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Basic reproduction number (R0) is a mathematical expression used in epidemiology to address expected number of secondary cases.
R0 helps to predict outbreak diffusion and preventive measures. As African swine fever (ASF) is a viral infectious disease, there are
significant studies related to R0 of the ASF outbreak, but most of them are investigated in a zonal and geospecific boundary. This
study explores the general overview of African swine fever virus (ASFV) R0 based on existing literature and examines for the global
scale using a doubling time approach using wild boar outbreaks. Further, a qualitative mental model is developed to explore the ASF
disease dynamics. It was found that the average R0 was 3.56 from existing literature. Based on the global scenario, ASFV spread in
wild boar was above the threshold line (R0 ≥ 1). The recent growth trend (R0 ¼ 5:87) flagging the very high risk. ASFV is threatening
the world. The qualitative mental model highlighted the veterinary services as awareness and R&D support are highlighted as the
control measures. This study provides a reference to researchers and veterinarians in setting strategies of developing preventive
measures and highlights the importance of awareness programs and R&D support for mitigating the ASFV spread.

1. Introduction

The disease spread and disease dynamics parameters such as
Reproduction number (Ro), incidence rate, prevalence rate,
serial interval, and contact rates are examined and reported
frequently for sustainable preventive practice. R0, also known
as basic reproduction ratio, measures a disease’s ability to
spread in a population. It is an average number of secondary
cases caused by an infectious individual during the infectious
period (early stage of an outbreak). The incidence rate mea-
sures the number of new cases over a specific period. The
prevalence rate explores the population of individuals in a
population who were infected by a disease at a specific time.
Serial interval presents the time between the onset of symp-
toms in primary and secondary cases, and the contact rate
gives information about the contacts per unit of time

between susceptible and infected individuals [1, 2]. Without
considering other measures, the research focuses on the R0 of
African swine fever virus (ASFV) in wild boars for the global
scenario.

African swine fever (ASF) has spread in many countries
since it was first reported in Kenya in 1921 [3]. ASFV was
eradicated from all infected countries in the mid-1990s. The
reintroduction of ASFV in Georgia in the Caucasus was
reported in 2007, then again spreading worldwide [4]. Since
then, there have been significant studies investigating the
dynamic parameters and developing strategies to mitigate
the adverse impact of ASFV [5]. Wild pigs and the pig indus-
try are at risk due to ASFV. The virulence of ASFV isolates
varies, ranging from highly virulent isolates that can kill up
to 100% of swine to moderately or low virulent isolates that
can cause mortality rates between 3% and 100% [6, 7].
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Wild boars roam freely in the forest, and it is difficult to
examine the exact population [8]. Wild boar is considered
the significant driver of the spread of ASFV, though they
become sick and die. When ASFV is identified on a domestic
farm, mass culling is adopted and applied as a strict control
measure which is hard to follow in the case of wild boars. The
ASFV spread parameters in wild boars reveal the recent disease
scenario and support for setting mitigating measures. Under-
standing disease growth in global scenario is crucial for the
effective implementation of one health policies [9]. Our litera-
ture survey found that R0 of ASFV was examined based on
geospatially focused area but not in the global contest. There-
fore, this research aims to collect and summarize the informa-
tion from the literature on R0 of ASF, examine R0 for wild boars
in the global scenario, and offer insight into epidemic control
measures highlighting through mental model.

2. Materials and Methods

2.1. Data. Two approaches were adopted to analyze the R0 of
ASF. First, a literature search was conducted on R0 for dif-
ferent regions and time frames. A total of 19 research about
the R0 of ASF published in different time frames and geo-
graphic regions were examined, obtained from the Google
Scholar database. The records of R0 for ASF were tabulated,
and the average of them was extracted to get general infor-
mation for global scenarios. Second, the global surveillance
data reported in FAO data portal [10] were extracted and R0
for wild boar was calculated using a doubling time approach
[11]. The recorded ASF cases and cumulative cases for wild
boar from 1 December 2007 to 30 December 2022 can be
seen in Figure 1. Visualization of the growth curve, the entire
survey period was divided into four phases: I (2,224 days)

between 01/12/2007 and 01/01/2014, II (814 days) between
02/01/2014 and 25/03/2016, III (627 days) between 26/03/
2016 and 12/12/2017, and final phase IV (1,851 days)
between 01/12/2007 and 30/12/2022.

2.2. R0 from Doubling Time Approach. Among various
approaches for analyzing R0 in epidemiology, doubling time
is the fast, easy to understandable, and most broadly applied
method. The recent expansion of ASF worldwide is after its
reintroduction in Europe in 2007. Therefore, this study exam-
ines the data recorded in the FAO epidemiology data portal
empress-i between 1 December 2007 and 30 December 2022.
It is considered that the disease outbreaks were growing at an
exponential rate following Equation (1).

yt ¼ y0eλt; ð1Þ

where yt is an outbreak at time t; y0 is the initial outbreak,
and λ is the growth rate. The average doubling time ðTdÞ :of
outbreaks is the time when the outbreak is double the initial
cases, which can be calculated as Equation (2).

Td ¼
ln 2ð Þ
λ

∼
0:70
λ

: ð2Þ

The symbol R0 (= “R nought” or “R zero”) is widely
accepted as a symbol for the basic reproduction number,
sometimes called the even basic reproduction rate (even
though it is not a rate) or basic reproductive number. R0

measures how secondary cases were generated in the early
infected period. When an early period of infection, infectious
period (D) was considered for disease growth, R0 can be
mathematically expressed as Equation (3):
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FIGURE 1: ASF outbreaks in wild boars (source: [10]).
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R0 ¼ 1þ D
Td

× ln 2ð Þ: ð3Þ

TheD for ASF for wild boars was recorded with a varying
range between 4 and 19 days [12]. Some other studies
reported different Ds for ASF [13] reported that the mini-
mum infectious period ranged from 6 to 7 days and the
maximum up to 40 days. Pershin et al. [14]: minimum of
4.1 days varying from 1 to 13, Lee et al. [15]: 3–19 days, Lim
et al. [8]: 3.5 days. In this study, the R0 of ASF on a global
scale was examined through Equation 3 using 6 days as the
D, segmenting the cumulative cases through visualization
into four phases of the observation period.

2.3. Mental Model of ASF Disease Dynamics. The mental
model is a casual network of representations of beliefs on a
complex system [16]. A mental model is a group of inter-
connected beliefs that affect how someone conceptualizes
how the world works and anticipates the future [17]. A men-
tal model was formulated based on the knowledge from lit-
erature and current understanding of ASF disease dynamics.
A total of 23 variables related to disease spread and control
measures were considered in the mental model. Variables
such as climate change, contact rate, host population, and
vector movements were considered drivers of disease spread.

3. Results

3.1. Literature Study. From the 19 literatures about the R0 of
ASF both in domestic pig and wild boars, no identical values
were obtained, varied with different geographic regions, study
periods, and study methods (Table 1). Based on the surveyed
literature, Belgium, China, Czech Republic, Georgia, Italy,
Netherlands, Malta, Russia, South Korea, Uganda, Ukraine,
and Vietnam are the countries where R0 was examined. The
examination of secondary cases in recorded literature was
evaluated with different approaches such as doubling time,
network analysis and susceptible, infected, and removed (SIR)
ratios. The highest R0 was recorded by de Carvalho Ferreira
et al. [13] for Malta (18), and the minimum in the Netherlands
(0.3) for domestic pigs reported by Eblé et al. [18]. When
taking an average of reported values without considering
host species, the overall R0 was 3.56. Similarly, the average
infectious period from the record was 11.19 days, ranging
from 2 to 39 days.

3.2. Estimation of R0 using Doubling Time. The R0 was esti-
mated from the global ASF outbreaks in wild boars up to
30 December 2022 using a doubling time approach, considering
the early phase of the disease and theD to be 6 days. It was found
that the first phase had a low disease growth rate (0.03,R2= 0.99)
and, doubling time was 26.46 days followed, and phase IV; the
recent phase between 13/12/2017 and 30/12/2022 had the high-
est growth rate (1.39, R2= 0.99) and doubling time 0.50 days.
The overall growth rate for the entire survey period was 0.37 per
day, and the doubling time was 1.88 days. The R0 in phases I, II,
III, III, and all phases together were 1.09, 2.52, 2.51, 5.87, and
2.29, respectively (Table 2). The increased outbreak growth rate

and higher R0 in the recent phase flagged a greater threat
of ASFV.

3.3. ASFV Dynamic Mental Model. Disease spread dynamics
is a complex system that can be simplified, and intelligent
decisions can be made through mental models. Climate
change influences the resilience of viruses [35]. The ASFV
disease hosts are social animals, and their movement behav-
ior and resilience power of virus in the environment directly
impact the contact of ASFV. The mortality rate of ASFV is
near 100% [36, 37], and death due to ASF decreases the boar
population growth rate. Increasing the infecting rate of ASF,
contact rate to disease host is increasing. Higher susceptible
of boars and infected domestic pigs pressured to involve for
R&D to develop vaccines and conduct awareness programs.
Fencing is a measure to control the movement and minimize
the contact rate of host species [38]. When the contact rate
and infecting rate are increased R0 also increased. Control-
ling host movement, domestic waste management, water
quality, biosecurity, carcass management and biosafety, and
food and biosafety were assumed to be effective control mea-
sures in the proposed mental model. A total of 23 variables
were used to develop a ASF spread, and control dynamics
mental model visualized in a causal loop diagram (Figure 2).
Active veterinary services [39] with awareness programs and
R&D support were highlighted as major variables to control
the spread. The model will help to understand how changes
in one part of the system can affect other parts and identify
potential leverage points for intervention or improvement.

4. Discussion

This study explored R0, one of ASF’s epidemiological param-
eters, and developed a mental model to understand the
spread and control. R0 projects the level of immunization
that a community needs in order to develop immunity, con-
trol the spread of the infection, and be protected from con-
tracting the disease [40]. The common interpretations about
R0 are: if R0< 1 disease is eradicated, that virus is almost
dying out, the threshold point R0= 1 the controlled, 1<R0

≤ 2 is spread slowly, and the serious epidemic when R0 ≥ 2
is the disease spreading very rapidly. It was found that R0 in
both aggregating from the literature and our examination
was >1. The output of this research alerts veterinarians,
wildlife ecologists, and researchers to develop a vaccine
against ASF.

However, there are significant limitations. This study
only estimated with doubling time approach on a global
scale; other methods, like estimating infection rate with the
SIR and network modeling approaches [41, 42], could be
examined and compared with model accuracy. The result
may have been affected by known risk factors for ASF trans-
mission, such as improper handling and processing of pork
and pork products at slaughter slabs, butchers, and pork
joints (i.e., improvised kiosks where pork is roasted and
eaten), farmers’ attitudes, and cultural beliefs regarding han-
dling sick and dead animals [43]. Examination of country-
wise R0 with the same data source and zonal characteristics
was missing. Wild boar cases were used for the examination

Transboundary and Emerging Diseases 3



T
A
B
LE

1:
R
ep
ro
du

ct
io
n
nu

m
be
r
of

A
SF

re
po

rt
ed

in
di
ff
er
en
t
ge
og
ra
ph

ic
re
gi
on

s
an
d
m
et
ho

ds
.

H
os
t

St
ud

y
ar
ea

M
et
ho

d
R
0

In
fe
ct
io
us

pe
ri
od

(d
ay
s)

So
ur
ce

W
ild

bo
ar

C
ze
ch

R
ep
ub

lic
D
ou

bl
in
g
ti
m
e

1.
95

6
[1
9]

W
ild

bo
ar

B
el
gi
um

1.
65

6
[1
9]

P
ig

he
rd
s

U
ga
nd

a

N
ea
re
st
ne
ig
hb

or
3.
24

—
[2
0]

D
ou

bl
in
g
ti
m
e

1.
63

30
[2
0]

SI
-b
as
ed

(c
ur
ve

fi
tt
in
g,
lin

ea
r
re
gr
es
si
on

,a
nd

SI
/N

pr
op

or
ti
on

)
(1
.5
8,
1.
90
,1
.7
7)

—
[2
0]

P
ig
-t
o-
pi
g

G
eo
rg
ia

SI
(t
ra
ns
m
is
si
on

ex
pe
ri
m
en
t;
w
it
hi
n
pe
n)

2.
8

—
[2
1]

P
ig
-t
o-
pi
g

SE
IR

(t
ra
ns
m
is
si
on

ex
pe
ri
m
en
t)
(b
et
w
ee
n

pe
ns
)

1.
4

—
[2
1]

W
ild

B
oa
rs

R
us
si
an

D
ou

bl
in
g
ti
m
e
(s
pa
ce
–
ti
m
e
cl
us
te
rs
)

1.
58

6
[2
2]

D
om

es
ti
c
pi
g
(b
et
w
ee
n
fa
rm

s)
SI

m
od

el
2–
3

5
[2
3]

D
om

es
ti
c
pi
g
(w

it
hi
n
in
fe
ct
ed

fa
rm

)
SI

m
od

el
8–
11

15
[2
3]

D
om

es
ti
c
pi
g
(w

it
hi
n
fa
rm

)
U
kr
ai
ne

D
ou

bl
in
g
ti
m
e

1.
65

7
[2
4]

D
om

es
ti
c
pi
g
(b
et
w
ee
n
fa
rm

s)
D
ou

bl
in
g
ti
m
e

7.
46

19
[2
4]

P
ig
s

N
et
he
rl
an
ds

Su
rv
iv
al
an
al
ys
is
(c
on

ta
ct

tr
an
sm

is
si
on

ex
pe
ri
m
en
t)

0.
3

—
[1
8]

P
ig

w
it
hi
n
fa
rm

N
et
he
rl
an
ds

D
ou

bl
in
g
ti
m
e

4.
92

4.
6

[1
3]

M
al
ta

D
ou

bl
in
g
ti
m
e

18
(6
.9
0–
46
.9
)

6.
8

[1
3]

A
rm

en
ia

D
ou

bl
in
g
ti
m
e

6.
1
(0
.6
–
14
.5
)

2–
9

[2
5]

W
ild

bo
ar

It
al
y

D
ou

bl
in
g
ti
m
e

1.
12
4

39
[2
6]

Fo
rc
e
of

in
fe
ct
io
n
(λ
)

1.
16
5

—
[2
6]

P
ro
po

rt
io
n
of

In
fe
ct
ed

1.
17

—
[2
6]

SI
R
m
od

el
1.
13
9

5–
7

[2
6]

P
ig

fa
rm

N
et
w
or
k
(s
ec
on

da
ry

ca
se
s)

1.
86

(r
an
ge

1.
62

−
2.
82
)

—
[2
7]

P
ig

fa
rm

V
ie
tn
am

SI
m
od

el
1.
41
–
10
.8

15
–
30

[2
8]

P
ig

he
rd

SE
IR

m
od

el
10

(1
.1
to

30
)

10
[2
9]

W
ild

bo
ar

So
ut
h
K
or
ea

E
pi
de
m
ic
cu
rv
es

(s
im

ul
at
io
n
‘w
ho

in
fe
ct
ed

w
ho

m
’)

2.
10

(r
an
ge
:0

.0
6–
10
.2
4)

—
[3
0]

W
ild

bo
ar

D
ou

bl
in
g
ti
m
e

1.
01
–
4.
38

2–
9

[3
1]

W
ild

bo
ar

D
ou

bl
in
g
ti
m
e

1.
54

(r
an
ge
:1
.1
1–
2.
37
)

7.
5–
23
.5

[8
]

P
ig

C
hi
na

SI
m
od

el
0.
6

—
[3
2]

A
SF

ou
tb
re
ak
s

—
4.
83
–
11
.9
0

8–
11

[3
3]

W
ild

bo
ar

P
ol
an
d

N
et
w
or
k
an
al
ys
is

1.
1–
2.
5

5
[3
4]

SE
IR
:s
us
ce
pt
ib
le
ex
po

se
d
in
fe
ct
io
us

re
m
ov
ed
;S
I:
su
sc
ep
ti
bl
e
in
fe
ct
io
us
;a
nd

SI
R
:s
us
ce
pt
ib
le
in
fe
ct
io
us

re
m
ov
ed
.

4 Transboundary and Emerging Diseases



in this study; other host species and subspecies with age-
dependent nature could be researched. The infectious period
in this study was 6 days; research has reported different time
periods, examining the infectious period and reevaluation
with the respective period could be studied.

The disease spread and dynamics parameters such as R0,
incidence rate, prevalence rate, serial interval, and contact rates
are to be examined and reported frequently for sustainable
preventive practice [1]. R0 is a theoretical number, so it is
essential to keep in mind that it might not accurately represent
how a disease spreads in practice. The actual rate of a disease’s
transmission can be significantly influenced by other variables,
including population density, age distribution, method of
transmission, the severity of the illness, the length of infectivity,
the efficacy of control measures, and public health initiatives,
these indexes are to be studied in the future research.

The dynamics of infectious diseases and their hosts are com-
plex, and the impact of control programs is difficult to predict
[44]. Themental model refers to a collection of assumptions that
encapsulate the understanding of a complex system. “All models
are wrong: but some are useful”, it is to be updated continuously
[45, 46]. In this context, the proposedmodel focuses on a specific
set of 23 variables. However, a more refinedmodel together with
control measures like surveillance, hygiene promotion, rapid
response, awareness campaigns, diagnosis and treatment, data

analysis, health infrastructure strengthening, advocacy for vacci-
nation, treatment, immunization programs, wellness promotion,
active community engagement, research and development, and
international collaboration could enhance effectiveness. More-
over, considering geographical characteristics and host-specific
behaviors in the qualitative mental model could substantially
enhance its usefulness for decision-makers. Obtaining access
to pertinent data related to these measures would be particularly
advantageous. Such data would empower decision-makers with
the necessary insights for informed and effective decision-
making processes. Developing the optimized model and its sci-
entific significance with sensitivity analysis are suggested for the
following research.

In conclusion, the study deals with R0 of ASF, unveiled a
concerning revelation: an R0 higher than one, indicating an
alarming potential for the widespread dissemination of ASF
worldwide. Further, we developed a conceptual ASFV spread
and control dynamics model considering 23 variables. The
insights can guide future research directions, policy formula-
tions, and disease prevention, control, and treatment strate-
gies. Despite significant limitations, this study can be a
foundation and reference for Scholars, policymakers, and
practitioners, including veterinarians, to shape more effective
and comprehensive approaches for managing infectious
diseases.

TABLE 2: Exponential growth rates and R0 in different phases.

Phase Time frame Days Outbreaks Growth rate R-square Doubling time R0

I 01/12/2007−01/01/2014 2,224 112 0.03 0.99 26.46 1.09
II 02/01/2014−25/03/2016 814 2,498 0.43 0.94 1.60 2.52
III 26/03/2016−12/12/2017 627 1,340 0.43 0.99 1.61 2.51
IV 13/12/2017−1/12/2022 1,851 23,234 1.39 0.99 0.50 5.87
All 01/12/2007−30/12/2022 5,516 27,184 0.37 0.79 1.88 2.29
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FIGURE 2: A mental model to overview the ASFV spread and control.
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