plot obtained by Fourier-transform infrared spectroscopy. (a) Plot according to sequence type
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to whole-genome sequencing (WGS) outbreak groups obtained by IR Biotyper Software. (d) Plot according to WGS groups obtained by
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maybe these differences are not expressed phenotypically,
and thus, FTIR-S clusters may not reflect differences detected
by WGS. At the moment of writing, only one previous study
has evaluated P. aeruginosa typing by FTIR-S in comparison
to PFGE and MLST results [32]. The authors showed the
reliability of the method for differentiation of STs with an
optimal cut-off distance between 0.184 and 0.374. Besides,
these results can be obtained in a turnaround time of 3 hr, a
great advantage over PFGE.

One of the limitations of this study is the small number of
strains available, but it is important to acknowledge that bac-
terial outbreaks usually involve a limited number of patients if
they are well contained, thus making a larger number of sam-
ples unavailable for research purposes. The other limitation
would be the limited number of isolates characterized by

WGS. But, due to the costs of this technique, a more afford-
able approach (ASO-PCR) was carried out to classify the rest
of the isolates.

However, despite these drawbacks, the results of this study
showed that rapid diagnostic methods such as MALDI-TOF
MS and FTIR-S may represent fast alternatives to conven-
tional strategies—based on DNA sequencing—for real-time
monitoring of nosocomial outbreaks, providing complemen-
tary information for the prompt characterization of the sus-
pected isolates in a cost-efficient way. Although confirmation
of the outbreak strains may request further analysis by WGS,
the implementation and further validation of these rapid typ-
ing methods could help to reduce the number of isolates that
require confirmation by expensive tests available to a limited
number of microbiology laboratories.
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