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Salmonellosis is one of the important bacterial infectious diseases affecting the health of pigeons. Heretofore, the epidemiological
characteristics of Salmonella in pigeon populations in China remain largely unclear. The present study investigated the antimi-
crobial resistance and genomic characteristics of Salmonella isolates in pigeons in different regions of China from 2022 to 2023.
Thirty-two Salmonella isolates were collected and subjected to 24 different antimicrobial agents, representing nine categories. The
results showed that these isolates were highly resistant to cefazolin (100%), gentamicin (100%), tobramycin (100%), and amikacin
(100%). Three or more types of antimicrobial resistance were present in 90.62% of the isolates, indicating multidrug resistance.
Furthermore, using whole genome sequencing technology, we analyzed the profiles of serotypes, multilocus sequence typing,
virulence genes, antimicrobial resistance genes, and plasmid replicons and constructed phylogenetic genomics to determine the
epidemiological correlation among these isolates. All strains belonged to Salmonella Typhimurium var. Copenhagen and exhibited
five antimicrobial resistance genes and more than 150 Salmonella virulence genes. Moreover, each isolate contained both the
IncFIB(S) and IncFII(S) plasmids. In addition, phylogenetic analysis showed that all isolates were very close to each other, and
isolates from the same region clustered in the same branch. Overall, our findings provide the first evidence for the epidemiological
characteristics of Salmonella in pigeons of China, highlighting the importance of preventing salmonellosis in pigeons.

1. Introduction

Salmonella is one of the main pathogens leading to the global
outbreak of foodborne illness, which poses a serious threat
to human health worldwide [1]. In China, 70%–80% of
bacteria-related foodborne illnesses are caused by Salmonella
infection [2]. Recent surveys of the disease burden in multi-
ple Chinese provinces have shown that the annual incidence
of Salmonella is roughly 245/100,000 [3]. Moreover, more
than 2,610 Salmonella serotypes have been identified, many
of which are pathogenic to both humans and animals [4, 5].
Notably, Salmonella-infected animals, including mice, wild

animals, fowl, and domestic livestock, are important sources
of Salmonella contamination in humans. Thus, it is of great
importance to monitor the epidemiological profiles of
Salmonella infections in animals.

Due to a close contact with humans, pigeons present one
important source where humans acquire Salmonella infec-
tions. For example, Salmonella in meat pigeons can infect
humans via the food chain, while racing pigeons can trans-
mit the pathogen through direct contact and feces [6, 7].
Salmonellosis can spread not only horizontally but also ver-
tically. For instance, Salmonella can infect breeding pigeons
and then spread to the eggs through vertical transmission,
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resulting in egg necrosis and a decrease in the hatching rate.
It can also infect squabs via lactation, leading to infection or
even death. Moreover, any age of pigeons can be infected
with Salmonella [8], causing a large number of deaths [9].
In addition, Salmonella Typhimurium (S. Typhimurium) is
one of the most important serotypes of Salmonella Enteriti-
dis, which can infect both humans and a range of animal
hosts due to its excellent survival ability under different die-
tary conditions [10].

In China, the industry for pigeon racing has grown, and
meat pigeon consumption has increased in recent years. Accu-
mulating evidence has shown the infection of Salmonella in
pigeons, with S. Typhimurium infections as the majority spe-
cies. For example, S. Typhimurium is reported to be the domi-
nant serotype of pigeon Salmonella isolates in Guangdong and
Shanghai, China, and Poland [11–13]. Infected pigeons often
show single or multiple serious clinical symptoms, including
diarrhea, weight loss, limps, head and neck skews, and other
neurological symptoms [13, 14]. Furthermore, the misuse and
abuse of antibiotics to treat salmonellosis has led to the emer-
gence of multidrug resistance (MDR) bacteria [15, 16]. There-
fore, a comprehensive epidemiological study andMDRprofiles
are needed to clarify the potential danger of Salmonella infec-
tion to pigeons and human health in China. Whole genome
sequencing (WGS) can provide accurate information on pop-
ulation dynamics, genome epidemiology, and bacterial geno-
mic characteristics [17]. A previous study has used WGS to
analyze the serotype, antimicrobial resistance, multilocus
sequence typing (MLST), virulence genes, and plasmid repli-
cons of Salmonella strains in the United States [18]. However,
the WGS profiles of Salmonella isolates in Chinese pigeon
populations are still unknown.

In the present study, we investigated the prevalence of
Salmonella in racing pigeon clubs and meat pigeon farms
across various regions of China. A total of 32 Salmonella strains
were isolated from pigeons. Phenotypic resistance results
showed that 90.62% of the isolates were MDR. Furthermore,
WGS in conjunction with bioinformatics analysis was used to
investigate the genomic characteristics of Salmonella isolates.
We found that all isolates were Salmonella Typhimurium var.
Copenhagen, and the resistance genes, virulence genes, and

plasmid types carried by them were also very similar. Overall,
these results contribute to a better understanding of the epide-
miology and transmissionmechanisms of Salmonella in pigeon
populations in China.

2. Materials and Methods

2.1. Ethics Statement. This study was carried out in accor-
dance with standard procedures without any operations on
living animals. Dead pigeons with clinical symptoms of Sal-
monella infection were used as a sample source for this study.

2.2. Sample Collection. Between June 2022 and April 2023, 215
samples were gathered for this investigation, comprising 92
samples of racing pigeons and 123 samples of meat pigeons.
This study was not a random sampling, but a sample of sick
pigeons with clear clinical symptoms was selected through clin-
ical diagnosis. These collected samples showedweight loss, head
and neck deviation, arthritis, diarrhea, and other single or com-
prehensive symptoms. Details of the sample collection are
shown in Table 1. These samples were collected from four cities
in Hebei Province, two cities in Shaanxi Province, Henan Prov-
ince, Hunan Province, Jiangsu Province, Fujian Province, Ning-
xia Hui Autonomous Region, and Shanghai (Figure 1).

2.3. Isolation and Identification of Salmonella Isolates. The
procedure for Salmonella isolation is depicted as follows:
Following aseptic necropsy, tissue samples from the liver,
heart, kidney, lung, and intestine were collected for Salmo-
nella isolation (Figure S1). To increase the number of bacte-
ria in tissue samples, the proper amounts of the tissue
samples were inoculated in a selenite cystine solution (Haibo
biology, HB4085, China) and cultured for 18 hr at 37°C.
Then, the red precipitate’s culture solution was smeared on
agar medium containing xylose–lysine–deoxycholic (XLD)
(Haibo biology, HB4105, China) acid and cultured at 37°C
for 24 hr to identify potential Salmonella colonies. Finally,
characteristic black center colonies or colorless translucent
colonies were chosen to identify Salmonella isolates using
16S rDNA PCR (Table S1 and Figure S2).

2.4. Antimicrobial Susceptibility Testing. According to the
Clinical Laboratory Standard Institute (CLSI) guidelines,

TABLE 1: The source and prevalence statistics of Salmonella collected samples in this study.

Province City Breed Sample Salmonella isolates Prevalence rate (%)

Hunan Changde Meat pigeon 30 6 20.0
Hebei Shijiazhuang Meat pigeon 6 3 50.0
Hebei Hengshui Meat pigeon 17 6 35.3
Hebei Cangzhou Meat pigeon 8 1 12.5
Henan Pingdingshan Meat pigeon 37 13 35.1
Shanghai Shanghai Meat pigeon 25 3 12.0
Hebei Tangshan Racing pigeon 5 0 0
Shaanxi Xi’an Racing pigeon 25 0 0
Shaanxi Baoji Racing pigeon 8 0 0
Jiangsu Yancheng Racing pigeon 30 0 0
Fujian Fuzhou Racing pigeon 15 0 0
Ningxia Wuzhong Racing pigeon 9 0 0
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antimicrobial susceptibility profiles were assessed by broth
microdilution using the Sensititre™ automated antimicro-
bial susceptibility system (Thermo Fisher Scientific, United
Kingdom) and the Gram-negative GN4F plate. The 24 antimi-
crobial agents tested were as follows: penicillins (ampicillin:
AMP, 8–16μg/mL; piperacillin: PIP, 16–64μg/mL; ticarcillin/
clavulanic acid: TCC, 8/2−64/2μg/mL; ampicillin/sulbactam:
SAM, 4/2−16/8μg/mL; piperacillin/tazobactam: TZP, 8/4−128/
4μg/mL), carbapenems (meropenem: MEM, 0.5–8μg/mL; erta-
penem: ETP, 0.25–8μg/mL; imipenem: IPM, 0.5–8μg/mL; dor-
ipenem: DOR, 0.5–4μg/mL), cephalosporins (cefazolin: CZO,
1–16μg/mL; cefepime: FEP, 4–32μg/mL; ceftazidime: CAZ,
1–16μg/mL; ceftriaxone: CRO, 0.5–32μg/mL), monobactams
(aztreonam: ATM, 1–16μg/mL), aminoglycosides (gentamicin:
GEN, 2–8μg/mL; amikacin: AMK, 8–32μg/mL; tobramycin:
TOB 2–8μg/mL), tetracyclines (tetracycline: TET, 4−8μg/mL;
minocycline: MIN, 1–8μg/mL; tigecycline: TGC, 1–8μg/mL),
quinolones (ciprofloxacin: CIP, 0.5–2μg/mL; levofloxacin:
LVX, 1−8μg/mL), folate pathway inhibitors (trimethoprim/sul-
famethoxazole: TMS, 2/38−4/76μg/mL), and nitrofuran (nitro-
furantoin: NIT, 32–64μg/mL). The minimum inhibitory
concentration (MIC) for each antibiotic was interpreted using
CLSI standards and NARMS breakpoints, and the MIC values
were categorized as susceptible (S), intermediate (I), or resistant

(R). In order to facilitate the analysis of the results, the
sensitive intermediate-resistant strains were identified as
having antimicrobial resistance, and the strains with three
or more antimicrobial resistances were identified as having
MDR. The quality control strain utilized was Escherichia coli
ATCC 25922.

2.5. Genomic DNA Extraction and Whole Genome Sequencing.
The isolated strains were shaken overnight at 37°C in
Luria–Bertani (LB) (Haibo biology, HB0128, China) liquid
medium, and then centrifuged to obtain a bacterial precipitate.
Bacterial genomic DNA was extracted using a commercial
TIANmp Bacterial DNA kit (Tiangen Biotech, China) accord-
ing to the manufacturer’s instructions. After passing the DNA
sample quality test, a sequencing library was generated using
the Rapid Plus DNA Lib Prep Kit for Illumina (Cat. No.
RK20208). WGS of all isolates was performed at Novogene
Bioinformatics Technology Co., Ltd. (Tianjin, China) using
Illumina platforms and the PE150 strategy.

2.6. Bioinformatic Analyses. After performing quality checks on
the raw reads with Fastp (v0.23.1) [19], the reads were assembled
with SPAdes 4.0.1 [20] using the “careful” command option.
After genome assembly, SeqSero1.2 (https://cge.food.dtu.dk/se
rvices/SeqSero/) [21] and MLST2.0 (https://cge.food.dtu.dk/se

FIGURE 1: Distribution of sampling locations in eight provinces and regions of China.
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rvices/MLST/) were used to predict the serotype and sequence
type of the isolated strains on the data platform of the Genome
Epidemiology Center [22]. PlasmidFinder 2.1 (https://cge.food.
dtu.dk/services/PlasmidFinder/) was additionally employed to
find the plasmid type with a minimum coverage of 60% and a
nucleotide identity of 95% [23]. In addition, the virulence factor
database (VFDB) (http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.
cgi?func=VFanalyzer) manages the virulence factors of bacterial
pathogens, and we conducted virulence gene prediction for 32
Salmonella isolates here [24]. In order to conduct a comprehen-
sive analysis of resistance genes asmuch as possible, the resistance
genes were detected using ResFinder 4.4.1 (https://cge.cbs.dtu.dk/
services/ResFinder/) with settings of threshold of 95% and mini-
mum length of 60%. Moreover, using homology and single
nucleotide polymorphism (SNP) model prediction of resistance
groups on the comprehensive antibiotic resistance database plat-
form, the Resistance Gene Identifier (https://card.mcmaster.ca/
analyze/rgi) software was used to identify the AMR gene [25].
Additionally, an evolutionary tree based on the SNPs of the core
genomes was built using the maximum likelihood method
(Roary and FastTree). In this study, the phylogenetic tree, corre-
sponding serotype, ST (sequence type), province, antimicrobial
resistance genes, and insertion sequences were visualized using
the Interactive Tree of Life (https://itol.embl.de) web server.

3. Results

3.1. Prevalence and Serotypes of Salmonella in Pigeons.
Among all meat pigeon samples (n= 123), 32 Salmonella
isolates were identified, mainly distributed in Henan, Hebei,

Hunan, and Shanghai in China. Of the 96 racing pigeon
samples collected from five provinces, no Salmonella isolate
was found. In the entire pigeon population, the prevalence of
Salmonella was 14.9%, while the prevalence in meat pigeons
was 26%. Interestingly, every isolate shared the same sero-
type and MLST pattern and had similar copies of the seven
housekeeping genes: aroC, hemD, purE, thrA, dnaN, sucA,
and hisD. All isolates were Salmonella Typhimurium var.
Copenhagen ST128 (n= 32) (Figure 2).

3.2. Phenotypic Antimicrobial Resistance. All Salmonella iso-
lates were subjected to testing for 24 different antimicrobial
drugs in nine different categories, and the results are shown
in Table S2 and Figure S3. In order to facilitate the statistical
results, we classified intermediate drug-resistant strains as
drug-resistant results. We found high resistance of isolates
to gentamicin, tobramycin, cefazolin, and amikacin (100%;
32/32), followed by minocycline (84.375%; 27/32), tetracycline
(78.125%; 25/32), and tigecycline (50%; 16/32). Moreover, all
isolates were susceptible to cefepime, ceftriaxone, doripenem,
ertapenem, aztreonam, and levofloxacin (Figure 3(a)). In addi-
tion, 90.62% of the strains were resistant to at least three types
of antibiotics, indicating MDR (Figure 3(b)).

3.3. Genotypic Antimicrobial Resistance. Analyzing the anti-
microbial resistance genes, 32 Salmonella isolates were iden-
tified to carry five identical antimicrobial resistance genes. All
isolates contained aminoglycoside acetyltransferase aac (6′)-
Iaa resistance genes, effluxmechanism genesmdsA andmdsB,
genes encoding gold resistance golS, and biofilm-related genes

Year Province City Host ST Serotype

2022 (24)

Shanghai (3)
Cangzhou

Pigeon (32) 128 Typhimurium
O5-(4:i:1,2)

Shijiazhuang

Shanghai

Changde

Hengshui

Pingdingshan

Hunan (6)

Hebei (10)

Henan (13)
2023 (8)

FIGURE 2: Distribution of Salmonella isolates studied according to sampling year, province, host, sequence type, and serotype.
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sdiA (Figure 4). Moreover, genomic mutations conferring
quinolone resistance were detected in 26 (81.25%) isolates,
and two single mutations of the gyrA gene were observed:
gyrA (D87N) (n= 18) and gyrA (S83F) (n= 8) (Figure 4).

3.4. Plasmid Replicons. Using the PlasmidFinder tool, we
detected the plasmids carried by Salmonella strains. These
isolates carried the same plasmid replicon, and a total of two
plasmids were detected in 32 isolates. The plasmids of

D
ru

g 
re

sis
ta

nc
e r

at
e (

%
)

100

80

60

40

20

0

A
M

P
PI

P
TC

C
SA

M
TZ

P
M

EM ET
P

IP
M

D
O

R
CZ

O
FE

P
CA

Z
CR

O
G

EN
A

M
K

TO
B

TE
T

M
IN

TG
C

CI
P

LV
X

TM
S

N
IT

Pe
ni

ci
lli

ns

Ca
rb

ap
en

em
s

C
ep

ha
lo

sp
or

in
s

A
m

in
og

ly
co

sid
es

Te
tr

ac
yc

lin
es

Q
ui

no
lo

ne
s

Su
lfo

na
m

id
es

N
itr

of
ur

an
M

on
ob

ac
ta

m
s

AT
M

S R
I

ðaÞ

50

40

30

Pe
rc

en
ta

ge

20

10

0
1 2

0

3 4
Antimicrobial classes

5 6 7 8

9.38

37.50
40.63

MDR (90.62%)

6.25
3.13 3.13 0

ðbÞ
FIGURE 3: Phenotypic antimicrobial susceptibility (a) and distribution of multiple resistance among the studied Salmonella isolates (b).
Abbreviations: AMP, ampicillin; PIP, piperacillin; TCC, ticarcillin/clavulanic acid; SAM, ampicillin/sulbactam; TZP, piperacillin/tazobactam;
MEM, meropenem; ETP, ertapenem; IPM, imipenem; DOR, doripenem; CZO, cefazolin; FEP, cefepime; CAZ, ceftazidime; CRO, ceftriaxone;
GEN, gentamicin; AMK, amikacin; TOB, tobramycin; TET, tetracycline; MIN, minocycline; TGC, tigecycline; CIP, ciprofloxacin; LVX,
levofloxacin; TMS, trimethoprim/sulfamethoxazole; NIT, nitrofurantoin; and ATM, aztreonam.

Tree scale: 0.1

SMHenan5 128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)
O5-(4:i:1,2)

SMHenan2
SMHenan7
SMHenan13
SMHenan9

SMHenan11
SMHenan10
SMHenan1
SMHenan8
SMHenan4
SMHenan3
SMHebei4
SMHebei10
SMHebei7
SMHebei9
SMHebei5
SMHebei6
SMHebei8
SMHebei1
SMHebei3
SMHebei2
SMHunan4
SMHunan1
SMHunan6
SMHunan2
SMHunan5
SMHunan3

SMHenan6
SMHenan12
SMShanghai3
SMShanghai2
SMShanghai1

Henan

ST Province PlasmidSerotype gy
rA

(D
87

N
)

gy
rA

(S
83

F)
A

AC
(6

´)
-la

a
sd

iA
go

lS
m

ds
A

m
ds

B
IS

Se
n7

IS
St

y2
M

IT
EE

c1
IS

Ec
I1

0
IS

Se
n1

ISAMR

Henan
Henan
Henan
Henan

Henan
Henan
Henan
Henan
Henan
Henan
Hebei
Hebei
Hebei
Hebei
Hebei
Hebei
Hebei
Hebei
Hebei
Hebei
Hunan
Hunan
Hunan
Hunan
Hunan
Hunan

Henan
Henan

Shanghai
Shanghai
Shanghai

IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)

IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)

IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)
IncFIB(S), IncFII(S)

FIGURE 4: Phylogenetic tree and statistical combination of 32 strains of Salmonella from pigeons in China based on SNP analysis.

Transboundary and Emerging Diseases 5



isolates were IncFII(S) and IncFIB(S) (Figure 4). Interest-
ingly, the IncFll(S) and IncFIB(S) plasmids were carried by
different isolates from pigeons from different provinces,
indicating that these plasmids have widespread distribution
across different geographical regions.

3.5. Salmonella Virulence Genes. In order to investigate the
virulence gene profile of Salmonella isolates, we analyzed the
genome with the complete VFDB dataset. A total of 156
genes associated with the virulence and pathogenicity
mechanisms of Salmonella were found in the 32 Salmonella
strains. The number of virulence genes in each isolate ranged
from 151 to 156, and there was little difference in virulence
genes among isolates (Figure 5). Moreover, the distribution
of S. Typhimurium virulence genes isolated from various
geographical locations was nearly the same, with only one
to six virulence gene differences. There were 1–6 virulence
gene differences among different isolates, including safD,
stdC, ssaI, ssaM, sseG, and sspH2. All Salmonella isolates
had plasmids harboring the spvB gene, the stress adaptation
gene sodCI, the enterotoxin gene stn, and the serum resis-
tance gene rck, all of which are critical components of the
virulence system of Salmonella. In addition, the typical viru-
lence genes from Salmonella pathogenic islands 1 and 2 (SPI-
1 and SPI-2) were present in all Salmonella strains analyzed.

4. Discussion

As an important zoonotic pathogen, Salmonella is seriously
harmful to humans and animals, causing huge economic
losses. The pigeon breeding industry is the fourth major
poultry breeding industry in China [26]. However, so far,
the pigeon industry has not yet established a strict biosafety
management system, and there are also defects in disease
prevention and immunization procedures. Therefore, once
a Salmonella infection occurs, it will cause serious damage to
pigeons. The present study investigated the epidemiological,
antimicrobial resistance, and genomic characteristics of Sal-
monella isolated from pigeons in various parts of China
using WGS data in conjunction with accurate bioinformatics
techniques, which provides a scientific basis for the spread of
Salmonella in pigeons in China.

In this study, 32 strains of Salmonella from pigeons were
all Salmonella Typhimurium var. Copenhagen. MLST anal-
ysis showed that all strains belong to ST128. Previous studies
have reported that S. Typhimurium is the most common
serotype of Salmonella in animals [27]. Moreover, the
Copenhagen variant is the most prevalent variant of S.
Typhimurium in pigeons [28]. It is reported that the
sequence type of S. Typhimurium isolated from pigeons
from China and Poland was also ST128. These results,
including ours, indicate that the serotype and sequence
type of Salmonella isolates may be a stable lineage in the
pigeon population. Furthermore, we showed that the preva-
lence of S. Typhimurium in the overall pigeon population
was 14.9%, and in meat pigeons, it was 26%. In line with our
finding, two previous studies reported 26.1% and 21% prev-
alence of S. Typhimurium in the meat pigeon population in
the markets of Shanghai and Beijing, respectively [12, 29].

The prevalence of salmonellosis in pigeons in Italy, Egypt,
and Poland was reported to be 0.9%, 13.3%, and 5.5%,
respectively [13, 30, 31]. The prevalence of salmonellosis in
pigeons varies in different countries, which may be related to
different sampling methods. But it is worth noting that the
situation of Salmonella infection in meat pigeon populations
in China may be more severe, which needs extensive investi-
gation in pigeon populations.

Antibiotics are the most commonly therapy for the treat-
ment of bacterial diseases, including pigeon salmonellosis. In
the field of veterinary medicine, the widespread and sus-
tained use of antimicrobial agents has led to the development
of AMR in animals and livestock [32]. The present study
evaluated the phenotypic and genotypic AMR profiles of
32 Salmonella strains in pigeons. In order to identify accurate
epidemiological information about the antimicrobial suscep-
tibility of Salmonella, all isolates were tested for 24 different
antimicrobial agents. In the present study, the phenotypic
resistance results of amikacin, gentamicin, and tobramycin
were consistent with the aminoglycoside resistance gene aac
(6′)-Iaa, and there was no significant correlation between the
resistance of other types of antibiotics and the resistance
genes carried. Antimicrobial resistance genes do not neces-
sarily mean phenotypic resistance and vice versa. The occur-
rence of antimicrobial resistance is not only determined by
the presence of antimicrobial resistance genes but also
affected by various factors, such as enzyme activation, target
modification or protection, and biofilm formation [33]. We
found that all strains exhibited a common resistance to gen-
tamicin, amikacin, tobramycin (aminoglycosides), and cefa-
zolin (first-generation cephalosporins), although they come
from different regions. The result was also observed in the
antimicrobial susceptibility test of Salmonella isolated from
humans [34]. We also found that some strains were resistant
to tigecycline, but no plasmid-mediated tigecycline resistance
genes tet (X3) and tet (X4) were found. It is speculated that
the causes of antimicrobial resistance are related to other
tigecycline resistance mechanisms, such as overexpression
of efflux pumps, mutation of cell membrane porin, and ribo-
some protection mechanisms [35]. Notably, we showed that
90.62% of Salmonella isolates in pigeons were MDR and
could resist at least three types of antimicrobial agents. Con-
sidering the limited antibiotics available to pigeons at pres-
ent, infection with MDR strains may lead to ineffective
treatment. This reminds us to continuously monitor antimi-
crobial resistance in pigeon populations and use antibiotics
reasonably.

The antimicrobial resistance genes predicted by the two
data platforms are slightly different. Therefore, we combined
the antimicrobial resistance genes and chromosome muta-
tion results with a threshold consistency higher than 95% in
the two data platforms for statistics. Antimicrobial resistance
can be more accurately predicted when the two methods are
combined. We detected five antimicrobial resistance genes in
Salmonella isolates from pigeons. Among them, the most
common resistance gene is aac (6′)-Iaa, which encodes ami-
noglycoside drugs. Moreover, phenotypic resistance studies
confirmed that all strains were resistant to aminoglycosides
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FIGURE 5: Heatmap of tree hierarchical clustering of virulence genes and isolated strains. This figure shows the prediction of the virulence gene
profile of the studied isolates. The x-axis shows the isolate ID numbers, and the y-axis shows the identified selected virulence genes. Blue cells
indicate the presence of a gene; gray cells indicate the absence of a gene.
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(gentamicin, tobramycin, and amikacin). Consistent with a
previous study [36], all isolates were positive for the gene aac
(6′)-Iaa encoding aminoglycoside resistance. In addition, we
found that the efflux pump of the mdsABC complex encodes
the antimicrobial resistance genes mdsA and mdsB.MdsABC
is a unique multidrug transport factor for Salmonella. MdsA
and mdsB can promote resistance to various antibacterial
drugs, including phenicol antibiotic, cephalomycin, mono-
bactam, carbapenem, and cephalosporin. This indicates that
its presence can lead to resistance to multiple antibiotics
[37–40]. Furthermore, partial regulatory systems contribute
to bacterial resistance to heavy metals. In Salmonella, the
response to gold ions is mediated by a specific metal regula-
tory factor golS, which controls the expression of the RND
(resistance–nodulation–division) efflux pump gesABC. The
CpxR/CpxA system (cell-envelope stress-responding system)
promotes the gold resistance of Salmonella by controlling
gols-dependent gesABC transcription, enabling microorgan-
isms to resist contaminated environments [41–43]. Notably,
the sdiA gene exists in all isolated strains. To our best knowl-
edge, there is no study to clarify the role of the sdiA gene in
antimicrobial resistance. The sdiA gene of Salmonella regu-
lates the rck gene, which mediates the adhesion and invasion
of Salmonella to epithelial cells and the body’s resistance to
complement [44, 45]. In addition, we observed mutations
caused by amino acid substitutions in gyrA, from serine to
phenylalanine at codon 83 (S83F) and from aspartic acid to
asparagine at codon 87 (D87N). Single point mutations in
the quinolone resistance-determining region of gyrA reduce
the sensitivity of fluoroquinolones (e.g., ciprofloxacin). How-
ever, antimicrobial resistance may require two or more
mutations in the quinolone-determining region of gyrA,
gyrB, parC, and parE [46–48].

Plasmids, transferred between different bacterial species
and clones, can carry antimicrobial resistance or virulence
genes. Obtaining plasmids carrying antimicrobial resistance
or virulence genes is transmitted to each other between bac-
teria of different and geographical origins, which may alter
the prevalence of virulence or multidrug-resistant bacterial
cloning [49, 50]. The present study found IncFIB(S) and
IncFII(S) plasmids in all isolates. IncFIB(S) and IncFII(S)
plasmids are Salmonella virulence plasmids that may carry
virulence-related genes spv, rck (resistance to complement
killing), and pef (plasmid-encoded fimbriae) [51]. However,
antimicrobial genes were not found on the contigs carrying
the IncFIB(S) and IncFII(S) sequence replicons. This may
have been due to the absence of these genes on virulence
plasmids [23].

Virulence genes are closely related to the ability of Sal-
monella to invade host cells and spread in vivo [52]. In this
study, we found 156 genes related to Salmonella virulence
and pathogenic mechanisms in the genomes of 32 Salmo-
nella isolates in pigeons. All isolates carried the typical viru-
lence factors of Salmonella pathogenicity islands 1 and 2,
indicating the strong pathogenicity of these isolates. There
were 1–6 virulence gene differences among different Salmo-
nella isolates; however, the serum resistance gene rck, the

stress adaptation gene sodCI, the enterotoxin gene stn, and
plasmid-carrying spvB gene were detected in each Salmonella
isolate. It is reported that rck functions as a “gene toxin” that
affects the DNA integrity of epithelial cells, in addition to its
roles as a “cyclomodulin” that affects the cell cycle machinery
and as an invasion factor [53]. The sodCI gene decreases
external oxidative damage to host cells by encoding phago-
cytic superoxide dismutase [54]. The enterotoxin stn gene
has a significant role in the pathogenicity of S. Typhimurium
infection, which can maintain the composition and integrity
of the bacterial cell membrane by regulating the localization
of the OmpA membrane [55]. The spvB virulence gene of
Salmonella acts as an intracellular ADP-ribosylation toxin,
which can rearrange the host cytoskeleton to increase Salmo-
nella invasion and promote systemic transmission [56, 57].

Overall, the Salmonella strains prevalent in Chinese pigeon
populations were Salmonella Typhimurium var. Copenhagen,
although these isolates were isolated in different regions and at
different times. The analysis of the whole genome sequence
characteristics showed that these strains had highly similar
antimicrobial resistance genes and virulence genes along with
the same sequence type, serotype and plasmid replicons. In
addition, the genetic relationship between isolates from differ-
ent regions is very close, indicating that there may be a pan-
demic clonal transmission of pigeon salmonellosis in China.
Studies have reported that the Salmonella Typhimurium var.
Copenhagen can be transmitted to humans and other animals
[7, 9, 58]. This suggests that Salmonella originating from
pigeons may pose a threat to human health. Therefore, the
prevention and control of salmonellosis should be strengthened
in the pigeon industry.

5. Conclusions

Using WGS combined with bioinformatics analysis methods,
this study provides accurate information on the epidemiology
of Salmonella in pigeon flocks fromdifferent regions of China.
Even if there are several limitations to the present study, such
as a possible insufficient sample size, the results nevertheless
carry significant reference value. We found that Salmonella
typhimurium Copenhagen variants are the common serotype
prevalent in pigeons in different regions of China. Notably,
90.62% of the isolates showed multidrug resistant, which
deserves more investigations. Meanwhile, there are large
number of virulence genes carried by the isolated strains,
indicating a strong pathogenicity and virulence and conse-
quently, a serious harm to pigeon industry. Overall, the pres-
ent study reveals the urgency of strengthening the research
and monitoring of Salmonella epidemiology in pigeons.
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