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NADC34-like porcine reproductive and respiratory syndrome viruses (PRRSVs) are emerging globally. Although lineage 1 PRRSVSs are
emerging in Korea, NADC34-like PRRSV strains have not been detected to date. This study reports the isolation of the first NADC34-
like PRRSV strains from samples of MLV-vaccinated animals on a Korean farm with a severe PRRS outbreak causing high mortality and
abortion rates in July 2022. Three PRRSV strains with a whole genome length of 15,088 bp were isolated from the outbreaks, and their
phylogenetic, recombination properties, and in vitro growth kinetics were evaluated comprehensively. These Korean strains clustered
with those of American and Chinese sublineage 1.5 (NADC34-like strains), according to phylogenetic analyses based on the ORF5 gene
and the whole genome. All three complete genome sequences originated from recombination between the RespPRRS MLV and
NADC34-like strains, according to recombination analysis. Full-length Nsp2 sequence alignment indicated that all three isolates had
a continuous deletion in 100 aa, which was similar to that of the IA/2014/NADC34. Based on phylogenetic analysis and the Nsp2
deletion pattern, the isolates are identified as NADC34-like PRRSV. Growth kinetic analysis based on primary porcine alveolar
macrophages (PAMs) and MARC-145 cells has revealed that Korean NADC34-like PRRSV strains had better replication ability in
primary PAMs than other Korean lineage 1 viruses or the reference strain VR2332, implying higher pathogenicity in pigs. Considering
the fact that NADC34-like PRRSV strains were detected in MLV-vaccinated animals on a farm in the area of the highest pig population
density in Korea, additional vaccine failure cases and the spread of the virus could be detected in the near future. Collectively, these
results aid in comprehending the current epidemic state of PRRSVs in Korea and highlight the need for continuous surveillance.

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) has
been one of the most important epidemic diseases affecting the
global swine industry since its first recognition in the
United States in 1987 [1, 2]. PRRS virus (PRRSV), the causative
agent, of the genus Betaarterivirus and family Arteriviridae of
the order Nidovirales, is an enveloped, single-stranded positive-
sense RNA virus with a genome approximately 15kb in length
that encodes a 5’ untranslated region (UTR), at least 11 open
reading frames (ORFs), a 3'-UTR and a 3'-poly(A) tail [3-5].
PRRSVs are classified into PRRSV1 (European type, prototype
strain Lelystad virus) and PRRSV2 (North American type,
prototype strain VR-2332 virus), which are designated

Betaarterivirus suid 1 and Betaarterivirus suid 2, respectively
(ICTV2021). The mutation rate of RNA viruses is known to be
high due to the lack of 3 to 5’ exonuclease proofreading ability
in RNA-dependent RNA polymerase, and the calculated nu-
cleotide substitution rate of PRRSV is the highest reported for
an RNA virus [5-7]. ORF5 gene encodes the major envelop
glycoprotein GP5, which is known to be crucial for infectivity,
viral assembly, and neutralizing antibodies [8, 9]. Due to its
high genetic diversity, ORF5 is commonly used for phyloge-
netic analysis and lineage classification [10]. In PRRSV2, there
are nine lineages (lineage 1 to 9) classified according to ORF5
sequence differences [11, 12].

In South Korea, the field infection of PRRSV2 was first
reported in the mid-1980s [13]. Despite the fact that South
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FiGure 1: Korean NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) outbreak information. (a) Geographical
distribution of the pig population in Korea with the location of the farm. The farm with the NADC34-like PRRSV outbreak is indicated with
a blue star (). (b) PRRSV quantitative real-time RT—PCR patterns of pooled serum samples (1 = 5) for each age group (suckling, 30, 60, 90,
120-day-old, and sow) from the farm. Age groups in which PRRSV isolation was conducted are indicated with asterisk symbols (*).

Korea adopted two PRRSV2 MLV vaccines in 1996
(Ingelvac® PRRS MLV) and 2014 (Fostera® PRRS), PRRSV2
has been widely distributed throughout the country for
decades and has formed distinct nation-specific clades re-
ferred to as lineage KOR A (LKA), B (LKB), and C (LKC),
which are genetically distinct from prevalent common global
PRRSV strains and commercial vaccine strains [5, 14, 15].
The majority of Korean PRRSV2 field isolates have been
characterized as strains of either Korean lineages or vaccine-
variant lineage 5 (L5) [14]. In 2019, however, PRRSV lineage
1 (L1), which is actively circulating in Korea, became the
second-largest population (29.6%) of PRRSV strains de-
tected in Korea after its first detection in 2014 [16].
Lineage 1 PRRSV had initially been reported in Canada
in the 1990s before spreading across the United States
[12, 17], where it has become the most diverse—including
sublineages 1.1-1.9—and the most widespread lineage [18].
After the initial outbreak of sublineage 1.9 PRRSV (repre-
sentative strain: MN184) in North America in the early
2000s [19], sublineage 1.8 (NADC30-like) strains spread
from Canada to the United States and China in 2013 [20].
Sublineage 1.5 (NADC34-like) strains started to emerge in
the United States in 2014, and have been characterized by
severe clinical signs such as high mortality among piglets
and abortion “storms” in sow herds within multiple reports
[21, 22]. Subsequently, NADC34-like viruses were detected
in Peru in 2015 [23] and in China in 2017 [24]. Since 2020,
the NADC34-like PRRSV's have rapidly become prevalent in
China [17, 25-29]. The PRRSV strains circulating in Korea
are mostly NADC30-like strains. Sublineage 1.6 PRRSVs

have been detected since 2018 [16]. Although potential
recombinant PRRSV strains of NADC30 and NADC34 were
identified in a previous study [5], NADC34-like PRRSV
strains have never been detected in Korea.

However, during routine PRRSV surveillance conducted
by our laboratory and the Jeonbuk National University
Veterinary Diagnostic Center (JBNU-VDC), potential
NADC34-like PRRSV infection cases have been detected
from conventional pig farms in Korea. Therefore, the ob-
jective of this study was to genetically characterize by whole
genome sequencing and identify the in vitro growth per-
formance of potentially newly emerging NADC34-like
PRRSV in Korea.

2. Materials and Methods

In July 2022, a suspicious PRRS outbreak with high mortality
and a high abortion rate was reported on a pig farm with
Ingelvac® PRRS MLV-vaccinated animals. The farm is lo-
cated in Hongseong County, Chungcheongnam-do Prov-
ince, an area with the highest pig population (442,010 pigs)
and the number of farms (198 farms) in Korea (average:
40,084 pigs and 18 farms per administrative division)
(KOSIS: Korean Statistical Information Service, https://
kosis.kr/eng/) (Figure 1(a)). A total of 30 clinical serum
samples from pigs in different age groups (suckling, 30-day-
old, 60-day-old, 90-day-old, 120-day-old, and sow) with
suspected PRRSV infection were collected and transferred to
Jeonbuk National University Veterinary Diagnostic Center
(JBNU-VDC). In response to the client’s request and the
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routine protocol for PRRSV diagnostics at JBNU-VDC, five
single serum samples from each age group were pooled into
one sample representing the age group. Pooled samples were
tested with qRT—PCR with a one-step QRT—PCR kit after the
extraction of viral RNA as described previously [30]. Ad-
ditionally, the ORF5 gene was amplified from five single pig
serum samples within the pooled sample with the lowest Ct
value, as previously described.

The complete genome and different genomic parts were
compared with reference strains, including NADC34-like
PRRSV isolates, using Clustal Omega software [31]. To assess
the deletion patterns of nonstructural protein 2 (Nsp2),
amino acid (aa) alignments were conducted between the
isolates and representative strains using PAL2NAL software
[32] as previously described [33]. Maximum-likelihood
(ML) phylogenetic trees were constructed based on the
complete genome, Nsp2, and ORF5 nucleotide sequences,
together with those of the PRRSV2 reference strain and
Korean PRRSV?2 field isolates. The trees were generated with
RAXML-NG software [34] using the GTRGAMMA nucle-
otide substitution model and 1000 replicates of bootstrap
test. The alignment of the complete genome was screened
with RDP4 software to check for potential recombination
[35]. Potential recombination events were tested by seven
different algorithms (RDP, GeneConv, BootScan, MaxChi,
Chimeara, SiScan, and 3Seq) with Bonferroni correction
[17]. Detection using all seven methods implemented in
RDP4 was taken as significant evidence for recombination.

For in vitro growth kinetics evaluation, the JBNU-22-
NOI strain, the PRRSV?2 reference strain VR2332 (GenBank
accession number: AY150564), the Korean NADC30-like
strain JB15-N-PJ73-GN (GenBank accession number:
MZ287318), and the Korean lineage 1 recombinant strain
(NADC34 as major parent and NADC30 as minor parent)
[5] JBNU-19-N01 (GenBank accession number: MZ287314)
were selected for comparison. All viruses were prepared by
propagation and titration in primary PAMs. MARC-
145 cells and primary PAMs were infected with each virus
at a multiplicity of infection (MOI) of 0.001. Immunoflu-
orescence assays (IFAs) were conducted for infected primary
PAMs (24 hours postinfection (hpi)) and MARC-145 cells
(48 hpi) as previously described [36]. Supernatants were
collected at 0, 24, 48, 72, and 96 hpi, and the virus in these
supernatants was titrated by the cytopathic effect (CPE)
expressed as the 50% tissue culture infective dose (TCID50)
according to the Reed-Muench method by infecting the
same cell type in which viruses were propagated.

3. Results and Discussion

The levels of PRRSV viral RNA in pooled serum samples
were highest in the suckling piglet age group (Ct value
17.89), followed by weaners (30-day-old, Ct value 22.43),
growing pigs (60-day-old, Ct value 23.58), sows (Ct value
28.05), and fattener groups (90-day-old, Ct value 28.69, and
120-day-old, Ct value 32.46), a pattern suggesting that
maternal antibodies transferred from sows to piglets do not
offer protective immunity, resulting in vertical transmission
in the herd (Figure 1(b)). In the subsequent ORF5

phylogenetic analysis after sequencing the ORF5 gene di-
rectly from clinical serum samples, the PRRSV strain cir-
culating in the farm was genetically distinct (>12%
nucleotide distance) from all other lineages previously
identified in Korea as well as the Ingelvac® PRRS MLV that
was used at the farm before the outbreak (data not shown).

Three PRRSV strains, JBNU-22-N01 (GenBank ac-
cession number: OP970983), JBNU-22-N02 (OP970984),
and JBNU-22-N03 (OP970895), were successfully isolated
from each age group (suckling, 30-day-old, 60-day-old and
90-day-old piglets) by propagation in primary PAMs.
Complete genomes of each virus were successfully gath-
ered through the NGS pipeline. The genomes of JBNU-22-
NO1, JBNU-22-N02, and JBNU-22-N03 shared >99.9%
identity with each other. Genome alignments revealed that
the Korean NADC34-like PRRSVs shared 82.4% identity
with RespPRRS MLV (Ingelvac® PRRS MLV, L5), 85.1%
identity with NADC30, 84.3% identity with ISU30, and
90.1% identity with NADC34 (Table 1). The nucleotide
homology of ORFs 2-7 between the newly isolated
PRRSVs and NADC34 was 96.0%, which was greater than
the homology shared with other typical strains. ORFs 2-7
of the newly isolated PRRSVs shared 96.0% nucleotide
homology with NADC34, which was higher than the
homology shared with other representative strains.
However, ORFla and ORFlb shared 86.5% and 90.7%
nucleotide homology with NADC34, which is a relatively
lower homology than ORFs 2-7. Among the 16 non-
structural proteins encoded by ORFla and ORF1b, some of
the Nsps shared the highest nucleotide and aa homology
with representative strains other than NADC34, such as
Nsp3 (92.4% nucleotide and 96.5% aa homology with
NADC30); Nsp4-6 (91.3-97.8% nucleotide and 93.4-100%
aa homology with RespPRRS MLV); and Nsp8, Nsp11, and
Nspl2 (90.3-94.6% nucleotide and 93.1-98.7% aa ho-
mology with ISU30) (Table 1).

Phylogenetic trees were constructed using the ML
method to understand the evolutionary relationship be-
tween the newly isolated PRRSV strains and the represen-
tative strains. Both ORF5-based and complete genome-
based phylogenetic trees showed that JBNU-22-NOI,
JBNU-22-N02, and JBNU-22-NO03 clustered with the
NADC34-like (sublineage 1.5) cluster (Figures 2(a) and
2(b)). Genomic insertion and deletion can be easily iden-
tified among PRRSVs, especially in Nsp2, the largest PRRSV
protein, which tolerates aa deletions and insertions of for-
eign genes [37]. Additionally, Nsp2 has also been reported to
be a molecular marker based on certain deletion patterns in
various strains, for instance, a 100-aa continuous deletion in
Nsp2 of NADC34-like PRRSV [22], a 131-aa discontinuous
deletion in Nsp2 of MN184- or NADC30-like PRRSV [38],
and a 30-aa discontinuous deletion in Nsp2 of the highly
pathogenic PRRSV strain in China [39]. Complete Nsp2 aa
sequence alignment reveals that the JBNU-22-N01, JBNU-
22-N02, and JBNU-22-NO03 strains harbor a 100-aa con-
tinuous deletion at residues 328-427 of 1A/2014/NADC34
Nsp2, which is consistent with the pattern for NADC34-like
PRRSV (Figure 2(c)). Considering the results of phyloge-
netic analysis and Nsp2 deletion patterns, the three PRRSV
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TaBLE 1: Detailed comparison of the full-length genomes of the Korean NADC34-like strain JBNU-22-N01 and other PRRSV reference

strains.

RespPRRS MLV (%)

NADC30 (%)

ISU30 (%) NADC34 (%)

Nucleotides

Complete genome 824 85.1 84.3 90.1
ORFla 79.2 81.2 80.3 86.5
ORF1b 84.4 88.2 91.2 90.7
ORF2-7 85.3 88.1 86.8 96.0
Nucleotides/amino acids

nspla 85.7/94.9 89.0/93.1 92.3/94.9 92.7/94.3
nsplp 75.5/75.2 78.6/76.7 85.5/87.9 89.2/89.6
nsp2 71.3/65.5 76.7/72.6 74.2/70.5 86.6/85.6
nsp3 82.8/94.2 92.4/96.5 77.2/88.1 85.5/92.8
nsp4 91.3/93.4 81.8/92.4 80.0/91.2 78.7/90.8
nsp5 95.1/94.6 87.4/91.8 83.8/92.0 82.7/89.5
nspé6 97.8/100 90.8/100 88.2/100 88.2/93.5
nsp7a 78.2/91.9 77.5/91.1 85.9/95.2 86.6/95.2
nsp7f 86.2/82.1 87.2/75.4 88.0/87.4 88.7/92.4
nsp8 86.8/85.7 86.6/88.2 94.6/93.1 93.7/93.1
nsp9 85.6/96.0 88.2/96.7 91.6/97.8 91.7/97.9
nspl0 83.8/94.9 92.0/98.4 90.2/97.7 88.9/97.9
nspll 83.5/94.0 84.0/94.0 90.3/94.5 90.7/94.0
nspl2 82.0/90.4 81.9/89 93.5/98.7 91.2/96.7
ORF2 87.4/93.5 83.5/82.1 83.6/83.0 96.2/96.0
ORF3 81.8/81.9 83.6/82.9 82.3/83.3 94.8/95.6
ORF4 84.7/86.2 93.7/95.4 93.0/92.4 95.9/97.2
ORF5 85.6/84.3 87.7/91.7 85.4/90.6 96.6/97.5
M 86.8/91.6 93/92.2 91.6/91.6 97.9/98.3
N 87.3/91.5 93.6/97.5 91.4/94.1 95.2/96.7

Bold values indicate PRRSV reference strains with the highest identity of nucleotide and/or amino acid sequence compared to JBNU-22-N01 strain in this study.

isolates were confirmed to be NADC34-like strains, the first
to be identified in Korea.

Recombination is a common event in PRRSV isolates and
is an advantageous strategy for securing the viral genetic di-
versity [17, 40]. This leads to the development of new PRRSV
genotypes and also may correlate with an increase in virulence
[41]. To identify recombination in Korean NADC34-like
strains, RDP4 software was used to assess potential re-
combination events. Recombination events were observed in
all three strains, with recombination breakpoints located in
Nsp4 (nt 5,524) and Nsp7« (nt 6,342) (Figure 3(a)). Phylo-
genetic trees about each sequence region separated by the
breakpoints were generated in order to further verify the
potential recombination event [42]. The regions outside the
breakpoints (nt 1-5,523 and nt 6,325-15,088) are closely re-
lated to the NADC34 strain (Figure 3(b)), and the region
between the breakpoints (nt 5,524-6,324) is closely related to
the RespPRRS MLV strain (Figure 3(c)). Taken together, the
results as noted indicated that the three NADC34-like strains
have arisen via recombination between NADC34 and
RespPRRS MLV. In fact, considering that the major circulating
PRRSV lineage in Korea is MLV-related lineage 5 and that
Ingelvac® PRRS MLV has been the most widely used vaccine in
the field since its first commercial launch in Korea in 1996 [16],
recombination events between circulating PRRSV lineages and
RespPRRS MLV have been reported as the most frequent
recombination pattern in Korea [5]. At the farm where the
NADC34-like strains were isolated, the Ingelvac® PRRS MLV
vaccine was administered prior to the outbreak, suggesting that

the recombination identified in this study is another case of
MLV-field strain recombination. Recently, recombination
between local strains and NADC34-like strains as the main
parent has been reported in China [17] and the United States
[4]. It is necessary to investigate changes in pathogenicity in
recombinants that are combined with the MLV vaccine strain
and NADC34-like strains in further study.

PRRSV infection shows a strongly restricted tropism for
host species and target cells [36]. PAMs are the PRRSV
primary target cells in vivo, and the immortalized African
green monkey kidney epithelial cells MARC-145 support
viral infection in vitro [43]. Although the MARC-145 cell
line has been used as a key platform for PRRSV isolation and
vaccine development through large-scale production of
PRRSV [36, 44], PRRSV has evolved into different lineages,
and many PRRSV strains fail to infect MARC-145 cells
[36, 45-47]. According to a recent report, cells expressing
porcine CD163, which is the main receptor for PRRSV
infection, were susceptible to different PRRSV2 infections,
including infection with NADC30-like and NADC-34-like
PRRSV strains, which do not replicate in MARC-145 cells
[36]. Consistently, the PRRSV2 reference strain VR2332 and
Korean lineage 1 viruses (NADC30-like, recombinant lin-
eage 1, and NADC34-like PRRSV strains) successfully
replicated in primary PAM culture (Figures 4(a) and 4(c)),
while lineage 1 viruses did not replicate in MARC-145 cells
(Figures 4(b) and 4(d)), as evidenced by immunofluores-
cence assays. This result further supports the use of porcine
CD163-expressing cells instead of MARC-145cells for
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FIGURE 2: Phylogenetic analysis of NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains and identification of
amino acid deletion patterns in Nsp2. (a) Maximum-likelihood (ML) phylogenetic tree constructed based on the ORF5 gene of the novel
NADC34-like PRRSV isolates and reference PRRSV strains from each lineage. (b) ML phylogenetic tree constructed based on full-length
genomes of the novel NADC34-like PRRSV isolates and reference PRRSV strains from each lineage. (c) Schematic diagram of multiple
alignments of Nsp2 amino acid sequences. The tree on the left was generated based on NSP2 nucleotide sequences, and multiple sequence
alignments (MSAs) were generated by using the NCBI MSA tool version 1.22.1 with coloration based on the BLOSUM62 matrix. Lineages of
PRRSV?2 are color-coded in the trees and include lineages 1 (blue), 5 (red), KOR A (teal), KOR B (lime), and KOR C (orange). Historical
reference strains, including VR2332, JA142, JXA1, MN184, NADC30, and NADC34, are labeled with pink squares (W). Vaccine strains are
labeled with yellow triangles (A). Newly obtained Korean NADC34-like sequences are labeled with red stars ().

diagnostic investigation as well as autogenous vaccine  specific CPE in JBNU-22-NOl-inoculated PAMs was more
production [36]. severe, with more PAMs falling off the bottom of the cell

As for PRRSV growth kinetics results in primary PAMs,  culture plate (data not shown). A previous report suggested
the virus titers of all Korean lineage 1 PRRSVs were sig-  that PRRSV’s replication abilities and adaptation to its target
nificantly higher than those of VR2332 from 48 to 72hpi  cells directly contribute to PRRSV pathogenicity and viru-
(Figure 4(c)). Interestingly, the titer of the Korean NADC34- lence in attenuated PRRSV in vivo and in vitro reversion to
like strain JBNU-22-N01 was significantly higher than that  virulence studies [48]. As various strains of NADC34-like
of all other viruses at 24 hpi (Figure 4(c)), and the PRRSV-  strains were reported, pathogenicity was also reported to be
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FIGURE 3: Characterization of the supported recombination events between JBNU-22-N01 and representative PRRSV lineages. (a) Similarity

plot and Bootscan analysis of JBNU-22-NO1. The y-axis indicates the

pairwise identity between the major parent and minor parent (lime),

between the major parent and the recombinant strain (blue), or between the minor parent and the recombinant strain (red). The range of
recombination is shaded in red. (b) Phylogenetic trees based on major parental regions (nt 1-5,523 and nt 6,325-15,088) and (c) the minor

parental region (nt 5,524-6,324).

diverse, as the American NADC34 strain reveals high
pathogenicity [17, 22], while the Chinese PRSV-ZDXYL-
China-2018-1 and HLDJZD32-1901 strains have moderate
and low pathogenicity, respectively [17, 49, 50]. However,
considering the high mortality and abortion rates observed
on the farm from which Korean NADC34-like strains were
isolated together with the replication ability of PRRSV
shown in the in vitro experimental results, it could be
implied that the Korean NADC34-like strains show the
capability of inducing high pathogenicity in pigs. In vivo
experiments to assess the pathogenicity of the Korean
NADC34-like strains will be investigated.

The emergence and spread of lineage 1 PRRSVs, in-
cluding NADC34-like viruses, continue to be reported
globally. In Peru, phylogenetic analysis of field samples
obtained between 2015-2017 showed that 15 of 20 isolates

(75%) were associated with NADC34-like (PRRSV 1-7-4)
strains [23]. In China, sublineage 1.5 and sublineage 1.8
strains comprised 28.6% and 35.4%, respectively, of positive
samples in 2021, that is, lineage 1 strains were much more
predominant than the proportion of other lineages [17]. In
Korea, lineage 1 PRRSV comprised the second-largest
population (29.6%) of PRRSVs in 2019 [16]. At present,
no vaccine for lineage 1 strains is available on the global
market [17], and there was only partial protection against
lineage 1 PRRSVs in research for five MLVs that were
commercially available [51]. In this study, NADC34-like
PRRSV-infected animals showed signs of vertical trans-
mission and long-term infection with patterns of the lowest
PRRSV Ct value in suckling piglets, an age-wise gradual
increase in Ct value, and a relatively low Ct value in sows
(Figure 1(b)). Considering that MLV vaccination occurred
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FIGURE 4: In vitro PRRSV growth kinetics. Indirect immunofluorescence assays (IFA) stained with mouse anti-PRRS N primary antibody
and goat anti-mouse IgG H + L FITC secondary antibody followed by DAPI staining for (a) primary PAM culture at 24 hours postinfection
(hpi) and (b) MARC-145 cell culture at 48 hpi. Magnification: x100. Multistep growth curve results of each PRRSV strain in (c) primary

PAMs and (d) MARC-145 cells.



on the farm prior to the outbreak, it is suggested that the
vaccine failed to confer sufficient cross-protection against
NADC34-like PRRSV infection, implicating a potential
vaccine failure case. Since the outbreak was detected on
a farm located in the area with the highest pig population
density in Korea (Figure 1(a)), there is an imminent threat of
potential NADC34-like PRRSV outbreaks across the Korean
swine industry, as most pig farms have no vaccination
option other than the current MLV vaccine. Therefore,
enhanced biosecurity should be carried out, and increased
surveillance is necessary.
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