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In the last few decades, many new paramyxoviruses have been discovered, causing diverse, mostly respiratory diseases in animals
and humans. The porcine parainfluenza virus 1 (PPIV-1, species Porcine respirovirus 1), which has been reported in many
countries worldwide, was found in both healthy and clinically ill pigs showing respiratory signs. Here, we report the expected
prevalence and genetic diversity of PPIV-1 in Hungarian pig herds and the detection in one Slovakian pig farm, which is the first
report of evidence for the presence of the virus in the country. To estimate the prevalence in Hungary 211 oral fluid samples were
collected from 23 large-scale swine herds in a systematic way and tested by real-time quantitative RT-PCR. The presence of the
virus was detected in 10 of the 23 Hungarian farms (43%) included in our study. One hundred eighty-one nasal swab samples were
collected cross-sectionally from three Hungarian and one Slovakian PPIV-1-positive herd and PPIV-1 was most prevalent in
6-week-old pigs on farms located in Hungary and in the 2-week-old pigs on the Slovakian farm. Phylogenetic analysis of three
Hungarian and two Slovakian PPIV-1 F-gene sequences showed high-nucleotide identity (>93%) and all belonged to Clade I,
together with the other European strains.

1. Introduction

Porcine parainfluenza virus 1 (PPIV-1) species Porcine respir-
ovirus 1 (PRV-1) is an enveloped RNA virus belonging to the
Respirovirus genus, Orthoparamyxovirinae subfamily within
the Paramyxoviridae family. Paramixoviruses are known to
affect a wide range of species, including pigs, poultry, cattle,
companion animals, and also humans. Members of this fam-
ily have been associated with the respiratory infections with a
possible zoonotic potential [1].

PPIV-1 was first identified in nasopharyngeal—and rectal
swab samples collected from slaughtered pigs between 2008
and 2012 in Hong Kong, China [2]. Full genome sequencing
and phylogenetic analyses showed that this novel paramyxovirus

is most closely related to human parainfluenza virus 1 (HPIV-1)
and Sendai virus (SeV) within the Respirovirus genus. In the last
years, the viruswas detected in theUSA [3–5], Chile [6],Hungary
[7], Germany, theNetherlands [8], Poland [9], and in the Repub-
lic of Korea [10].

The nonsegmented, negative sense, single-stranded RNA
genome of PPIV-1 is around 15 kilobases in length and
encodes six major proteins (3-N-P-M-F-HN-L-5′): nucleo-
capsid (N), phosphoprotein (P), matrix (M), fusion (F),
hemagglutinin–neuraminidase (HN), and large proteins (L),
respectively. The HN and F proteins are major surface glyco-
proteins that are responsible for interaction with the host cell.
The HN protein plays a role in the binding and entry of the
virus, whereas the F protein mediates the fusion of the viral
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envelope and the cell membrane. Although limited number of
full genome sequences are publicly available, HN and F genes
with high-genetic variability can be used for genetical and
epidemiological studies on PPIV-1 [5, 8]. Phylogenetic analy-
sis of the complete nucleotide sequence of the F protein
revealed that PPIV-1 divides into two distinct clades [11].
Lineage 1 contains sequences from Europe and Hong Kong,
and while lineage 2 contains sequences originating from the
American and Asian continents, suggesting divergent evolu-
tion of European and American strains [11].

The exact pathogenic role of the virus is currently
unknown, but PPIV-1 infection has been associated with respi-
ratory diseases. The virus was often detected in pigs displaying
respiratory symptoms, such as coughing, sneezing, and nasal
discharge [3, 6, 9, 10]. Histopathological and in situ hybridiza-
tion studies showed that the virus replicates in the nasal and
tracheal respiratory epithelial cells [3]. In a recent study, an
experimental challenge performed on 4-week-old conventional
(CON) and 6-week-old cesarean derived/colostrum deprived
(CD/CD) pigs resulted in high-viral quantities in all respiratory
samples with nasal viral shedding and replication in the upper
and lower respiratory tract [12]. Despite the high levels of
PPIV-1 replication, only mild clinical respiratory symptoms
were observed. Several other studies showed that the viral
genome was also present in asymptomatic pigs [2, 5, 7, 8].
Palinski et al. [3] reported that 11, randomly selected, naturally
infected pigs showed no signs of coughing, sneezing, nasal
discharge, or lethargy during a 2-week observation period.

These findings suggest that PPIV-1 infection itself may
not play a primary role in respiratory diseases, but coinfec-
tions with other pathogens, such as porcine reproductive and
respiratory syndrome virus (PRRSV) and/or influenza A
virus (IAV) may contribute to porcine respiratory disease
complex (PRDC), increasing the severity of the disease out-
come [9, 13].

PPIV-1 in Europe was first described by our research
group in nasal swab samples originating from Hungarian
farrow-to-finish farms [7]. Among the 22 herds examined
in our study, only one (4.5%) was positive for PPIV-1. How-
ever, the prevalence of this virus seems relatively high in
other European countries, as its presence was reported on
42.3% of German and Dutch farms [8], and 76.7% of Polish
farms [9]. Also, in Chile Agüero et al. [6] found the virus in
all six farms tested, suggesting that PPIV-1 is widely dissem-
inated in the country. In the present study, our aims were to
screen large-scale pig herds in a systematic way to estimate
the prevalence of PPIV-1 and to investigate the genetic diver-
sity of the Hungarian strains.

2. Materials and Methods

2.1. Sample Collection. All samples were gathered from 23
large-scale Hungarian pig herds between 2020 and 2022, as a
part of an active surveillance sampling program (ethical permis-
sion number: PE/EA/544-5/2018; Figure 1). We also received
samples from a Slovakian pig farm located close to the Hungar-
ian border for diagnostic purposes. The farms varied in basic
production parameters, sow herd size and genetics but were all

farrow-to-finish. The participation in the sampling campaign
was voluntary of all farms regardless of their health status, and
no significant clinical disease was reported in the herds during
the sampling period. On most farms, according to the protocol,
100 blood samples were drawn from animals of different age
groups, 5 pen-based oral fluid samples were collected from
weaned pigs (8–12 weeks of age; WOA), and 5 samples from
fatteners (18–20 WOA) [14]. More details of the sampling pro-
tocol can be found in the study of Igriczi et al. [15]. Upon the
request of the farm owners and/or farm veterinarians—after
recognizing the presence of the virus in their herds—additional
cross-sectional samplings were also carried out in three cases:
nasal swabs were collected from 2-, 4-, 6-, and 8-week-old ani-
mals. Nasal swab samples from the Slovakian farm were origi-
nally sent in for swine influenza virus (SIV) screening, because
the animals in the nursery unit showed clinical signs of respira-
tory disease. The samples from this farm were collected cross-
sectionally from 2-, 6- and 8-week-old animals. Altogether 221
oral fluid samples and 181 nasal swabs were collected and were
all stored at −80°C until further use.

2.2. Sample Processing and RNA Extraction. The oral fluid
samples were tested individually and centrifuged at 300× g
for 5min before extraction. Nasal swabs were vortexed in
PBS and equal volumes (100 µl) of samples from the same
age groups were pooled by 4 or 5. The samples of PPIV-1-
positive pools were processed later individually. The RNA
was extracted from 200 µl of pooled or individual nasal swab
and oral fluid samples by QIAcube automatic nucleic acid
extractor (Qiagen, Hilden, Germany) using the QIAmp
cador Pathogen Mini Kit (Qiagen) according to the manu-
facturer’s protocol. The RNA samples were stored at −80°C
until further analysis.

2.3. RT-qPCR Detection of PPIV-1. Real-time quantitative
reverse transcription PCR (RT-qPCR) was performed to detect
the L gene of PPIV-1 in the samples with a subsequent melting
point analysis. The RT-qPCR assays were run on Rotor-Gene Q
instrument (Qiagen) using QuantiNova SYBR Green RT-PCR
Kit (Qiagen) and specific primers (forward primer: 5′-TACAA-
TATATGTGGGTGATCCTTACT-3′ and reverse primer:
5′-GCCTGAATCTTCATGATCTTCTAAA-3′) previously pub-
lished by Lau et al. [2], with the following temperature profile:
50°C for 10min, 95°C 30min followed by 40 cycles of 95°C for
5 s, and 60°C for 30 s. Samples with Ct (cycle threshold) values
higher than 37 were considered negative.

The RT-qPCR results were statistically analyzed using
GraphPad Prism 8 for Windows. The Ct values of the differ-
ent age groups and sample types were compared using the
Mann–Whitney test.

2.4. PPIV-1 Fusion (F) Protein Gene Sequencing and Phylogenetic
Analysis. Nasal swab samples from PPIV-1 positive pools were
extracted and tested individually. Sequencing of the F gene was
attempted on samples with the lowest Ct values. The reactions
were performed in a Genesy 96T gradient PCR machine (Tian-
long, China) using One-Step RT-PCR Kit (Qiagen) and specific
internal and outer primer pairs (F-Rev: 5′-TCGTGCACCC-
TAAGTTTTCTTTA-3′ and F-For int 1 : 5′-GAGAGAAGAGC
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TTAACATTACAGGC-3′; F-For: 5′-ACTTAGGGTACAAGT-
TATCCAAAAAA-3′ and F-Rev int 1 : 5′-TCATAAATATCTG-
TYTTCCCGAGATT-3′) described by Park et al. [5]. The PCR
reactions were run under the following temperature profile:
48°C for 20min; 94°C for 3min followed by 40 cycles of
94°C, 30 s; 55°C, 50 s; 68°C, 2min; and one last step at 68°C
for 7min. After agarose gel electrophoresis, amplicons with the
expected size were manually cut and purified from agarose gel
using QIAquick Gel Extraction Kit (Qiagen). BigDyeTM Termi-
nator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific,
Ljubljana, Slovenia) was used for the Sanger sequencing reac-
tion. For purification and concentration of high-quality DNA
from PCR reactions DNA Clean & Concentrator®-5 (Zymo
Research, Irvine, CA, USA) was used. Capillary electrophoresis
was performed by a commercial provider (BIOMI Kft., Gödöllő,
Hungary).

Visual inspection and trimming of all chromatograms
were carried out using Chromas 2.6.6 software (Technely-
sium Pty Ltd, South Brisbane, Australia). The forward and
reverse sequences were assembled and aligned against all
available PPIV-1 F gene sequences downloaded from the
GenBank, using the E-INS-I method of the MAFFT version

7 online software [16]. Maximum-likelihood phylogenetic
trees were constructed using MEGAX [17] performing boot-
strap analysis with 1,000 replicates.

3. Results

3.1. Detection Rates of PPIV-1 in Different Pig Farms. PPIV-1
was detected in 11 of the 24 farms (46%) involved in our study
(Figure 1) and the estimated Hungarian prevalence was 43%
(10/23). Altogether, 25 of the 221 oral fluid samples (11%)
were positive for PPIV-1 and the percentage of the positive
samples varied between 10% and 60% in the positive herds.
Sixty-four percent (16/25) of the PPIV-1-positive samples
belonged to the weaned pigs and 36% (9/25) belonged to
the fatteners (Figure 2). Considering the viral quantities, the
Ct values of the positive oral fluid samples ranged from 21.92
to 35.39 for weaned pigs and from 26.05 to 35.79 for fatteners.
The Ct values of the PPIV-1 positive 8–12-week-old pigs’
samples were significantly lower (mean Ct value: 31.27Æ
3.97) than what was detected in the samples of the 18–20-
week-old pigs (mean Ct value: 33.46Æ 2.94; Figure 2).

Positive farms

Positive farms with nasal swab sampling

Negative farms

30%
(3/10)

20%
(2/10)

20%
(2/10)

60%
(3/5)

10%
(1/10)

20%
(2/10)

10%
(1/10)

30%
(3/10)

20%
(2/10)

42%
(5/12)

10%
(1/10)

FIGURE 1: Map of Hungary highlighting the geographic location of the sampled farms (red/green/blue dots). The percentages of the PPIV-1-
positive oral fluid samples on each farm are indicated on the map.
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PCR positive nasal swab samples were found on all four
farms where nasal swab sampling was also performed. Of the
181 nasal swab samples, 34 samples (18.8%) from four pig
farms were positive for PPIV-1. Among the different age
groups, the detection rate was significantly higher in the
samples obtained from 6-week-old animals than in any other
age groups tested, as more than half of the samples (52%)
were positive (Figure 3). The Ct values of the positive nasal
swabs ranged from 21.24 to 35.06, with the mean Ct value of
28.37Æ 3.84 (Figure 4). There were no significant differences
between the Ct values measured in each age group. However,
statistical comparison of the different sample types showed
that the Ct values of the PPIV-1-positive nasal swabs were
significantly lower than the oral fluids, with the mean Ct
value of 32.06Æ 3.73 (Figure 5). Moreover, serum samples
from the four PPIV-1-positive farms with nasal swab sam-
pling were also tested with RT-qPCR, but all samples were
negative for PPIV-1.

3.2. Different Circulation Patterns on Four PPIV-1 Positive
Herd. To gain information about the within-herd infection
dynamics of the virus we performed cross-sectional nasal
swab sampling in four PPIV-1-positive herds. We found
some differences in the patterns of PPIV-1 circulation on
these farms (Figure 6). On Farms 1, 2, and 3, located in Hun-
gary, the detection rates were the highest in the 6-week-old

piglets (75%, 70%, and 40%, respectively). On Farm 1, the
virus already appeared in 4-week-old piglets and on Farm 3
some samples from the 8-WOA group were also positive. On
the other hand, on Farm 4 located in Slovakia, the highest
detection rate (60%) was observed in the youngest, 2-WOA
group. The estimated prevalence on this farm seemed to
decrease toward the older age groups. Pairwise statistical com-
parisons however showed no significant differences between
the Ct values of the PPIV-1-positive nasal swabs from the
different age groups. On Farm 1, there were no significant
differences between the Ct values measured in 4- and
6-week-old animals. On the other three farms, pairwise sta-
tistical comparisons could not be performed as there were too
few positive samples in some age groups.

3.3. Sequence Analysis and Phylogenetics. Nasal swabs with
the lowest Ct values were selected from each PPIV-1 positive
farm for partial genome sequencing. We were able to obtain
the sequence of the Fusion polyprotein coding gene in five
cases: one sequence from each Hungarian farm and two
from the Slovakian samples (GenBank accession numbers:
OQ877210–OQ877214). Comparative nucleotide sequence
analysis revealed 93.53%–94.65% similarity between the F
genes of Hungarian and Slovakian strains. The genotypic
classification of the detected PPIV-1 sequences was based
on the method proposed by Stadejek et al. [11]. Accordingly,
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FIGURE 2: (a) Percentages of PPIV-1 positive oral fluid samples of weaned pigs (8–12 WOA) and fatteners (18–20 WOA). (b) Boxplots
displaying the distribution of Ct values in PPIV-1-positive oral fluid samples of weaned pigs (8–12 WOA) and fatteners (18–20 WOA). The
whiskers indicate the lowest and highest values, while the “+” signs show the average. The horizontal lines of the box represent the first
quartile, the median and the third quartile. The asterisk above the boxes indicates the statistically significant difference (∗P<0:05).
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all PPIV-1 strains can be divided into two genetic lineages
which cluster into two distinct clades on the phylogenetic
trees. The Hungarian and Slovakian strains detected in this
study belonged to Clade I and their similarity with the pre-
viously described sequences ranged from 65.93% to 95.59%
and from 66.29% to 95.18%, respectively (Figure 7).

4. Discussion

Members of the family, Paramyxoviridae are responsible for
different highly infectious diseases with the tendency to
spread across species. So far three members of this family,
including the porcine rubulavirus (blue eye disease) [18],
Menangle virus [19], and Nipah virus [20] have been associ-
ated with the clinical disease in swine. In the recent years,
PPIV-1 was detected in different countries all over the world,
but the pathogenicity of the virus in pigs is still unclear.
PPIV-1 infection has been connected with respiratory symp-
toms [3, 6, 9, 10, 12], but some studies reported that the virus
can also circulate in clinically healthy farms [7, 8]. In 2020,
for the first time in Europe, our research group reported the
presence of the virus in a Hungarian pig farm [7]. In the last
2 years, we conducted a widespread systematic sample col-
lection from all over the country to obtain more relevant
information on the PPIV-1 prevalence in Hungary. We
also investigated samples that were received from a Slovakian
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pig farm located close to the Hungarian border for diagnostic
purposes.

Our results indicate that PPIV-1 is widely spread in Hun-
gary, as the presence of the virus was detected in 10 of the 23
Hungarian farms (43%) included in our study (Figure 1). We
also detected the virus in a Slovakian farm, which represents
the first scientific evidence of the presence of the virus in the
country. After the initial positive oral fluid sampling, a cross-
sectional nasal swab sampling was performed on three PPIV-
1-positive Hungarian herds. Samples from the Slovakian

farm came along with nasal swabs for SIV screening. The
virus was detected in nasal swabs in all four farms, indicating
ongoing PPIV-1 infection in the respiratory tract of the pos-
itive individuals.

In our previous study, the virus was detected in only 1 of
the 22 Hungarian farms (4,5%) involved [7]. This low-
prevalence rate might be explained with the different sam-
pling protocols: in our first study, nasal swab samples from
3-week-old animals were collected as a part of a neurotropic
astrovirus screening study [21]. In the present work, we used
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pen-based oral fluid samples collected from weaned pigs and
fatteners. This method allowed us to screen more animals at
once from different production units. Similarly to our results,
the presence of PPIV-1 was confirmed in 42.3% (11/26) of
the herds examined in Germany and the Netherlands [8].
Studies conducted in Chile by Agüero et al. [6] and in Poland
by Woźniak et al. [9] targeted herds where respiratory clini-
cal signs were observed at the time of sampling. The authors
reported higher detection rates compared to Hungary as
100% (6/6) and 76.7% (23/30) of farms were PPIV-1-posi-
tive, respectively. The higher PPIV-1 prevalence in herds
with respiratory disease suggests that natural PPIV-1 infec-
tion might be involved in the pathogenesis of respiratory
diseases, although the virus alone may not be sufficient to
induce clinical disease.

The results of previous studies indicate that PPIV-1 infection
occurs mainly in the younger age groups [7, 9]. To gain more
information on the viral circulation on pig farms, we analyzed
samples obtained in a cross-sectional way on four different,
previously PPIV-1-positive herds. To our knowledge this is the
first comparative, within-herd infection dynamics study regard-
ing PPIV-1. Analyzing the patterns detected on each farm we
found that PPIV-1 was most prevalent in 6-week-old pigs on
Farms 1, 2, and 3 (40%–75% positivity), located in Hungary.
Interestingly, on these farms the virus was absent from the
youngest age group (2-WOA), and only 10% of the 4-week-
old animals were positive for PPIV-1 in one of the farms. These
results might suggest the protective effect of maternally derived
immunity, which seemed to protect the animals until weaning
on these farms. Although the prevalence in the 6-WOA group
was relatively high, we found only one PPIV-1-positive sample
among the 8-week-old animals. Interestingly, on Farm 4, located
in Slovakia, the virus was most prevalent in the 2-WOA group,
which might suggest that the piglets received inadequate quanti-
ties or qualities of colostrum, so the virus could spread quickly
amongst them (Figure 6). The highest viral burden in this farm
was observed among the 2-week-old animals, as the mean Ct
value was 26.18Æ 2.76, while in the 6-WOA group it was 29.18
Æ 3.88. Pairwise statistical comparisons however showed no sig-
nificant differences between the Ct values of the PPIV-1-positive
nasal swabs from the different age groups (Figure 4). As these
samples from the Slovakian farm were originally sent in for SIV
screening, we have to mention that only one sample from the 8-
WOA group was RT-qPCR positive for SIV according to the
protocol published by Nagy et al. [22].

To our knowledge, there are no data published on the
role of maternal immunity in the case of PPIV-1 infection,
but our results indicate that weaned pigs are more suscepti-
ble to the infection and the virus circulates mostly among the
6-week-old animals which might coincide with the fading
levels of the antibodies as it has been observed for other
respiratory viruses [23–25]. The prevalence of infection in
the different age groups is in harmony with a recently pub-
lished study from Poland where 46.9% of the nasal swabs
collected from the nursery units were PPIV-1-positive, and
the virus was the most prevalent among the 5- and 7-week-
old pigs [9]. In our previous study, where a similar cross-
sectional sampling protocol was used in one PPIV-1-positive

herd, the virus was most prevalent among the 4-week-old
pigs (65%), but 40% of the 6-week-old pigs’ samples were
also positive [7].

Comparison of Ct values across two distinct diagnostic
matrices revealed that PPIV-1-positive nasal swabs had sig-
nificantly lower Ct values than the oral fluids (Figure 5). The
higher viral loads, coupled with lower contamination risks
make nasal swab samples suitable for virus diagnosis. How-
ever, for surveillance at the herd- or group-level, oral fluid
samples emerge as a practical alternative due to their ease of
collection and ability to represent a collective status.

Phylogenetic analysis of the PPIV-1 F-gene showed that the
three Hungarian and the two Slovakian sequences obtained in
this study belonged to Clade I, together with other European and
some Chinese strains (Figure 7). The nucleotide identity of the
Hungarian and Slovakian strains was more than 93% and both
of them showed close genetic relation with a recently submitted
Polish PPIV-1 sequence (95.59% and 95.18% respectively).

This study confirms that PPIV-1 is more widespread in
Hungary than we assumed in our previous study, and the
presence of the virus was also confirmed in Slovakia for the
first time. Even though, there were no overt respiratory clin-
ical signs reported at the time of the samplings, the viral
burden of the PPIV-1-infected weaned pigs was relatively
high. These results suggest that the viral infection alone
may not cause clinical symptoms, but according to the pre-
vious studies, PPIV-1 can possibly be a component of PRDC
[9, 10, 13]. Further studies on herds with respiratory clinical
symptoms are needed in order to understand the pathogen-
esis and clinical relevance of PPIV-1 and to determine its
possible role in the PRDC.
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