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Animal diseases can enter countries or regions through the movements of infected wildlife. A generic risk model would allow to
quantify the risk of entry via this introduction route for different diseases and wildlife species, despite the vast variety in both, and
help policy-makers to make informed decisions. Here, we propose such a generic risk assessment model and illustrate its
application by assessing the risk of entry of African swine fever (ASF) through wild boar and highly pathogenic avian influenza
(HPAI) through wild birds for the Netherlands between 2014-2021. We used disease outbreak data and abstracted movement
patterns to populate a stochastic risk model. We found that the entry risk of HPAI fluctuated between the years, with a peak in
2021. In that year, we estimated the number of infected birds to reach the Dutch border by wild bird migration at 273 (95%
uncertainty interval: 254-290). The probability that ASF outbreaks that occurred between 2014 and 2021 reached the Dutch border
through wild boar movement was very low throughout the whole period; only the upper confidence bound indicated a small entry
risk. On a yearly scale, the predicted entry risk for HPAI correlated well with the number of observed outbreaks. In conclusion, we
present a generic and flexible framework to assess the entry risk of disease through wildlife. The model allows rapid and
transparent estimation of the entry risk for diverse diseases and wildlife species. The modular structure of the model allows for

adding nuance and complexity when required or when more data becomes available.

1. Introduction

Emerging and reemerging animal diseases that affect live-
stock can be introduced into a country or region through
movements initiated by humans, such as the movement of
live animals, products, and people [1]. However, many of
these diseases can occur in wildlife populations as well, and
thus the movement of wildlife can act as a possible entry
route [2]. This movement is often complex and based on
many external factors that vary between regions and time,
such as availability of feed [3], variation in temperature [4],
and climate change [5].

Wildlife has played an important role in the transmission
of several recent emerging and re-emerging animal diseases.
For example, introductions of highly pathogenic avian in-
fluenza (HPAI) into the Netherlands were mainly attributed

to migrating wild birds [6]. Seasonal migration patterns
seem to drive the introduction of this virus [7]. For instance,
the 2005 spread of HPAI from Russia to the Black Sea basin
followed the spatiotemporal pattern of duck migration from
Siberia [8], which was confirmed by phylogenetic analyses
[9]. In 2020, the HPAI outbreak in the Netherlands was
preceded by outbreaks of the same virus strain on breeding
grounds in Kazakhstan and Russia, leading to the conclusion
that the autumn migration of waterfowl likely caused the
introductions [10].

Similarly, for the entry of African swine fever (ASF) into
European countries, wildlife plays an important role. Dis-
persal of wild boars is considered the highest risk for ASF
introduction and spread in Europe [11, 12]. The number of
ASF outbreaks in Europe has been increasing over the last
decade [13, 14], as has the number of affected countries.
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Where ASF virus spread by wild boar is mostly slow (ap-
proximately 50 km/year) [15], long-distance jumps have
resulted in outbreaks of wild boar in the Czech Republic in
2017, Belgium in 2018, and Italy in 2022, suggesting a hu-
man-mediated introduction rather than an introduction by
actively migrating wild boar [16]. The movement of wild
boar has proven difficult to manage, and the persistence and
reinfection of carcasses have played an important role in the
continued transmission of ASF in Europe [17, 18].

Assessing the risk of introduction is the first step in the
risk assessment that helps prioritize and plan preventive
measures to mitigate the entry risk of emerging animal
diseases and surveillance activities for early detection. Risk
assessment provides an “objective and defensible method” of
assessing the risk that pathogens pose to a country or region
[19]. Generic risk assessment tools allow for the rapid and
transparent comparison of the risk across multiple diseases.
The number of pathways addressed by these tools, however,
varies largely, and not all tools have incorporated wildlife
movements as a pathway for disease incursion [20]. Most of
these risk assessments are qualitative [21] or semi-
quantitative [22-25], and some of them rely heavily on
expert knowledge. Simons et al. [1] and Taylor et al. [26]
tried for a more quantitative approach where the wildlife risk
was based on density and habitat suitability raster maps
[1, 26]. The latter assumes that the movement of wildlife is
more likely to be towards raster cells where the habitat is
more suitable. This approach was used to assess the in-
cursion risk of ASF and might be appropriate for wild boar
movement [26]. However, bird migration is hard to capture
in a similar way since their flight paths span over larger
distances and there are large seasonal fluctuations in their
behaviour. This means that the generalizability of those
models is limited, and detailed wildlife abundance data is
required, which is often not available. Disease-specific risk
models to assess the entry risk of HPAI via wild bird mi-
gration are mostly spatially explicit. For example, Kosmider
et al. [27] assessed the entry risk of HPAI in the
United Kingdom [27] using a risk score approach informed
by the overlap of wild bird and poultry abundance, pro-
ducing a risk map. Similarly, Martinez et al. [28] used
a spatial approach to identify areas of high risk and perform
risk-based surveillance [28]. These models tend to give
a more detailed insight into the spatial distribution of risk,
but at the expense of generalizability to other diseases.

In contrast to bespoke models, a generic risk model
would allow to quantify the entry risk via wildlife move-
ments for different diseases and wildlife species, despite the
vast variety in both. Here, we describe a generic model to
assess the entry risk of animal disease through wildlife and
demonstrate its workings with the example of the entry of
HPAI through wild birds and ASF through wild boar for the
Netherlands.

2. Materials and Methods

In the risk assessment model described below, we estimate
the risk of “entry” of a pathogen into a new territory through
wildlife movements. We define the entry risk as the expected
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number of infected animals that reach the border of a ter-
ritory per unit of time.

We first describe the generic model: the modelling ap-
proach, the model structure and the model calculations. We
then assess the model by assessing the entry risk of HPAI
through wild birds and ASF through wild boar for the
Netherlands. For the two diseases, we describe the input
data, parameterization, model assumptions, and validation
of results.

All analyses were performed in R version 4.0.5 [29].

2.1. Modelling Approach. We considered that disease out-
breaks that occur beyond the borders of a land mass or
region could pose an entry risk through wildlife movements.
This risk depends on geographic proximity, and the prop-
erties of the disease, such as duration of infectiousness, and
the behaviour of the animals carrying the disease. We ab-
stracted these complex disease and behaviour properties into
a simple, generic set of variables: “directionality,” “distance,”
“duration,” and “abundance” to define different “behaviour
groups,” accommodating for different movement patterns
ranging from, for example, home range to migratory be-
haviour. Multiple “behaviour groups” combined allowed us
to mimic more complicated movement patterns. “Di-
rectionality” is the probability that the outbreak spreads in
a certain cardinal or intercardinal direction, the directions of
an 8-wind compass rose. This can be considered the di-
rection the infected animal or group of animals decides to
travel. “Distance” is the total distance an infection can travel
via wildlife. This is not limited to a single animal or group of
animals; it also allows for unobserved transmission chains in
the wildlife population. The model assumes that infected
animals move in a single direction and travel in a straight
line; the direction and distance may be different though in
each iteration based on sampled values. “Duration” is the
period (in days) over which the transmission chain or in-
fection can persist. “Abundance” represents the monthly
number of animals in each behaviour group; this parameter
allows us to take into account fluctuations in abundance, for
example, due to seasonal patterns. We defined the seasonal/
temporal abundance within a behaviour group (monthly/
temporal abundance denoted by T,,undance) relative to the
month with the highest abundance (see parameterized
example).

Abundance was also used to define the relative proba-
bility of behaviour groups by month based on their relative
contribution to the combined abundance of all behaviour
groups (behaviour group abundance denoted by B,pundances
See parameterized example below). This, together with the
seasonal fluctuations of animal numbers over time (Typ,.
ndance) allows to capture “seasonality” or temporal changes
over the year. Behaviour groups can represent different
species, different age classes, or other properties that require
a distinction into different behaviour groups.

2.2. Model Structure and Calculations. The model considered
the entry risk of every reported disease outbreak outside the
area for which the risk assessment is performed. First, from
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the geolocated outbreak, we calculated the distance to the
closest border point of the area of interest (The Netherlands
in the parameterized example) and the heading in degrees
for the shortest straight line from the outbreak to that border
point (Figure 1) using the geosphere package [30]. The di-
rection was then reduced to one of eight cardinal or
intercardinal directions.

Second, one of the behaviour groups was sampled using
the relative probability/abundance of behaviour groups in
the month in which the outbreak was observed (B,pundance)-
The behaviour group then provided the probability distri-
bution of the effective distance, the probability distribution
of the cardinal and intercardinal directions, and fixed values
for the duration and the temporal abundance (T,pundance)-
Third, the distance and direction were sampled from these
distributions. If the sampled direction corresponded with
the direction in which the closest border point is located and
the sampled distance was larger than the distance to that
point, we considered that the outbreak had reached the
border. Last, we calculated the daily entry risk. The entry risk
(R;;) by outbreak (i) and time (f) is the product of the
outbreak size, i.e., the number of infected animals reported
in the outbreak (size) and the monthly relative abundance
(Tibundance) Within the sampled behaviour group, divided by
the duration (duration) in days over which the transmission
can take place (equation).

sizex T

bund:
= abundance (1)

duration

Thus, we considered the outbreak to pose an entry risk
from the observation date until the end of the infectious
duration. The total daily risk (R_overall,) of all n outbreaks is
the sum of the risk of each outbreak per day

R_overall, = Z R;;. (2)

i=1

To calculate the monthly or yearly risk, we summed the
daily risk over the number of days per month or year.
Because of the stochastic nature of the model, we ran 100
iterations of the model and collected the median and 95%
confidence interval of the entry risk.

From the model, we collected the following outputs: (1)
The number of infected animals reaching the border of the
Netherlands per month and year. (2) The individual con-
tributions of (a) “Behaviour groups” and (b) source coun-
tries to the monthly and annual entry risk.

2.3. Model Input Data. We retrieved data on disease out-
breaks from the Food and Agriculture Organization’s (FAO)
Emergency Prevention System (EMPRES-I) (available from:
https://empres-i.apps.fac.org/). In this database, disease
outbreaks and a minimal set of characteristics are indexed by
the FAO. For the indexed outbreaks, the geolocation (lati-
tude and longitude), the observation and reporting date, the
size of the outbreak, and the affected species are reported.
We considered outbreaks that were labelled as “wild” in the
species description to have occurred in wildlife. The database
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FIGURE 1: Model structure. An example of a hypothetical outbreak
in March in Germany. From the hypothetical outbreak (1), the
direction (2) and the shortest distance to the border (3) of the
Netherlands were calculated. In this case, the direction was west
and the distance was 325km. Then, the behaviour was sampled
based on the March probability distribution. From the sampled
behaviour, distance and direction were sampled. Only when
subsequently a westward direction and an effective travel distance
larger than 325 km are drawn, the outbreak is considered to have
reached the Netherlands.

provides outbreak data starting from 2005. We extracted all
reported ASF and HPAI outbreaks between January 1, 2014,
and December 31, 2021. We opted for this period since, in
the period 2005-2014, few HPAI outbreaks were reported in
the Netherlands. Similarly, during that period, ASF was
mainly circulating in Russia, and introductions in the Eu-
ropean Union (Poland) only started in 2014. As described
above, for all disease outbreaks, we calculated the distance to
the border of the Netherlands and the cardinal or inter-
cardinal direction. In the baseline model, we considered
both outbreaks that were reported in wildlife as well as
outbreaks reported in domestic animals. Furthermore, we
considered all outbreaks to be of the same size (size = 1), due
to the large proportion of outbreaks with missing in-
formation on the number of infected animals.

2.4. Infection and Animal Behaviour Parameters

2.4.1. Highly Pathogenic Avian Influenza. To model the
entry risk of HPAI through wild birds, we defined two
behaviour groups: (1) a short range movement that occurs
year round without a preferential direction, and (2) seasonal
migration where an influx of birds into the Netherlands
peaks in autumn (Figure 2(d), and Supplement 1 for ad-
ditional details). For the first, we assumed that infections
through wild birds can pose a risk for 15 days (duration) and
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Ficure 2: Continued.
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FIGURE 2: Behavioural parameterization for highly pathogenic avian influenza (a), (b), (c), (d), and African swine fever (e), (f), (g), (h).
(a) + (e). Relative probability between each behaviour group by month (B,pundance) (the probability for b3 for African swine fever is 0.001,
and thus not visible in this panel). (b) + (f). Effective distance (distance) travelled by the infection (a combination of animal movement
distance and persistence of transmission chains). (c) + (g). Probability that an animal or infection “moves” from the outbreak location
towards the Netherlands using this cardinal direction (direction). The top slice (orange) corresponds with the direction “North”; colours
provide distinction between the directions. (d) + (g). Temporal abundance within behaviour groups (Tybundance)- Highly pathogenic avian

influenza (HPAI); swine fever (ASF); behaviour group (b).

can travel 30kilometres per day (assumed to be normally
distributed with a standard deviation (sd) of 5 km), resulting
in a maximum median distance of 450 km (distance, Fig-
ure 2(b)). For the second, the migrating birds, we considered
13 bird species of the Anatidae family to be relevant for the
introduction of HPAI in the Netherlands, i.e. the Greater
White-fronted Goose (Anser albifrons), Eurasian Wigeon
(Anas penelope), Gadwall (Anas strepera), Common Teal
(Anas crecca), Mallard (Anas platyrhynchos), Northern
Pintail (Anas acuta), Garganey (Anas querquedula),
Northern Shoveler (Anas clypeata), Red-crested Pochard
(Netta rufina), Common Pochard (Aythya ferina), Tufted
Duck (Aythya fuligula), Common Coot (Fulica atra), and
the Brant Goose (Branta bernicla) [31]. Except for the
Garganey, which spends winters in Africa, the majority of
the birds originate from breeding grounds in a north,
northeast, and east direction from the Netherlands (di-
rectionality, Figure 2(c), based on the Migration Mapping
tool (https://euring.org/research/migration-mapping-tool)
and expert input). Their flight range can span up to 5000 km
(assumed to be normally distributed with a SD =750km)
(distance), and we assumed that they can pose a risk over
a duration of 25days (duration), taking into account the
persistence of infection within a transmission chain. In
Supplement 1, we provide additional details on the selected
bird species and their behaviours that led to the abstraction
mentionedabove. The number of migratory birds changes
due to seasonal migration patterns, which are reflected in the
temporal abundance (T,pyndance) (Figure 2(d)). The October
migratory peak population was taken as a reference value
(100%) to calculate the temporal abundance of migratory
birds for other months. Based on expert input, we assumed

that the abundance of the “short-range” birds was constant
at 5% of the October migratory peak population. The relative
abundances of both behaviour groups were used to set the
relative probability of the behaviours over time (Figure 2(a)).
The relative probability of the behaviour groups (Bapundance)
was thus calculated as the relative abundance of each be-
haviour group divided by the relative abundance of both
behaviour groups.

2.4.2. African Swine Fever. To model the entry risk of ASF
through wild boar, we defined three behaviour groups: (1)
short range movement, (2) young animal dispersal move-
ment, and (3) “long jumps”. We defined the latter as out-
breaks that occurred more than 250km from a previous
outbreak. For all behaviour groups, we assumed that their
directionality is uniformly distributed, i.e., the probability
that the behaviour is in one of eight cardinal or intercardinal
directions is 0.125. The short range movement is most likely,
with an average probability of 0.85 (between behaviour
groups’ probabilities based on Bupyndance> Figure 2(e)). The
young animal movement is less likely, with an average
probability of 0.149 and a seasonal influence [1]. Based on
expert input, the peak of this behaviour is when young
animals disperse, 1-1.5 years after birth. However, the exact
moment at which this occurs varies between years, de-
pendent on factors such as the availability of resources,
which is reflected in the model by the distribution over time
(Figures 2(e) and 2(g)). The long jumps are rare (constant
probability of 0.001, based on historic observations, see
Supplement 2). We parameterized the distance travelled as
exponential distributions with parameters that are 1/mean
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distance of 2, 5, and 388 km for the three behaviour groups
(Figure 2(f)). The first two were based on the diameter of the
home ranges of wild boar [3, 32, 33], whereas the distance of
the long jumps was based on historical data of the ASF in
Europe and Russia (Supplement 2). We considered the long
jumps as wildlife movements, although they are likely to be
human-mediated [34]. The temporal abundance (Typundance)
of wild boar within the behaviour groups is fairly stable over
the year and only affected by the temporal fluctuation of the
number of young dispersing animals as described above
(Figure 2(g)). We assumed that all behaviours would pose
a risk over the period of 10 days (duration) [26].

2.4.3. Model Assumptions. In the model, we made several
assumptions. We considered each outbreak to be of the same
size (size = 1), due to the large proportion of outbreaks with
missing information on the number of infected animals. This
means that now the number of animals is equal to the
number of outbreaks, and the overall risk (R_overall,) could
also be interpreted as the number of outbreaks reaching the
border per time unit. In the baseline model, we made no
distinction between outbreaks in “wild” and “domestic”
animals, nor did we distinguish between different (bird)
species or virus strains. We considered that domestic oc-
currences of HPAI can be a result of undetected circulation
in wild birds or pose a risk for spill over to wild birds again,
and as such are also an indication of the infection pressure in
wild birds. Similarly, the occurrence of ASF in domestic pigs
is likely to be a result of wild boar cases (detected or un-
detected). Outbreaks are assumed to be representative of
disease occurrence, despite known data issues such as
heterogeneity in detection/reporting efforts and quality,
which result in underreporting and bias.

By assuming travel in a cardinal or intercardinal di-
rection, we assumed that travel occurred in a straight line,
and we did not consider any barriers on the path. Similarly,
the distance only influenced whether a case could “reach the
border” or not; it did not, for example, affect the probability
of introduction success, for example, we did not assume the
probability of contact with susceptible animals in the
Netherlands.

2.4.4. Validation. For HPAI in the period 2014-2021,
outbreaks in the Netherlands have been observed. Thus,
comparison of our model’s predicted entry risk with all the
observed outbreaks (both in wild and domestic birds in the
Netherlands) allowed us to validate the model’s predictions.
We calculated the root-mean-square error (RMSE) to
quantify the discrepancy between observed and predicted
values. Additionally, we challenged the effect of one of the
assumptions we made: restricting the prediction to reported
outbreaks that have been marked as “wild” (Model 1) instead
of considering all reported outbreaks (Baseline Model).
Validation of results for ASF was not feasible, as no ASF
outbreaks were observed in the Netherlands in the period
2014-2021. We therefore also assessed the entry risk of ASF
for Belgium and Germany, two countries in which outbreaks
did occur. In Belgium, the ASF outbreak started in
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September 2018 [35]; in Germany, the first case was detected
in September 2020 [36]. We ran the model with the same
parameters as mentionedabove, assuming that wild boar
behaviour did not differ between countries. The distance and
direction to the border from the geolocated outbreaks were
calculated for Belgium and Germany.

3. Results

3.1. Highly Pathogenic Avian Influenza. We assessed the risk
of HPAI entry into the Netherlands for the 17,914 HPAI
outbreaks that were reported in EMPRES-I worldwide in
both wildlife and domestic animals between January 1, 2014,
and December 31, 2021. We found that the modelled HPAI
entry risk strongly varied between the years (Figure 3); for
2021, we found that a median of 273 outbreaks (R_overall,,
95% uncertainty interval (UI): 254-290) was expected to
reach the Dutch border by wild bird migration, whereas for
2019, this was only the case for 1.3 outbreaks (95% UI:
0.6-1.8). The majority of entry risk was due to long-range
migration behaviour (b2, 97.8%); short range flights (b1)
contributed to the remaining 2.2% of the risk. The ten
countries that contributed most to the risk (ranked by
contribution) were Germany, Russia, Denmark, the
United Kingdom, Poland, Sweden, Finland, Estonia,
Kazakhstan, and the Czech Republic; 97% of the total entry
risk came from these ten countries (Supplement 3).

3.2. African Swine Fever. We assessed the entry risk for the
Netherlands for 31,451 ASF outbreaks that occurred between
January 1, 2014, and December 31, 2021. The yearly risk for
ASF entry was low (Figure 3). The median risk was zero for
all years, however, the upper 95% confidence interval was 1
for 2018-2021. All of the entry risk was a result of the “long
jumps” (b3).

3.3. Validation

3.3.1. HPALI: Observed versus Predicted. When we compare
the estimated yearly risk against the observed number of
outbreaks in the Netherlands for the period 2014-2021
(Figure 4), we find the same pattern. Based on RMSE, the
model in which we only considered outbreaks reported in
wildlife (model 1; RMSE of 30.1) outperformed the baseline
model (model 0; RMSE of 59.5), in which we considered all
reported outbreaks (Table 1). However, the alternative
model (model 1) underestimated the risk for the years
2014-2018. The improved performance of this model was
based on the predictions for 2020 and 2021, where the
baseline model showed a larger discrepancy between ob-
served and predicted.

3.3.2. ASF: comparison The Netherlands, Germany, and
Belgium. The entry risk for ASF in Germany started to
increase from 2019 on from 0.15 (0.0-2.0) in 2019 to 7.0
(2.0-13.0) in 2021 (Figure 5); In Belgium, the modelled risk
was low throughout the whole period. When we compared
the model results between The Netherlands, Germany and
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TaBLE 1: Comparison of different models.

Model name Included data/assumptions RMSE
Observed Observed number of outbreaks (wild + nonwildlife) in the Netherlands Ref
Model 0 (baseline) Wildlife + nonwildlife outbreaks 59.5

Model 1 Wildlife outbreaks only 30.1
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FIGURE 5: The modelled median yearly entry risk for African swine
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of outbreaks (n). The error bar provides the 95% uncertainty in-
terval of the modelled risk.

Belgium, we saw that the outbreaks in Germany that started
late 2020, were preceded by a period of increased risk; the
2018-2019 outbreak in Belgium did not correlate with the
predicted risk. During this period, no outbreaks were ob-
served within the Netherlands.

4. Discussion

4.1. Summary of Findings. Here, we present a generic entry
risk assessment model that provides a flexible and generic
solution to estimate the entry risk of animal disease through
wildlife movements. We demonstrated that the complexities
of animal movements can be reduced to a set of parameters
that can be parameterized to mimic animal “behaviour
groups.” With this, we managed to reach a level of com-
plexity that was necessary to capture the key patterns of
wildlife movement while maintaining flexibility and
transparency.

To demonstrate the application of the model, we assessed
the entry risk of HPAI through wild birds and ASF through
wild boar for the Netherlands between 2014 and 2021. We
found that the risk of HPAI fluctuated between the years,
with a peak in 2021. The risk of ASF was very low throughout
the whole period; only the upper confidence bound in-
dicated a small entry risk. On a yearly scale, the predicted
entry risk for HPAI correlated well with observed outbreaks
in the Netherlands.
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4.2. Interpretation. The difference in risk between HPAI and
ASF is driven by the probability that animals reach the
Dutch border. Wild boar from ASF outbreaks that occurred
between 2014 and 2021 were too far away to pose a risk, and
the probability of “long jumps,” which are most likely the
result of human interference, was very low; wild birds,
through long distance migration, were more likely to reach
the border and thus introduce HPAI. This is in line with the
recent findings from Engelsma et al. [6] that describe HPAI
outbreaks in the Netherlands as separate introductions
originating from wild birds [6].

If we consider the entry risk for ASF into Belgium and
Germany, we found that for Germany, the proximity of
outbreaks in Poland close to the border caused an increased
entry risk before outbreaks were indeed observed. For
Belgium, our model did not indicate an elevated entry risk in
the time period that the outbreaks of wild boar in Belgium
occurred. Previous analyses of these outbreaks confirm that
the outbreaks in Germany were likely the result of multiple
entries of infected wild boar, whereas the outbreak in Bel-
gium originated from a point-source introduction [36]. The
latter is harder to predict due to the stochastic nature of
the event.

We should interpret the results semiquantitatively: the
model provides an indication of the relative entry risk over
different years rather than a prediction of the absolute
number of entries. We should also put the results in per-
spective given the limitations of the data used. We departed
from observed outbreaks of disease, where heterogeneous
underreporting and changes in what is reported in time and
space is likely. We lack prevalence data, which would allow
a more reliable quantitative estimation.

4.3. Strengths and Limitations. Our approach has several
strengths. First, the model is generic and transparent. We
managed to capture the dispersal patterns of HPAI and ASF
by wildlife in the same model, despite differences in disease
and susceptible species. Second, the model is balanced in its
complexity, yet captures the most important patterns that
seem to have driven the entry of previous outbreaks. Thus, it
allowed us to formalize these patterns without the need for
a complex model, for which data for parametrisation are
lacking. Our model has several limitations as well. We had to
make several other assumptions that have resulted in an
oversimplification of reality. These assumptions might hold
true in the context in which we applied the model, but this
might not be the case in other settings. For example, if
migration movement in reality is not predominantly in
a single direction, the model, by design, failed to capture that
pattern. Also, the current parametrisation of HPAI might
overestimate the effect outbreaks in neighbouring countries
have. Migrating birds are now considered to depart from any
location within the distance and direction specified. This
means, for example, that autumn occurrence of outbreaks in
Germany pose a large risk, where these outbreaks might
actually be at end points of migration routes; whereas our
model considers these as departure points. Some of the
infections in neighbouring countries might even have
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originated in the Netherlands rather than posing a risk for
entry. This could explain why we saw an increase in the
modelled number of infected birds that reach the border in
2020 and 2021, as in recent years, the local circulation of
HPAI in Europe has increased, causing the model to predict
an increased risk originating from neighbouring countries.
Similarly, some of the observed outbreaks in the Netherlands
will have resulted from local circulation of the virus rather
than new entries. This also demonstrates the limitation of the
definition of “outbreak” as reported in the EMPRES-I
dataset; many of these events are likely a continuation or
reemergence of an existing event, but the reported outbreaks
are not classified as “primary” and “secondary” outbreaks.

Indeed, if we look at the countries that the model
predicted were most contributing to the entry risk of HPAI,
some might not be in line with the assessment of the
phylogenetic trees. Beerens et al. [10] noted that the “in-
cursion was not related to viruses detected in eastern Europe,
Germany, and Bulgaria earlier in 2020 but was probably
associated with the fall migration of wild birds to wintering
sites in the Netherlands.” Although no HPAI viruses or
deaths were reported at wild bird breeding sites in northern
Russia, HPAI H5N8 viruses were reported in southern
Russia and northern Kazakhstan in September 2020 [10].
However, due to the selective and limited sequencing of
cases, this might also not provide a complete picture of
transmission chains.

Endemicity of disease will result in a higher infection risk
in the country than accounted for by our model, since the
model, as it is parametrized here, only takes into account
new introductions and not local circulation. Recently,
during 2022, outbreaks of HPAI have occurred outside of the
bird migration season, indicating the local establishment of
the disease in many European countries, including the
Netherlands [37]. Due to the endemicity of HPAI, many of
the observed outbreaks are hypothesized to be the result of
local circulation rather than new introductions. These
changed dynamics will result in an underestimation of the
risk by the current model. However, the model might still be
able to predict the number of introductions, although these
become less relevant when local circulation is abundant.

4.4. Comparison with Other Work. There are a few generic
quantitative risk models that include wildlife as a pathway
for disease entry. Simons et al. [1] applied their generic risk
model to infer the entry risk of ASF, classical swine fever,
and rabies through wildlife. They modelled the dispersal
behaviour of wildlife over a spatial grid, where habitat
suitability drives the direction of dispersion. This requires
that reliable wildlife density maps are available, which is not
always the case. Contrary to our model, they did not apply
the model to diseases transmitted by birds. However, they do
mention that a future extension is possible to include wild
birds and also model avian influenza. Taylor et al. [26]
applied a similar approach to Simons et al. [1], where the
movement of wild boar depends on habitat suitability. The
approaches of Simons et al. [1] and Taylor et al. [26] are more
demanding than ours with respect to spatial data on

susceptible wildlife host populations, which have to be
collected for each species separately. The generic framework
developed by Taylor et al. [38] can provide results at different
spatial scales, varying from animal holding to country [38].
Our approach is at the country level but could relatively
easily be adapted to other regional levels as long as file shapes
are available. Although we used a quantitative approach to
estimate the entry risk posed by wildlife, results should be
used for prioritisation rather than prediction, similar to
some of the semiquantitative generic tools that have been
developed in recent years [22, 24]. By calculating the entry
risk over multiple years, trends in risk can be observed,
allowing for horizon scanning and early warning. Our model
has been designed such that it can be easily updated when
new disease outbreak data become available. It was originally
developed as an extension of RRAT, a rapid risk assessment
tool to assess the incursion risk of emerging and reemerging
diseases for the Netherlands [20]. RRAT only addresses the
incursion risk related to human activity, including legal
trade in animals and animal products and animal products
illegally carried by travellers, whereas for diseases such as
ASF and HPAI, the incursion risk by wildlife might be more
important. A next step would be to merge this tool with
RRAT and apply both tools for the same diseases to enable
comparisons of the entry risk across pathways and diseases.

4.5. Future Improvements. Since models are only as good as
the data that is put into them, many of the improvements
lie in improving the input data. We need to improve our
understanding of migration and dispersal patterns. For
example, now, migration patterns are based on the ringing
of birds and retrieval of rings, which is very dependent on
the number and quality of observations, where hetero-
geneity and underreporting are likely. This results in
biased data. There is bias that is likely propagated in the
models that rely on this data. Translating reliable mi-
gration data into probabilities of birds’ departure and
arrival would facilitate risk estimation. Additionally,
considering the role of the landscape and appropriate
foraging and resting sites for birds could help to reveal
more nuanced migration patterns as well as specific areas
at risk. Similarly, extending the model to include barriers
such as roads and rivers, and allowing travel across
nonlinear paths, would refine the prediction of pre-
dominantly land-based movement. The framework allows
for an extension of the number of behaviours considered,
thus enabling the entry risk to be estimated in more detail,
for example by bird species or by disease strain or subtype.
For example, a more detailed parametrisation of different
HPALI strains (as different diseases) and different bird
species (as different behaviour groups) could increase the
accuracy of the model but would require more detailed
outbreak and transmission data. We also need to improve
our understanding of disease occurrence. The notification
and reporting of disease occurrences are sensitive to
differences in reporting across time and space. The
probability of a case being detected and reported differs
between regions. For ASF, e.g., we see large areas where
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reporting is absent. An estimation of the prevalence of
disease would improve the estimation of risk.

A logical extension of the model is to predict beyond
entry. Here, we have only considered outbreaks until the
point they reach the Dutch border. Extending the model to
include the probability of transmission and establishment
will give policymakers more insight into the spatial and
temporal risks, but it will require a better understanding of
the movement and behaviour of animals once they have
crossed the border. Similarly, the transmission success from
wildlife to livestock will depend on their proximity and
interactions. For HPAI, extending the model to predict local
outbreaks will allow a more reliable comparison with the
observed outbreaks as well.

5. Conclusion

The movement of wildlife is complex and based on many
external factors that vary between regions and over time. To
assess the entry risk of diseases transmitted by wildlife, we
described animal movement patterns using a limited
number of variables. Each set of parameterized variables
represents a “behaviour group” and more nuance and
complexity can be added to the model by defining additional
“behaviour groups” when more data becomes available.
With this approach, we were able to build a generic and
flexible framework to assess the entry risk of diseases in
wildlife that could be used for both terrestrial animals (il-
lustrated by ASF) and birds (illustrated by HPAI). The model
thus enables rapid and transparent estimation of the entry
risk for diverse diseases and wildlife species.
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