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Background. The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in a global health crisis with significant
morbidity and mortality. While effective vaccinations have been developed, drug treatments for the disease are still required,
particularly for different stages of the disease and to combat evolving variants. Identifying reliable biomarkers and potential
therapeutic targets for the different stages of COVID-19 is crucial. Methods. Mendelian randomization using the largest publicly
available datasets was conducted to identify potential causal plasma proteins for severe COVID-19, hospitalized COVID-19, and
SARS-CoV-2 infection. Independent, and strongly associated cis- or pan-pQTLs were used as instrumental variables for each
protein. The FDR q-value was used to correct for multiple testing followed by sensitivity analyses, reverse MR and genetic
colocalization to ensure the robustness of the results. Results. We identified proteins with strong evidence of causal association
with different stages of COVID-19. Some of these proteins were identified previously, such as BGAT and BCAT2, but we also
identified the novel proteins, such as KLC1, MRVI1, CACO2, and PCNP. Conclusion. These proteins provide valuable insights into
the underlying mechanisms of COVID-19. The identification of these proteins offers new opportunities for developing potential
therapeutic targets or biomarkers for the treatment and prevention of COVID-19.

1. Introduction

The COVID-19 pandemic caused by the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) has resulted
in a global health crisis with significant morbidity and mor-
tality. While effective vaccinations have been developed, the
requirement for drugs to treat the disease remains, particu-
larly for different stages of the disease and to combat evolv-
ing variants that may have increased virulence [1]. Thus, the
identification of reliable biomarkers and potential therapeu-
tic targets for different stages of COVID-19 is crucial to
combat the evolving nature of the disease.

The plasma proteome represents a rich source of potential
biomarkers and therapeutic targets for various diseases [2, 3].
Mendelian randomization (MR) is a powerful approach that
leverages genetic variants as instrumental variables to infer cau-
sality between an exposure and an outcome. A proteome-wide

MR analysis using human genetics and proteomics can identify
potential causal relationships between plasma protein levels and
disease outcomes in humans [4]. Furthermore, MR analysis can
be coupled with genetic colocalization analysis to identify pro-
teins that may share causal variants with the study outcomes,
providing further evidence of a shared molecular basis [5]. As
such, proteins identified usingMR and colocalizationmay have a
high-translational value in serving as potential biomarkers and
treatment targets for disease [4, 6–8].

This study aimed to identify novel biomarkers and therapeu-
tic targets for three COVID-19 phenotypes: severe COVID-19,
hospitalized COVID-19, and SARS-CoV-2 infection using the
plasma proteome-wide MR approach followed by colocalization
with the latest and largest datasets available. We hypothesized
that using the latest and largest GWAS datasets would provide
ample power in delineating the causal relationship between
plasma proteome and COVID-19.
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2. Materials and Methods

2.1. GWAS of Plasma Proteins. Summary statistics from the
largest plasma proteome GWAS study to date were used in this
study [3]. The study included 35,559 Icelanders and measured
4,907 aptamers using the SomaScan version 4 assay (SomaLogic).
The study population had a mean age of 55 years and was
composed of participants from the Icelandic Cancer Project
[9] and various programs at deCODE genetics. Data were down-
loaded from the deCODE website (https://www.decode.com/),
and a subset of variants was excluded due to quality issues as
recommended on thewebsite. Aptamers were labeled usingUni-
prot identifiers and HUGO gene name nomenclature for the
gene encoding the relevant protein, which were obtained from
the SomaLogic website (https://somalogic.com/somascan-pla
tform/).

2.2. GWAS for COVID-19 Phenotypes. For COVID-19, sum-
mary statistics for very severe respiratory confirmed COVID-19
(severe COVID-19), hospitalized COVID-19 (hospitalized
COVID-19), and COVID-19 infection (SARS-CoV-2 infection)
from the COVID-19 Host Genetics Initiatives (release 7) were
used [10]. These studies included samples from the European
population only, excluding samples from 23andMe. Table 1 pre-
sents the definition of the three GWAS and the related sample
size information.

2.3. Reference Dataset for Computing Linkage Disequilibrium
(LD). The reference panel of 503 European individuals from
the 1,000 genomes project (Phase 3) was used to calculate LD
estimates for the analysis [11]. PLINK files were downloaded
from the IEU Open GWAS Project API [12, 13], which
contains only biallelic autosomal variants with a minor
allele frequency (MAF) >0.01. The variants were annotated
with dbSNP153 and lifted over to hg38 using the UCSC
LiftOver tool [14]. After excluding missing variants and
variants on ALT contigs, 99.88% of variants were lifted over.

2.4. Selection of Genetic Instruments Associated with Proteins.
The summary statistics of each plasma protein were filtered
to include only cis-pQTLs that were located�1MB from the
transcription start site (TSS) of the gene encoding the protein

[3]. Gene coordinates were obtained using the Ensembl R
package biomaRt [15, 16], using Uniprot ids and HUGO
gene names. The gene start position (+strand) or gene end
position (−strand) was used as the TSS depending on the
gene’s strand. Significant cis-pQTLs were then filtered using
a threshold of PpQTL< 5e-8. To avoid pleiotropic effects, any
significant cis-pQTL associated with more than one plasma
protein was excluded from the analysis. LD clumping was
performed with PLINK 1.90 using a window of 10Mb and r2

of 0.001 [8, 17, 18] to include only independent cis-pQTLs
for MR analysis.

MR analysis was conducted using genome-wide (pan)
pQTLs (i.e., cis-pQTLs and trans-pQTLs) for each protein as
the secondary analysis. Similar to the identification of instru-
ments for cis-analysis, significant pan-pQTLs (PpQTL< 5e-8)
were identified, pleiotropic pan-pQTLs were excluded, and the
remaining pan-pQTLs were clumped to include only indepen-
dent pan-pQTLs for MR analysis.

Overall, this study employed a rigorous filtering and
clumping approach to identify the independent cis- and
pan-pQTLs as genetic instruments for MR analysis, thereby
minimizing the potential bias due to pleiotropic effects.

2.5. Statistical Analysis

2.5.1. Mendelian Randomization. This study used MR to
identify plasma proteins with a potential causal association
with COVID-19 phenotypes. MR is a method to identify
causal associations between an exposure and an outcome
using only summary statistics from the independent studies.
MR uses genetic variants as instrumental variables (IVs) to
compute causal associations based on three assumptions.
The IVs used should be strongly associated with the expo-
sure, affect the outcome only through the exposure, and not
be associated with any confounders. The MR analysis was
conducted using the R package TwoSampleMR [13]. For the
primary analysis, only cis-pQTLs were used, as these are
considered to have a greater biological precedence than trans-
pQTLs [8, 19]. Conversely, trans-pQTLs may affect a protein’s
expression through indirect mechanisms, thereby exhibiting a
higher likelihood for pleiotropy, which ismore prone to violation
of the MR assumptions [8, 20]. However, trans-pQTLs may

TABLE 1: Phenotype definition for the COVID-19 outcomes.

Phenotype No. of cases No. of controls Description

Very severe confirmed respiratory
COVID-19 (severe COVID-19)

13,769 1,072,442

Hospitalized laboratory confirmed SARS-CoV-2 infection
(RNA and/or serology based), AND (death OR respiratory
support (intubation, CPAP, BiPAP, CNP (continue external
negative pressure), Optiflow/very high flow positive end
expiratory pressure oxygen∗—AND hospitalization with
COVID19 as primary reason for admission

Hospitalized COVID-19 32,519 2,062,805
Hospitalized laboratory confirmed SARS-CoV-2 infection
(RNA and/or serology based) AND hospitalization due to
COVID-19-related symptoms

SARS-CoV-2 infection 122,616 2,475,240

Individuals with laboratory confirmation of SARS-CoV-2
infection (RNA and/or serology based) OR I/ICD coding/
physician confirmed COVID-19OR self-reported COVID-19
positive (e.g., by questionnaire)
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support causality if they are non-pleiotropic. As our approach
for instrument selection included removal of pleiotropic pQTLs,
we conducted a secondary analysis using pan-pQTLs in the MR
analysis to evaluate the contribution of both cis- and trans-
pQTLs.

For each protein (exposure) and COVID-19 phenotype
(outcome), exposure and outcome datasets were harmonized
using the default parameters of the harmonise_data() func-
tion in the TwoSampleMR package. Any genetic instruments
from the exposure dataset that were palindromic, misaligned,
or missing in the outcome dataset were excluded, and proxies
were used in their place where possible. Proxies were defined
as significant pQTLs (PpQTL< 5e-8), which were in high LD
(r2> 0.8) with the excluded instrument and were identified
from the 1,000 genomes reference dataset using PLINK 1.90.

The primary analysis was performed using the inverse
variance weighted (IVW) method [21] or the Wald ratio
[22] (in case only one instrumental variable was available),
with a false discovery rate (FDR) q-value [23] threshold of
<0.05 being used for screening potential causal proteins and
accounting for the multiple testing. Proteins meeting this cri-
terion were subjected to sensitivity analyses. Multiple sensi-
tivity analyses were adopted to minimize the likelihood of
violating the MR assumptions and being false positive find-
ings. IVW assumes all IVs are valid. Conversely, the weighted
median test [24], which assumes 50% of instruments are valid,
was conducted as a sensitivity analysis. Additionally, the het-
erogeneity of instruments was estimated [25] using the
Cochran Q test, and pleiotropy was evaluated using MR-
Egger’s intercept [26] and MR Pleiotropy Residual Sum and
Outlier (MR-PRESSO) [27]. Leave-one-out analysis (LOO)
was used to identify whether the observed association was
driven by any one particular IV. Sensitivity analyses were
conducted only where possible, as most methods require a
minimum of three IVs, while MR-PRESSO requires four and
Cochran’s Q test requires two. A PEgger−Intercept> 0.05, PQ-stat
> 0.05, PGlobal Test> 0.05 and consistent PLOO< 0.05 were
required to be considered as statistically significant.

Reverse-direction MR was then conducted to eliminate
spurious results that may arise due to reverse causation.
Statistically significant results were those with a PIVW or
PWald< 0.05 and which met the criteria for all sensitivity
analyses mentioned above.

For all potential causal proteins, the proportion of variance
in the exposure explained by the instruments (R2) was estimated
and used to evaluate the F-statistic, a measure of the strength of
association between instruments and a trait. An F-statistic<10 is
indicative of potential weak instrument bias [28].

2.5.2. Colocalization. Genetic colocalization is a method to
identify whether two potentially related traits share common
causal variants in a particular region and evidence suggests
that proteins with bothMR and colocalization evidence are likely
to be successful drug targets [8]. In the current study, for each of
the protein-outcome pairs identified from the MR analysis,
genetic colocalization was evaluated using the R package
COLOC (V5.1.0.1) [5]. In brief, COLOC utilizes a dense
coverage of SNPs in a genomic region to calculate posterior

probabilities of five hypotheses under the assumption that
there is at most a single causal variant per trait. The
hypotheses are: no association with either trait (PPH0),
association with either Trait 1 or Trait 2 (PPH1 and PPH2),
association with both traits through distinct causal variants
(PPH3), and association with both traits through a single
causal variant (PPH4). For the colocalization analysis, we used
default priors and included all SNPs within a window of�1MB
from the top cis-pQTL for each protein that were available in
both the exposure and outcomeGWAS. A high PPH0, PPH1, or
PPH2 coupled with a low PPH3 and PPH4 is indicative of
limited power in the colocalization analysis, we therefore
retained the potential causal proteins from the MR analysis
which reached PPH3+PPH4> 0.8 [29, 30] while PPH4> 0.5
was considered evidence of the colocalization.

All analyses were conducted using R version 4.1.0
(https://www.r-project.org/).

3. Results

3.1. Severe COVID-19. After stringent selection and harmo-
nization of instruments, the causal effects of 1,685 and 2,177
proteins on severe COVID-19 were evaluated in the cis- and
pan-analysis, respectively. Table 2 presents the potential
causal plasma proteins for severe COVID-19. The cis-
analysis identified the proteins signal transducer and activa-
tor of transcription 3 (STAT3) and kinesin light chain 1
(KLC1) as the significant (q< 0.05) proteins in the primary
analysis. An increase of one standard deviation (SD) in
plasma STAT3 and KLC1 was associated with a decreased
(odds ratio: 0.584, 95% CI: 0.459–0.743) and increased (odds
ratio: 2.016, 95% CI: 1.443–2.816) risk of severe COVID-19,
respectively. In the pan-pQTL analysis, the result for STAT3
is the same as the cis-pQTL analysis since no trans-pQTL
was identified. Conversely, the association of KLC1 with
severe COVID-19 became statistically insignificant after
using another IV (Table S1).

Consistent findings were observed in the sensitivity anal-
yses (Table S2). Notably, the reverse-direction MR analysis
did not identify any significant causal associations between
severe COVID-19 and the identified proteins (Table S3).
Both STAT3 and KLC1 were retained after colocalization
analysis (Table S4), however only STAT3 colocalized with
severe COVID-19.

3.2. Hospitalized COVID-19. Following the rigorous selection
and harmonization of the instruments, the causal effects of 1,687
and 2,177 proteins on hospitalized COVID-19 were evaluated in
the cis- and pan-analysis, respectively (Table S1). Of these, eight
and two proteins were significant in the primary analysis

TABLE 2: Potential causal proteins for severe COVID-19 identified in
the cis- and pan-analyses.

Protein Odds ratio 95% CI P value Cis/pan

STAT3 0.584 0.459–0.743 1.232e-05 Cis
KLC1 2.016 1.443–2.816 3.910e-05 Cis
STAT3 0.584 0.459–0.743 1.232e-05 Pan
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(q< 0.05) for the cis- and pan-analysis, respectively. Consistent
findings were observed in the sensitivity analysis (Table S2), and
the reverse-directionMR analysis did not identify any significant
causal associations between hospitalized COVID-19 and the
identified proteins (Table S3). One protein, myeloperoxidase
(MPO) (Table S4), was excluded after colocalization analysis.
The potential causal proteins identified by the cis analysis were
histo-blood group ABO system transferase (BGAT), vesicle-
fusing ATPase (NSF), KLC1, PEST proteolytic signal-containing
nuclear protein (PCNP), calcium-binding and coiled-coil
domain-containing protein 2 (CACO2), protein MRVI1 and
STAT3 (Table 3). In the cis-analysis, the most associated protein
was BGAT, with an odds ratio of 1.086 (95% CI: 1.052–1.122)
per SD increase. The pan-analysis identified NSF and PCNP as
potential causal proteins (Table 3). The most associated protein
in the pan-analysis wasNSF,with an odds ratio of 0.541 (95%CI:
0.406–0.721) per SD increase. BGAT, KLC1, STAT3, and
MRVI1 showed evidence of colocalization (Table S4).

3.3. SARS-CoV-2 Infection. The causal effects of 1,693 and
2,186 proteins on SARS-CoV-2 infection were evaluated in
the cis- and pan-analysis, respectively. The cis-analysis iden-
tified BGAT, PCNP, and branched-chain-amino-acid amino-
transferase, mitochondrial (BCAT2) as significant (q< 0.05)
in the primary analysis. However, the association of BGAT
was not consistent in the sensitivity analysis, as the instru-
ments were found to be heterogenous by Cochrane’s Q test
(Table S2). Table 4 presents the potential causal plasma pro-
teins for SARS-CoV-2 infection. An increase of one standard
deviation (SD) in plasma PCNP and BCAT2 was associated
with a decreased (odds ratio: 0.683, 95% CI: 0.612–0.763) and
increased (odds ratio: 1.151, 95% CI: 1.074–1.234) risk of
SARS-CoV-2 infection, respectively. The pan-analysis identi-
fied PCNP as a potential causal protein, with the same result
as the cis-analysis, as no trans-pQTLs were identified and the
same IV was used in the analysis. The reverse-direction MR
analysis did not identify any significant causal associations
between SARS-CoV-2 infection and the identified proteins
(Table S3). Colocalization analysis for both potential causal
proteins yielded a PPH3= 1 (Table S4).

3.4. Strength of Genetic Instruments. Table S5 provides details
of the pQTLs used for MR analysis and the F-statistics for the

identified potential causal proteins. All F-statistics were
greater than 10 (at least 100), indicating that the instruments
were strongly associated with the exposures, which mini-
mizes the risk of weak instrument bias [28].

4. Discussion

Using mendelian randomization with cis-pQTLs and pan-
pQTLs for plasma proteins, as well as genetic colocalization,
we identified proteins with strong evidence of causal associ-
ation with three COVID-19 phenotypes; severe COVID-19,
hospitalized COVID-19, and SARS-CoV-2 infection. These
findings improve our understanding of the mechanism
underlying COVID-19 and present protein candidates for
use as therapeutic targets or biomarkers for treating and
preventing COVID-19.

Previous MR studies have also evaluated the effects of
plasma proteins on COVID-19 phenotypes [31–35] and iden-
tified several causal candidates for the different COVID-19
phenotypes. Compared to the previous studies, our study
utilized the most recent release of the HGI COVID-19
GWAS and the largest GWAS of plasma proteins to date.
This allowed us to employ more stringent criteria in our
instrument selection to avoid false positive findings, including
a P-value threshold of< 5e-8 for instrument selection, a
highly stringent threshold of r2< 0.001, and a window of
10Mb around each instrument to identify independent
instruments, and the exclusion of any pQTLs significantly
associated with more than one protein from the study to
minimize the potential for pleiotropy. As such, we could
not evaluate some known associated proteins such as OAS1,
ICAM3, GCNT, CD207, FAAH2, ATP2A3, and KEL [31, 32].
Other previously found causal proteins FCRL3, SELE, SELL,
ICAM5, ICAM1, C1GALT1C1, CD209, FAM3D, ENTPD5,
SFTPD, TIE1, and ADGRF5 [31–33] were evaluated but were
not significantly associated (q-value< 0.05) with any of the
outcomes in our study (Table S6), potentially due to our
stringent criteria limiting the number of instruments used
in the analysis. Two previously identified proteins were iden-
tified in this study as well. BGAT [32–34] is encoded by the
ABO gene and referred to as the ABO protein inmany studies.
In the current study, BGAT was found to increase the risk of
hospitalized COVID-19. Previous studies identified similar asso-
ciations in earlier releases of HGI data, including hospitalized
COVID-19 [32–34], severe COVID-19 [32, 33], self-reported
COVID-19 [32], and SARS-CoV-2 infection [32]. However, in
this study, the association with severe COVID-19 did not pass
the primary analysis threshold, and the association with SARS-
CoV-2 infection did not pass the criteria for sensitivity analyses.
Nonetheless, these results further show that BGAT is an

TABLE 3: Potential causal proteins for hospitalized COVID-19 iden-
tified in the cis- and pan-analyses.

Protein Odds ratio 95% CI P value Cis/pan

BGAT 1.086 1.052–1.122 5.147e-07 Cis
NSF 0.545 0.416–0.714 1.107e-05 Cis
KLC1 1.635 1.303–2.052 2.148e-05 Cis
Myeloperoxidase 0.881 0.830–0.935 2.712e-05 Cis
PCNP 0.620 0.493–0.779 4.237e-05 Cis
CACO2 0.637 0.507–0.800 1.041e-04 Cis
STAT3 0.738 0.631–0.864 1.497e-04 Cis
MRVI1 0.727 0.616–0.858 1.678e-04 Cis
NSF 0.541 0.406–0.721 2.642e-05 Pan
PCNP 0.620 0.493–0.779 4.237e-05 Pan

TABLE 4: Potential causal proteins for SARS-CoV-2 infection identi-
fied in the cis- and pan-analyses.

Protein Odds ratio 95% CI P value Cis/pan

PCNP 0.683 0.612–0.763 1.221e-11 Cis
BCAT2 1.151 1.074–1.234 7.358e-05 Cis
PCNP 0.683 0.612–0.763 1.221e-11 Pan
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important protein for hospitalized COVID-19. We also found
that increased BCAT2 may be causally associated with an
increased risk of SARS-CoV-2 infection, which aligns with a
previous study [36].

The remaining proteins identified were found for the first-
time using proteome-wide MR. However, some are already
known to be associated with the disease.We found plasma levels
of STAT3 to be associated with reduced risk of severe and hos-
pitalized COVID-19. STAT3 is a transcription factor having a
complex involvement with COVID-19, such as inducing
inflammatory responses and suppressing antiviral responses
[37, 38]. We reported that an increased plasma KLC1 level
was associated with an increased risk of severe and hospital-
ized COVID-19. Kinesin-1 is comprised, in part, of KLC1, a
molecular motor protein known to play a role in the spread of
many viruses [39] and may have a role to play COVID-19’s
hijacking of the cytoskeleton [40]. NSF was identified as a
potential causal protein decreasing the risk of hospitalized
COVID-19. A previously conducted transcriptome-wide
association study found that the expression of the gene NSF
in blood was also associated with a decreased risk of hospital-
ized COVID-19 [41], which is consistent with our finding.
Although, little is available about the relationship of NSF and
COVID-19 in literature, one possible mechanism could be
through α-SNAP, which reduces COVID-19 infection in cells
and is an adaptor to NSF [42, 43]. MRVI1 (also IRAG1) and
PCNP were identified as potential causal proteins affecting
risk of COVID-19 phenotypes in this study for the first
time. However, their role in infection is unclear. CACO2 is
a novel potential causal protein associated with decreased risk
of hospitalized COVID-19 involved in vesicle tethering [44].
The protein is also an autophagy receptor and may suppress
the type 1 interferon response and increase virophagy [45].

In several cases, the results of the cis- and pan-analyses are
identical. This is due to the fact that after expanding our
analysis to include trans-pQTLs, most of the QTLs identified
were significantly associated with more than one protein and
were therefore considered pleiotropic and excluded, resulting
in the same IVs being used in the cis- and pan- analyses.
Conversely, several proteins exhibited discordant results
between the cis- and pan-analyses, despite the absence of
any additional trans-pQTLs detected as IVs. This discrepancy
is due to the removal of pleiotropic pQTLs during instrument
selection. Specifically, in the cis-analysis, we excluded any
significant cis-pQTLs that were associated with more than
one protein, whereas, in the pan-analysis, we excluded any
significant pan-pQTLs that were associated with more than
one protein. Consequently, the pQTL employed in the
pan-analysis may have differed from those utilized in the
cis-analysis, despite both being situated within the cis-
region of the protein. For example, the protein KLC1 was
significantly associated with hospitalized and severe
COVID-19 in the cis-analysis, with rs12884809 being the
IV. Rs12884809 is a cis-pQTL for only one protein, KLC1.
However, in the pan-analysis, rs12884809 was excluded as it
is also a pan-pQTL for another protein, Ankyrin Repeat,
and SOCS Box protein 9. Therefore, rs55696130, the most

associated pan-pQTL for KLC1 exclusively, was used as the
IV for KLC1 in the pan-analysis, which explained the dis-
cordant results.

The colocalization analysis supported the association
between all potential causal protein-outcome pairs identified in
the MR analysis except for MPO with hospitalized COVID-19
which was subsequently excluded. However, colocalization,
defined as association with both traits through a single causal
variant (PPH4> 0.5) was only observed in 5 out of the 11 pairs:
BGAT, KLC1, and MRVI1 with hospitalized COVID-19 and
STAT3 with severe and hospitalized COVID-19, providing
strong evidence of their causal role in COVID-19 progression.
For the remaining, the colocalization analysis found a significant
association, but through distinct causal variants. Thismay be due
to the variants being in high LD or due to the strict single causal
variant assumption of COLOC. While colocalization aims to
identify whether a single variant is associated with two traits,
MR focuses on whether the protein, but not a particular genetic
variant, is associated with the outcome, therefore cautious inter-
pretation is required.

Our study’s results have significant clinical implications,
particularly in the context of COVID-19 management.
COVID-19 has been proposed to be transitioning toward
an endemic stage [46–49], indicating that it will continue
to exist in the community, much like the flu, necessitating
the development of effective management strategies to tackle
the disease. Our findings identified potential novel biomar-
kers that could stratify the risk of severe and hospitalized
patients and further identified proteins that are potential
therapeutic targets and agents.

Our study’s strengths include the utilization of the largest
sample size of COVID-19 HGI data and the largest GWAS of
plasma proteins to date, as well as the exclusion of pleiotropic
pQTLs from the analysis to minimize the potential for con-
founding. We also used several sensitivity analyses, reverse
MR and colocalization for robust evaluation. Furthermore,
our cis- and pan-analyses allowed us to evaluate a larger
number of proteins and systematically identify potential
causal proteins. Nonetheless, our study has several limita-
tions, including the potential for being confounded by the
risk factors of COVID-19 and the possibility that our results
may be specific to the European population. The stringent
criteria employed in our study resulted in several candidate
causal proteins having two or fewer instrumental variables,
which may reduce the false positive rate but increase the false
negative rate. Moreover, further research is necessary to vali-
date the causal role of these proteins.

5. Conclusion

In conclusion, our study identified proteins with evidence of
causal association with different stages of COVID-19, includ-
ing novel proteins such as KLC1, MRVI1, CACO2, and
PCNP. These proteins offer new insights into the underlying
mechanisms of COVID-19 and may serve as potential thera-
peutic targets or biomarkers for treating and preventing the
disease.
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