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Glaesserella parasuis is a specific bacterial pathogen of Glässer’s disease which causes significant economic losses to the swine
industry. Dependable and rapid detection ofG. parasuis is crucial to prevent and controlGlässer’s disease outbreaks. In this study, a
recombinase-aided amplification (RAA) assay based on the infB gene was developed to rapid detect G. parasuis. The novel method
performs isothermal detection at 42°C for real-time analysis or visualization and data analysis (RAA-VDA). The developed assay
showed high specificity for G. parasuis detection without cross-reactions to other clinically important swine pathogens. The
analytical sensitivity of real-time RAA was 67.17 copies per reaction with 95% reliability, which was comparable to the G. parasuis
quantitative real-time PCR (qPCR). However, the detection limit of RAA-VDA was 142.43 copies per reaction with 95% reliability.
The coefficient of variation analysis of the intrabatch and interbatch experimental replicate results were less than 4.30% and 6.74%,
respectively, indicating the real-time RAA assay had high repeatability and reproducibility. A total of 108 clinical tissue samples
were used to evaluate the clinical diagnostic performance. The diagnostic accordance rates of qPCR with real-time RAA and RAA-
VDA were 100% and 98.15% (106/108), respectively. This system combined instrumental analysis and visualized analysis to
accomplish a new try for rapid detection of G. parasuis in clinical practice.

1. Introduction

The Gram-negative bacterium Glaesserella (Haemophilus)
parasuis is the pathogen of Glässer’s disease in pigs and
has been classified as a member of the family Pasteurellaceae
in the genus Haemophilus [1]. It is an opportunistic patho-
gen widely colonized in the upper respiratory tract system
such as the nasal cavity and trachea in healthy pigs that can
cause highly fatal serositis, meningitis, bronchopneumonia,
and arthritis under stress conditions [2, 3]. In recent years,
under the condition of farming cluster culture, due to the
expansion of breeding scale and density, Glässer’s disease has
remained a significant economic burden for the swine indus-
try. It causes serious damage and death to pigs through coin-
fection or secondary infection with other pathogens, such as
porcine reproductive and respiratory syndrome virus, por-
cine circovirus type 2, swine influenza A virus, and

mycoplasma hyopneumoniae [4–7]. The high mortality
and morbidity caused by the coinfection or secondary infec-
tion of G. parasuis pose a great challenge to the prevention
and control of this disease.

According to the differences of capsular antigens,
G. parasuis can be roughly divided into 15 serotypes, but
there are still a large number of strains that cannot be typed
[8, 9]. The main prevalent serotypes of G. parasuis in China
are serotypes 4, 5, and 13 [10]. Vaccine immunization and
antibiotic treatment are the main prevention and control of
Glässer’s disease. There are many serotypes of G. parasuis,
and cross-protection between different serotypes is limited
or insufficient [11]. The lack of accurate grasp of epidemic
serotypes severely affects the vaccine development efforts.
The current treatment of Glässer’s disease is mainly based
on the use of antibiotics but the appearance of drug resis-
tance stains seriously reduces treatment effects.
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At present, the main nucleic acid detections for the diag-
nosis of G. parasuis are PCR [12], real-time PCR [13],
serotype-specific PCR [14, 15], and multiplex PCR in tissues
of affected animals [16]. However, the conventional diagnos-
tic methods mentioned above have some deficiencies, such as
complicated operations, time-consuming, and requirement
for complex thermal cycler instruments, which cannot meet
the requirements of rapid clinical diagnosis and are not suit-
able for on-site real-time detection. Recombinase-aided
amplification (RAA) assay is a new isothermal nucleic acid
amplification technology in vitro with Chinese-independent
intellectual property rights. This technology can achieve
rapid nucleic acid amplification at a constant temperature
of 37–42°C by utilizing recombinase, single-stranded bind-
ing protein, and DNA polymerase, which has the advantages
of high sensitivity, strong specificity, simple operations, and
no need for thermal cycler instruments [17, 18]. The ampli-
fication products can be visualized by lateral flow test strip
[19, 20] and portable blue light imagers [21, 22], which is
convenient for on-site real-time detection. It provides a
brand-new platform for researchers to carry out in-depth
research on pathogen nucleic acid detection.

In this study, we established a RAA assay for accurate and
rapid detection of G. parasuis in the most conserved region of
infB. The diagnostic performance was comparedwith a TaqMan
probe-based quantitative real-time PCR (qPCR) assay through
clinical samples. The method can be used not only for real-time
detection by probe-based fluorescence monitoring but also for
visualization through portable blue-light imagers with an excita-
tion wavelength of 480nm (RAA-VDA) (Figure 1).

2. Materials and Methods

2.1. Bacteria Strains and Clinical Samples. The nucleic acid of
Actinobacillus Pleuropneumoniae, Streptococcus suis ST171,
and Mycoplasma hyopneumoniae was kindly provided by
Dr. Bo Tang (Beijing Biomedical Science and Technology
Center, JOFUNHWA Biotechnology Co. Ltd., Beijing,
China); the nucleic acid of Escherichia coli (ATCC25922),

Klebsiella Pneumoniae (ATCC13883), Staphylococcus aureus
(ATCC29213), and Pseudoonas aeruginosa (ATCC27853)
was generously provided by Researcher Yu Pang (Department
of Bacteriology and Immunology, Beijing Chest Hospital,
Capital Medical University, Beijing, China); the nucleic acid of
Salmonella typhimurium (ATCC14028) was kindly provided
from Prof. Jianhan Lin (China Agricultural University, Beijing,
China); and the Glaesserella parasuis was separated and
conserved in our laboratory.

A total of 108 clinical tissue samples were obtained from
diseased pigs in Chinese pig farms between 2020 and 2022,
including lung, lymph node, and so on. Total genomic DNA
of tissue samples and bacteria was extracted using the TIA-
Namp Genomic DNA Kit (Tiangen Biotech Co., Ltd., Beijing,
China) according to the manufacturer’s instructions. All
extracted DNA samples were kept in collection tubes with
50 µL nuclease-free water and stored at −20°C until usage.

2.2. Artificial Positive Control (APC). We designed two
APCs, one based on the conserved region of G. parasuis-
infB sequences for primer screening sequence (APC1), the
other based on the full length of G. parasuis-infB sequences
for sensitivity analysis sequence (APC2). The target fragment
was amplified, purified, and then inserted into pEASY-Blunt
vector.

2.3. RAA Primers and Probe Design. Three hundred nine
partial infB sequences of G. parasuis available in the Gen-
Bank nucleotide database were performed for multiple align-
ments by MAFFT software. The primers and probes were
designed within the most conservative regions, following the
criteria suggested in the TwistAmp™ amplification guidelines
(TwistDx Ltd., Cambridge, UK).

The probe consists of an oligonucleotide backbone that
contains a tetrahydrofuran (THF) residue, a flanking dT-
fluorophore, a corresponding dT-quencher group, and a
suitable 3′-modification group. As the internal labels used
in the probe are currently only readily available on thymines,
the ideal probe locations to sequences in which two thymines
can be found with fewer than about five intervening
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FIGURE 1: Schematic of RAA assay for detection of G. parasuis.
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nucleotides. Although several positions within the infB of
G. parasuis meet the above criteria, an optimal one was
finally selected for the design of the exo probe RAA-infB-
P. Subsequently, a series of forward and reverse candidate
primers were designed around RAA-infB-P using SnapGene
software. The primers and probes were purchased from
Tiangen Biotech (Beijing, China) and Sangon Biotech
(Shanghai, China), and the detailed sequences are listed in
Table 1 and Table S1.

2.4. Establishment and Optimization of RAA Assay. The RAA
assay was performed using the kit #WLRE8208KIT of
Weifang Amp-Future Biotech Co., Ltd. (Shandong, China)
following the manufacturer’s instructions. Briefly, each reac-
tion contained 14.7 μL of A buffer, 1 μL of each forward and
reverse primer (10 µM), 0.3 μL of probe (10 μM), 2 μL of
nucleic acid template, 4.75 μL of nuclease-free water, and
1.25 μL of B buffer for the initiation of the reaction. The
RAA reactions were performed in the CFX96 Real-Time
Thermal Cycler (Bio-Rad, Hercules, CA, USA). Incubation
was at a constant temperature of 42°C for 30min. Further-
more, the readout results of the visual detection were based
on the TGreen Monitor blue-light instrument (Tiangen Bio-
tech Co., Ltd).

2.5. Real-Time PCR Assay. The qPCR assay for G. parasuis
was performed as previously described with slight modifica-
tions [13] and was carried out using the TaqMan Fast
Advanced Mix (Invitrogen, Carlsbad, CA, USA). The ampli-
fication was prepared in a final volume of 25 μL containing
12.5 µL of 2×Taq Man™ Fast Advanced Master Mix (Invi-
trogen), 0.75 µL of 10 µM forward and reverse primer, 0.5 µL
of 10 µM probe, 2.0 µL of nucleic acid template, and 8.5 µL of
nuclease-free water. The qPCR cycling parameters initially
start at 50°C for 2min, predenaturation at 95°C for 5min,
40 cycles at 95°C for 20 s, 55°C for 30 s, and 72°C for 30 s.

2.6. Analytical Specificity and Sensitivity of RAA Assay. Ten-
fold serial dilutions of APC2, ranging from 1.0× 106 to
1.0× 100 copies/reaction, were used to evaluate the sensitivity
of the G. parasuis-RAA assay. For comparison, the qPCR
assay for G. parasuis was performed in parallel with the
same templates. To determine the LOD more accurately,
each dilution performed eight independent reactions in
both RAA and qPCR assay. Statistical analyses and data
plotting were used for probit regression analysis by IBM’s
Statistical Product and Service Solutions (SPSS) software.

2.7. Repeatability and Reproducibility Analysis of RAA Assay.
Three different concentrations of APC2 including high con-
centration (106 copies/reaction), medium concentration
(104copies/reaction), and low concentration (102 copies/
reaction) were texted for the intrabatch and interbatch
assays. For repeatability analysis, the APC2 was serially
diluted by the real-time RAA assay and replicated three times
at a time. For the reproducibility analysis, the serial dilutions
were tested by the real-time RAA assay in three independent
runs by different people in different times. The coefficient of
variation (CV) was obtained by calculating the threshold
time (TT).

2.8. Validation of RAA Assay by Clinical Samples. To deter-
mine the accuracy of the RAA assay, 108 clinical tissue sam-
ples were detected by the RAA assay and the qPCR assay in
parallel, and the coincidence rates of the two methods were
compared. Kappa statistics were used by SPSS software to
determine their level of agreement. The linear regression
analysis between the real-time RAA assay and the qPCR
assay was performed using the GraphPad Prism software
(Version 5.0; La Jolla, CA, USA).

3. Results

3.1. Screening of the Optimal Primer and Probe Combination
for the RAA Assay. In total, 309 partial sequences of the
G. parasuis-infB gene available in the GenBank database
were aligned using MAFFT software. After selecting a
suitable target region, we designed an ideal exo probe that is
in compliance with the criteria of TwistAmp™ amplification
guidelines (Figure 2, Figure S1). First, five upstream and five
downstream primers were designed surrounding the probe
(Figure 3(a)). According to the screening strategy, we used a
random forward primer to screen all reverse primers, picking
the best reverse primer and then using it to screen all the
forward primers. The key performance parameters are the
time of amplification onset and the total fluorescence signal
strength. After preliminary screening, the combination of
F1396-1427/R1518-1549 was considered to have the best
performance (Figures 3(b) and 3(c)). Subsequently, primers
differing by 1 base increment around the best primary screen
primers were tested in different combinations. We designed
eight new forward primers around the primary screening
primer F1396-1427, eight new reverse primers around the
screening primer R1518-1549 (Figure 3(d)), and the
combination of F1395-1426/R1518-1549 was the best

TABLE 1: The primers and probes of the RAA and qPCR assays for G. parasuis.

Primers/probes Sequences (5′–3′) Size (bp) Sources

RAA-infB-F TAAACCAGAAGCAAACCTAGAGCGTGTAGAAC

155 This study
RAA-infB-R CCGATTGAAGAAGAATGGCTTCAAGTAAGTC

RAA-infB-P
ATTTCTGAGAAATTCGGTGGTGATGTTCAA(FAM-dT)
(THF) (BHQ1-dT) GTTCCTGTTTCAGCG (C3-Spacer)

CTinfF1 CGACTTACTTGAAGCCATTCTTCTT
74 [13]CTinfR1 CCGCTTGCCATACCCTCTT

CTinfP FAM-ATCGGAAGTATTAGAATTAAGTGC-TAMRA
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primer pair through the above principle (Figures 3(e), and (f)).
After having defined the best secondary screen combination,
primers differing in length by 1 base increment at the 3′ end
of the best secondary screen primers were tested in different
combinations. We designed five new forward primers and six
reverse primers around the best secondary screen combination
(Figure 3(g)). Finally, the RAA detection of G. parasuis was
performed using the optimal primer pair RAA-infB-F/R
(F1395-1426/R1519-1549) with the RAA-infB-P (probe 1450-
1497) (Figures 3(h) and 3(i), Table 1).

3.2. Analytical Specificity of the RAA Assay. To determine the
specificity of the RAA assay, the nucleic acids of G. parasuis,
S. suis, K. Pneumoniae, A. pleuropneumoniae, M. hyopneu-
moniae, S. aureus, S. typhimurium, E. coli, and P. aeruginosa
were detected by the developed RAA method (Figure 4(a)).
Additionally, the amplification products can be visualized at
an excitation wavelength of 480 nm by the TGreen Monitor
blue-light instrument (Figure 4(b)). The assay tested positive
for G. parasuis. There was no cross-amplification detected in
the other reaction, and no signals were observed in the neg-
ative control. The results showed that the primer–probe
combinations designed for the RAA assay were specific for
detecting G. parasuis.

3.3. Analytical Sensitivity of the RAA Assay. The limit of
detection (LOD) of the RAA method was measured using
the 10-fold serial dilutions of the APC2. To generate a more
accurate LOD, eight independent runs were performed for
each dilution. The results of both qPCR, real-time RAA, and
RAA-VDA showed that the LOD of each reaction was 100
copies (Figures 5(a), 5(c), and 5(e)). The further probit
regression analysis showed that the LOD of real-time RAA
and qPCR were 67.17 copies per reaction with 95% reliability
(Figures 5(b), and 5(d)). Whereas the RAA-VDA demon-
strated a relatively lower sensitivity, which was 142.43 copies
per reaction with a probability of 95% (Figure 5(f)).

3.4. Analytical Repeatability and Reproducibility of the RAA
Assay. To estimate the repeatability and reproducibility of
the developed assay, intrabatch assay and interbatch assay

CVs were determined for three concentrations of the APC.
The assays were repeated three times with 106 copies,
104 copies, and 102 copies. Based on the threshold time of
the amplification, the results demonstrate that the intra-
assay CV ranged from 1.64% to 4.30%, while the interassay
CV ranged from 3.81% to 6.74% (Table 2). The analysis
results indicate that the real-time RAA of G. parasuis has
reliable reproducibility and repeatability.

3.5. Evaluation of the RAA Method by Clinical Samples. To
evaluate the diagnostic performance, 108 clinical tissue sam-
ples were simultaneously detected by RAA and qPCR. As
shown in Table 3, both real-time RAA and qPCR tested 33
of the 108 samples positive for G. parasuis. Further linear
regression analysis demonstrated a significant correlation
between the two assays with an R2 value of 0.8125 (Figure 6
and Table S2). However, of the 33 positive samples tested by
the real-time RAA, 31 were determined to be positive by
visual observation. Therefore, the coincidence rates of
qPCR with real-time RAA and RAA-VDA were 100% and
98.15%, respectively, and the kappa value between qPCR and
RAA-VDA was 0.956 (p<0:001) (Table 3). In summary,
these results demonstrate that the developed assay can be
performed on-site and has comparable clinical detection per-
formance to the qPCR assay.

4. Discussion

With the expansion of large-scale agriculture in recent years,
the incidence of G. parasuis has been steadily increasing.
Currently, it has emerged as a major bacterial disease affect-
ing the global swine industry [23]. Due to the secondary
infections and coinfections of G. parasuis with immunosup-
pressive diseases, G. parasuis infection seriously threatens
the swine industry. Although vaccines, especially autologous
vaccines have been successful in reducing the mortality, vac-
cine failures due to poor cross-protection between different
serotypes are common [24, 25]. To date, the laboratories
around the world have mainly used conventional PCR and
qPCR to screen and diagnose suspected cases. However, these
methods have the deficiencies mentioned in Section 1, it is

(1395-1426)  RAA-infB-F RAA-infB-R  (1519-1549) 

RAA-infB-P (1450-1497) 

Haemophilus parasuis SH0165 infB
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FIGURE 2: The position of the real-time RAA probe and primers within the aligned infB sequences from G. parasuis. The information of the
sequences is listed on the left. The primer pair and probe were shaded with purple and green, respectively. Nucleotide residues that match the
majority are indicated by “∗”. Nucleotide deletions are indicated by triangle. The dT-fluorophore residue (FAM-dT) and dT-quencher
residue (BHQ1-dT) were marked by the green and blue circles, respectively.
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FIGURE 3: Continued.
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necessary to develop a rapid andmore convenient nucleic acid
detection method that can easily be used in the pig farms to
detect G. parasuis.

In this study, we established and evaluated a conserved
infB gene-based RAA method for rapid detection of G. para-
suis in clinical swine samples. A comparison of the 309 exist-
ing G. parasuis-infB gene sequences in the NCBI database
identified the most conserved region. The basic principle
proposed by TwistDx was used to design the exo probe
and screen the primers in the selected target sequence.
Firstly, we found an ideal RAA-infB-P that was fully consis-
tent with the judgment criteria and was used to screen the
best primer pairs. After three rounds of primer selection, we
successfully screened the most suitable primer pair RAA-
infB-F/R. Then, we proceeded to evaluate its sensitivity, spec-
ificity, and repeatability. The developed RAA assay showed

high specificity and had no cross-reactivity to other clinically
common swine pathogens. The statistics of the intrabatch
and interbatch experimental replicate results were less than
4.30% and 6.74%, respectively, indicating the real-time RAA
assay had high repeatability and reproducibility. Our experi-
mental data revealed that the real-time RAA and RAA-VDA
assays have a detection limit of 67.17 and 142.43 copies with
95% reliability, respectively. In order to further evaluate the
clinical diagnostic performance of this assay, 108 clinical
tissue samples were detected by qPCR, real-time RAA, and
RAA-VDA, respectively. The diagnostic accordance rates of
qPCR with real-time RAA and RAA-VDA were 100% and
98.15%, respectively. Only two weakly positive samples were
detected positive by the qPCR and the real-time RAA but
negative by the RAA-VDA. It is noteworthy that the RAA
products can be visualized in real time under a portable blue
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FIGURE 3: Strategies of screening primers for G. parasuis RAA assay. (a) Schematic diagram of the primary primer screening. The positions of
the five forward and five reverse candidate primers flanking the p1450-1497 probe are denoted by arrows. The name of the primer represents
the oligonucleotide positions in the infB gene of Haemophilus parasuis SH0165 strain. (b) The application result of the real-time RAA in the
primary screening for the best reverse primer. All the candidate reverse primers were screened with the randomly selected forward primer
F1372-1403. (c) The application result of the real-time RAA in the primary screening for the best forward primer. All the forward candidate
primers were screened with the reverse primer R1518-1549. (d) Schematic diagram of the secondary primer screening. (e) The application
result of the real-time RAA in the secondary screening for the best reverse primer. The forward primer F1396-1427 was picked to screen all
reverse candidate primers. (f ) The application result of the real-time RAA in the secondary screening for the best forward primer. The reverse
primer R1518-1549 was picked to screen all forward candidate primers. (g) Schematic diagram of the final primer screening. (h) The
application result of the real-time RAA in the final screening for the best reverse primer. All seven candidate reverse primers were screened
with the best selected forward primer F1395-1426. (i) The application result of the real-time RAA in the final screening for the best forward
primer. All seven candidate forward primers were screened with the best selected reverse primer R1519-1549.
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FIGURE 5: The comparison of the sensitivity with G. parasuis RAA and qPCR assays. Curves 1−8 : 106–100 copies of APC2 and negative
control, respectively. (a) The sensitivity results of qPCR assay. (b) Probit regression analysis of qPCR assay with the data of eight repeats. The
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light imager, making it feasible to use in the field. More
importantly, based on this feature, the RAA method has
the potential to be exploited in a microfluidic chip technol-
ogy for multiplex detection. Our results show that the estab-
lished G. parasuis RAA is a rapid detection method with
broad application prospects in the grass-roots clinical field.

As a new emerging technology with good application
prospects, RAA has recently undergone steady development

in the field of clinical diagnostics for animals and humans
and has a broad application spectrum [26–28]. Compared
with the qPCR, the real-time RAA for G. parasuis showed
several advantages. First, the amplification process of real-
time RAA can be completed within 30min, which is much
faster than qPCR. Second, RAA detection can be performed
with a simple water bath and heating block, free from the
requirement of expensive temperature control instruments
[29]. It is noteworthy that another isothermal nucleic acid
amplification technique LAMP which has a good prospect of
clinical application has also been developed for the detection
of G. parasuis [30, 31]. LAMP usually uses 4–6 primer pairs
to identify distinct regions of target genes at 60–65°C for
efficient amplification. Therefore, the design of primers is
highly complex and technically prohibitive, and the hybrid-
ization between primers may affect the specificity of amplifi-
cation [32]. Compared with the LAMP assay, the RAA assay
has the following advantages. First, RAA requires only one
pair of primers and is relatively easy to design [33]. Second,
the RAA reaction temperature is between 37 and 42°C,
which is significantly lower than that of LAMP. The energy
requirement of RAA portable temperature control device is
lower than that of LAMP, which is more convenient for
clinical field detection. The difference between recombinase
polymerase amplification (RPA) and RAA lies in the source
of their recombinase. The recombinases of RPA are derived
from bacteriophage T4, whereas the recombinases of RAA

detection limit at 95% reliability (67.17 copies/reaction) is marked by a triangle. (c) The sensitivity results of real-time RAA assay by real-time
fluorescence readout. (d) Probit regression analysis of real-time RAA assay by real-time fluorescence readout with the data of eight repeats.
The detection limit at 95% reliability (67.17 copies/reaction) is marked by a triangle. (e) The sensitivity results of RAA-VDA by a portable
blue light imager with an excitation wavelength of 480 nm. (f ) Probit regression analysis of RAA-VDA detection with the data of eight
repeats. The detection limit at 95% reliability (143.43 copies/reaction) is marked by a triangle.

TABLE 2: Repeatability and reproducibility analysis of the real-time RAA assay.

Concentration (copies/reaction)
Repeatability (intra-assay) Reproducibility (interassay)

Mean SD CV (%) Mean SD CV (%)

High (106) 183 3.00 1.64 182 6.93 3.81
Medium (104) 268 9.17 3.42 272 18.33 6.74
Low (102) 644 27.71 4.30 628 36.66 5.84

Mean, the average of threshold times (second) of three independent real-time RAA reactions; SD, standard deviation; CV, coefficient of variation.

TABLE 3: Comparison of the performance of G. parasuis RAA and qPCR assays on clinical samples.

Assay
qPCR

Kappa p-Value
Positive Negative Total

Real-time RAA
Positive 33 0 33

1.000 <0.001Negative 0 75 75
Total 33 75 108

RAA-VDA
Positive 31 0 31

0.956 <0.001Negative 2 75 77
Total 33 75 108
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TT (real-time RAA/s)

Ct
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R2 = 0.8125
P < 0.0001

FIGURE 6: The linear regression analysis between the G. parasuis
real-time RAA threshold time (TT) values (x-axis) and the G. para-
suis-qPCR cycle threshold (Ct) values (y-axis) based on 33 G. para-
suis positive samples. The analysis was performed by GraphPad
Prism software and demonstrated a significant correlation between
two assays (R2= 0.8125, P<0:0001).
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are derived from bacteria and fungi. Notably, RAA is a tech-
nology with Chinese intellectual property, which provides a
new platform for molecular detection in China.

In summary, a real-time fluorescent RAA method target-
ing the infB was developed for the detection of G. parasuis.
The developed method has the advantages of high specificity,
high sensitivity, good repeatability, and products visualiza-
tion. It can be used as a reliable tool for early and rapid
diagnosis of Glässer’s disease, especially in resource-limited
diagnostic laboratories and clinical fields.
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