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H5N8 HPAI is a highly infectious avian disease that now poses a serious threat and potential risk to poultry farming, wild birds,
and public health. In this study, to investigate the seasonality and transmission directionality of global H5N8 HPAI, the spatial and
temporal analysis of H5N8 HPAI was conducted using time series decomposition and directional distribution analysis. An
ecological niche model was developed for H5N8 HPAI in poultry to identify areas at high risk of H5N8 HPAI in poultry and
associated risk factors. The results indicated that three global pandemics of H5N8 HPAI emerged from 2014 to 2022, all showing a
southeast–northwest distribution direction. H5N8 HPAI occurred more frequently in winter and less frequently in summer. The
southwestern border region and the southeastern region of North America, the southern region of South America, most of Europe,
the southern border region and the northern border region of Africa, and the southwestern region and the southeastern region of
Asia provide the suitable environment for the occurrence of H5N8 HPAI in poultry. Chicken density, duck density, population
density, bio1 (annual mean temperature), and land cover were considered important variables for the occurrence of H5N8 HPAI in
poultry. This study can help optimize the use of resources and provide new information for policymakers to carry out prevention
and control efforts.

1. Introduction

Avian influenza is an acute infectious disease caused by the
avian influenza viruses that cause respiratory or systemic infec-
tion in avians [1]. Avian influenza viruses are members of the
genusAlphainfluenzavirus in the familyOrthomyxoviridae and
are classified into different subtypes based on antigenic differ-
ences in their surface hemagglutinin (HA) and neuraminidase
(NA) [2]. In addition, according to the pathogenicity of the
virus to poultry, they can be divided into highly pathogenic
avian influenza virus (HPAIV) and low pathogenic avian influ-
enza virus (LPAIV) [3]. Highly pathogenic avian influenza is
currently caused by theH5 or H7 hemagglutinin subtype of the
virus. Because of its rapid onset, rapid transmission, and high
mortality, it has been designated as a notifiable disease by the
World Organisation for Animal Health (WOAH) [4]. Over the

past few years, outbreaks of H5 subtype highly pathogenic
avian influenza have been recurring in wild birds and poultry
around the world, and some can even be transmitted to mam-
mals, including humans [5]. The H5N1 highly pathogenic
avian influenza virus (A/goose/Guangdong/1/1996) originated
in Guangdong Province, China [6]. Over time, the virus has
evolved into 10 branches (0–9) and many sub-branches [7].
H5N1 in poultry and wild birds underwent continuous muta-
tion and recombination to produce different subtypes of H5Nx
viruses, including H5N2, H5N3, H5N5, H5N6, H5N8, and
H5N9 [8, 9].

Avian influenza viruses can be excreted from the feces
and respiratory secretions of infected birds and are transmit-
ted between birds by the fecal–oral route and the respiratory
route [10–12]. Compared with H5N1 HPAI, H5N8 HPAI
was more excreted in wild ducks and could reach the level
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of direct contact transmission [13]. Intercontinental epi-
demics of H5N8 HPAI in recent years have been attributed
to the long-distance migration of infected wild birds [14], but
the specific mechanism of H5N8 HPAIV transmission from
wild birds to poultry remains to be investigated. Most out-
breaks of H5N8 HPAI in poultry in Europe have occurred on
indoor farms, and direct contact between wild birds and
poultry seems unlikely. A more reasonable hypothesis is
that the HPAI H5N8 virus in the environment is indirectly
introduced into poultry farms through humans, vehicles,
pollutants, etc. [13].

Since 2010, the 2.3.4 branch of the avian influenza virus
has gradually become dominant in the pandemic. In 2010,
the H5N8 HPAIV of branch 2.3.4 (A/duck/Jiangsu/k1203/
2010) was first isolated from poultry in live poultry markets
in Jiangsu, China, but did not cause a large-scale outbreak
[15–17]. In the following decade, the H5N8 HPAI caused
three large-scale intercontinental epidemics, which affected
many countries and regions in Asia, Europe, Africa, and
North America [2, 4].

The first intercontinental epidemic began in 2014 with an
outbreak of H5N8 HPAI in poultry and wild birds in South
Korea, affecting 782 farms in the country over a year [18, 19].
Subsequently, there were varying degrees of H5N8 HPAI out-
breaks in Japan, China, Germany, theNetherlands, theUnited
Kingdom, the United States, and Canada [20–25]. InMay and
June 2016, H5N8 HPAIV was found in dead wild birds in
China and Russia, from which the second global H5N8 HPAI
outbreak began [26, 27]. The affected countries include doz-
ens of countries and regions in Asia (India, Iran, Saudi Arabia,
etc.), Europe (Russia, France, Germany, etc.), and Africa
(Uganda, Congo, South Africa, etc.) [28–37]. Compared to
the previous outbreak, this one was more widespread, lasted
longer, and caused serious economic losses. On December 31,
2019, Poland experienced an outbreak of avian influenza
caused by the H5N8 HPAIV of 2.3.4.4b branch, marking
the beginning of the third intercontinental epidemic [38].
After that, the H5N8 HPAI epidemic broke out in European
countries such as Romania, Slovakia, Czech Republic, Bulgaria,
Germany, Hungary, and Israel; Middle East countries such as
Iraq, Iran, and Saudi Arabia; and Asian countries such as South
Korea, Japan, and China [39–46]. The epidemiological trend of
H5N8 HPAI shows that the geographical area affected by it is
gradually expanding.

The global spread of H5N8 HPAI has now become a
major concern for the international community. Due to
poultry death, trade restrictions, and control measures,
H5N8 HPAI has caused significant economic losses to the
global poultry industry. During the 2016–2017 H5N8 HPAI
pandemic in Europe, French authorities adopted strict con-
trol measures that resulted in the culling of approximately
5.4 million Anatidae and 1.3 million chickens [47]. Restric-
tions on international trade in poultry products were also
seriously affecting the profitability of the poultry-related
industry in France [48]. More than 2.7 million poultry had
to be culled in Hungary to control the disease [47]. The 2020
outbreak of H5N8 HPAI on the Eurasian continent led to the
deaths or culling of over 20 million poultry in South Korea

and Japan [5]. In addition, the continuous mutation of the
surface sites of the H5N8 virus has gradually revealed its
ability to spread across species. H5N8 has been found to
infect ferrets, seals, and humans [49–51]. Although people
infected with H5N8 are asymptomatic, the possibility of
increased pathogenicity of H5N8 in humans in the future
cannot be ruled out. Given the serious threat and potential
risk of H5N8 to poultry farming, wild birds, and public
health, it should be monitored continuously and vigilantly
to prevent a cross-species pandemic of H5N8 HPAI.

Space and time are two important attributes of animal
infectious disease events. Spatial and temporal analysis tech-
niques are helpful to explore the epidemic patterns and risk
factors of diseases [52]. The analysis of the spatial and tem-
poral distribution characteristics of the historical epidemic
can provide a powerful supplement for clinical and molecu-
lar biology research [53]. Previous spatial and temporal stud-
ies on H5N8 HPAI have been conducted but mostly for
localized countries and regions [3, 48, 54, 55]. Local preva-
lence patterns may not be representative of the whole, and
spatial and temporal analysis of H5N8HPAI in global regions
is necessary. In this study, the seasonality and trend of global
H5N8 HPAI occurrence were analyzed using the time series
decomposition technique. Directional distribution analysis
(standard deviation ellipse) was employed to determine the
global distribution of H5N8 HPAI and the directionality of
transmission. Finally, bioclimatic, geographic landscape, and
anthropogenic variables were selected to establish an ecologi-
cal niche model for H5N8 HPAI in poultry, to identify high-
risk areas and associated risk factors for H5N8 HPAI in
poultry.

2. Materials and Methods

2.1. Collection of Epidemic Occurrence Data. Global outbreak
data for the H5N8 HPAI in poultry from January 1, 2014, to
December 31, 2022, were obtained from the Food and Agri-
culture Organization of the United Nations (FAO, https://e
mpres-i.apps.fao.org/). The collected information includes
the location, time, and specific latitude and longitude coor-
dinates of H5N8 HPAI events. The collected data were
cleaned to eliminate records with incomplete and duplicate
information, leaving a final total of 6,955 events.

2.2. Time Series Decomposition. Time series decomposition
allows analysis of the characterization of temporal patterns
of disease event occurrence, including trends as well as sea-
sonality [56]. An exploratory analysis of H5N8 HPAI events
was first performed using smoothing curves to visually assess
approximate trends. The smoothing process was implemen-
ted by generalized additive model (GAM). The collected out-
break data were aggregated and organized to generate a time
series of H5N8 HPAI events. The seasonal and trend decom-
position using loess (STL) method was used to perform the
time series decomposition. STL is a decomposition model
based on the additive principle with the expression Y½t� ¼
T½t� þ S½t� þR½t�, where Y½t� is the model output at time t,
T½t�, S½t�, and R½t� represent the trend component, seasonal
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component, and residuals at time t, respectively. The time
series decomposition was completed in R 4.2.3.

2.3. Directional Distribution Analysis. The directional distri-
bution of historical H5N8 HPAI outbreaks was analyzed using
the standard deviation ellipse method to determine the direction
of its spread. This method can create an ellipsoidal polygon by
calculating the standard distance of a set of case points. Based on
the long and short axes of the ellipse and the rotation angle of the
ellipse, we can determine whether the distribution of H5N8
HPAI outbreak points is directional. According to the global
prevalence situation of H5N8 HPAI, the study period was
divided into three phases: 2014–2015, 2016−2019, and
2020–2022. Each standard deviation ellipse contains of approxi-
mately 68%H5N8 HPAI event points of one phase. Directional
distribution analysis is done in the Directional Distribution
(standard deviational ellipse) (spatial statistics) function of Arc-
GIS 10.2 (https://desktop.arcgis.com/en/arcmap/latest/tools/spa
tial-statistics-toolbox/directional-distribution.htm).

2.4. Ecological Niche Modeling

2.4.1. Filtering of Epidemic Occurrence Points. To reduce the
impact of spatial autocorrelation on the analysis, the poultry
H5N8HPAI occurrence points were filtered using ENMTools
software to ensure that there was only one occurrence point in
each grid [57]. Finally, 1,704 poultry H5N8 HPAI occurrence
points were retained for subsequent modeling.

2.4.2. Variable Collection and Processing. Previous studies
have emphasized three main types of factors associated with
the occurrence of avian influenza [55, 58, 59]: (a) anthropogenic
variables (e.g., host density and distance to roads and cities),
human-mediated activities can have an impact on the spread
of avian influenza viruses; (b) bioclimatic variables, the occur-
rence of avian influenza is associated with ecoclimatic variables
(e.g., temperature and precipitation) at different periods; and (c)
geographic landscape variables (e.g., land cover and elevation)
that represent combinations of the above factors, including
the geographic environment in which both human-related activ-
ities and wild birds survive. The variables used for ecological
niche modeling were shown in Table 1. bio1 (annual mean

temperature), bio12 (annual precipitation), wind speed, and
elevation were obtained fromWorldClim2.1. Land cover data
from Esri’s Sentinel-2 10m land use/land cover time series of
the world (https://livingatlas.arcgis.com/landcoverexplorer)
include nine types of land cover (Table S1). Global population
density data was downloaded from LandScan (https://landsca
n.ornl.gov/). Global density data for chickens and ducks were
obtained from the Food and Agriculture Organization of the
United Nations livestock systems (https://www.fao.org/live
stock-systems/en/). Global road vector data were provided
by the Resource and Environment Science and Data Platform
(https://www.resdc.cn/Default.aspx). We conducted kernel
density analysis on road vector data with a search radius of
10 km and converted it into raster data for backup. The mask
extraction and resampling tool were used in ArcGIS 10.2 to
make all raster data the same in range and pixel size (all 5
arcminutes, about 10 km). Finally, VIF and Pearson correla-
tion coefficients were tested for all variables in R software to
ensure that VIF <5 and the absolute value of Pearson corre-
lation coefficient <0.7 were satisfied between the variables
used for modeling, to reduce multicollinearity and correla-
tion. The results of the VIF and Pearson correlation coeffi-
cient tests are shown in Table S2 and Figure S1.

2.4.3. Modeling Procedure. In the field of epidemiology, eco-
logical niche models have been widely used to map the dis-
tribution of diseases [60]. In this study, MaxEnt 3.4.4
software was employed to predict the global potential distri-
bution of H5N8 HPAI in poultry [61] (https://biodive
rsityinformatics.amnh.org/open_source/maxent/). The spe-
cific model parameters were as follows: the regularization
multiplier was one, the features were automatically selected
by the model based on the size of the data, the data was split
into training data (75%) and test data (25%), and the model
output format was logistic. Using Bootstrap as the replicated
run type, ran the model 100 times to reduce the error, and
took the average of the 100 times results as the final predic-
tion. The area under the receiver operating characteristic
curve (AUC) was used to assess the model, with higher
values indicating better model performance.

TABLE 1: Variables used in the model.

Variable classification Variable code Variable name Source

Bioclimatic
bio1 Annual mean temperature WorldClim version 2.1
bio12 Annual precipitation WorldClim version 2.1
Wind Wind speed WorldClim version 2.1

Geographic landscape
Elevation Elevation WorldClim version 2.1
Land cover Land cover Esri

Anthropogenic

People People density LandScan
Chicken Chicken density FAO livestock system
Duck Duck density FAO livestock system

Road Road density
Resource and Environment Science and

Data Platform
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3. Results

3.1. Temporal Characteristics of H5N8 HPAI Occurrence.
From 2014 to 2022, there were three epidemic peaks of
H5N8HPAIworldwide (Figure 1). The decomposition results
of the H5N8 HPAI time series based on STL are shown in
Figure 2. The prevalence trend of H5N8 HPAI was evident
and largely consistent with the smoothing curve. There were
fewer incidents of H5N8 HPAI with a small peak in
2014–2015. And in 2016–2019 and 2020–2022, H5N8 HPAI
spread rapidly, showing a pandemic trend. The seasonal cycle
of the occurrence of H5N8 HPAI was also apparent, with its
spread being the lowest in July and peaked in January. Most
H5N8 HPAI outbreaks occurred in the northern hemisphere
(1609/1704), suggesting that H5N8HPAI is favored in winter.

3.2. Analysis of the Directional Distribution of H5N8 HPAI.
Figure 3 and Table S3 reveal the standard deviation ellipses
for each stage of H5N8 HPAI from 2014 to 2022 and the
attributed values of the standard deviation ellipses, respec-
tively. The 2014–2015 H5N8 HPAI epidemic was character-
ized by small regional epidemics in eastern Asia, Europe, and
North America, with a large flatness of the ellipse (the ratio
of the difference between the long and short semi-axes to the

long semi-axis), showing a clear southeast–northwest distri-
bution direction, with the center of the circle located in cen-
tral China. From 2016 to 2019, H5N8 HPAI was widespread
in Asia, Europe, and Africa with a southeast–northwest dis-
tribution direction, and the center of the circle is located in
Greece. In 2020–2022, H5N8 HPAI mainly showed a pan-
demic trend in Eurasia, with an overall distribution direction
which is southeast to northwest, and the center of the circle is
located in the southeast of Moldova.

3.3. Model Evaluation and Variable Contributions. The eval-
uation results of the poultry H5N8 HPAI model are shown in
Figure S2. With an average AUC of 0.906 for 100 replicate
runs, the model performed well. Figure 4 shows the results of
the jackknife test for the variable importance. Both in terms
of training gain and test gain, chicken density, duck density,
population density, bio1 (annual mean temperature), and
land cover had higher gains when used alone. Table 2 shows
the percentage contributions of variables, with chicken den-
sity, bio1 (annual mean temperature), population density,
land cover, and duck density being the top five contributing
variables. Thus, we identified these five variables as impor-
tant variables in the poultry H5N8 HPAI model.
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FIGURE 1: Global H5N8 HPAI events in poultry and wild birds from 2014 to 2022. The blue line depicts GAM-smoothed curve of events, and
the gray areas depict a 95% confidence interval.
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3.4. Response Curves of Important Variables. Figure 5 illus-
trates the response curves of important variables in the poul-
try H5N8 HPAI model. The curves for chicken density, duck
density, and population density showed similar trends, with
the probability of H5N8 HPAI increasing with the horizontal
coordinate and then remaining flat. For bio1 (annual mean
temperature), the occurrence probability of H5N8 HPAI
showed a trend of first increasing and then decreasing with
the increase, reaching a peak value at about 8.5–12.5°C.

According to the response curve of land cover, it is known
that crops and built areas are suitable for the occurrence of
H5N8 HPAI.

3.5. H5N8 HPAI Occurrence Suitability Map. The ecological
niche model accurately identified the environmental condi-
tions suitable for the occurrence of H5N8 HPAI in poultry.
Predictions indicate that the southwestern border region and
the southeastern region of North America, the southern
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FIGURE 2: Components of the time series of H5N8 HPAI monthly events for global poultry and wild birds from 2014 to 2022. (a) Time series.
(b) Trend component. (c) Seasonal component. (d) Remainder component.
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region of South America, most of Europe, the southern bor-
der region and the northern border region of Africa, and the
southwestern region and the southeastern region of Asia are
at high risk for the occurrence of H5N8 HPAI in poultry
(Figure 6).

4. Discussion

H5N8 HPAI is a notifiable infectious disease, and its succes-
sive outbreaks around the world have caused serious damage
to the poultry industry, the health of wild birds, farmers’
livelihoods, and international trade. The continuous muta-
tion and evolution of H5N8 HPAIV, as well as the storage
and long-distance transmission of H5N8 HPAIV by wild
birds [2, 14], pose difficulties for the prevention and control
of H5N8 HPAI. To address this current situation, this study
combined spatial and temporal analysis techniques to ana-
lyze the spatial and temporal epidemiological characteristics
of global H5N8 HPAI and predicted suitable areas for the
occurrence of H5N8 HPAI in poultry, intending to provide
some reference for policymakers to formulate corresponding
measures.

The results of time series decomposition for global H5N8
HPAI show that the prevalence of H5N8HPAI has a clear trend
and seasonality. H5N8HPAI showed a small peak in 2014–2015
and a pandemic trend in 2016–2019 and 2020–2022, which
largely coincided with the three intercontinental epidemics
described in previous studies [2, 4]. Beginning in 2020, H5N1
HPAI outbreaks began to grow significantly each year. H5N1
HPAI outbreaks accounted for more than 90% of the global
outbreaks of highly pathogenic avian influenza in the last 2 years
(FAO, https://empres-i.apps.fao.org/). The dominant subtype of

highly pathogenic avian influenza globally has shifted from
H5N8 HPAI to H5N1 HPAI [62]. Although the global occur-
rence of H5N8 HPAI is currently at a low point, based on the
trend chart, it is speculated that a new epidemic peak of H5N8
HPAI is likely to occur in the coming years. H5N8 HPAI shows
similar seasonal characteristics to other H5 subtypes of avian
influenza, with outbreaks occurring mostly in the cold winter
and early spring periods, and relatively few outbreaks in the
summer and autumn [63]. Ottaviani’s study showed that low
temperatures affected wild bird migration patterns and deter-
mined wild bird distribution, which in turn affected the spread
of highly pathogenic avian influenza [64]. Cold weather can
increase the gathering of wild birds [64], potentially allowing
the H5N8 HPAIV to persist in the environment. Napp’s study
also indicated that cold temperatures from October 2016 to
January 2017 may have been a driver of H5N8 expansion in
southern and western Europe in 2016–2017 [47].

The analysis of the directional distribution of historical
H5N8 HPAI outbreaks revealed that 2014–2015, 2016−2019,
and 2020–2022 all showed a southeast–northwest distribu-
tion direction, with only slight differences in the flatness and
rotation angle of the ellipse. All three phases are long-range
intercontinental epidemics, and the shifting trend in the cen-
ter of the standard deviation ellipse reflects the overall shift-
ing direction of the H5N8 HPAI epidemic in each phase.
H5N8 HPAI was first prevalent in small regions of eastern
Asia, Europe, and North America; then spread widely in
Asia, Europe, and Africa; and finally broke out in Eurasia.
The distribution direction of H5N8 HPAI may be closely
related to the migratory path of wild birds. Infected wild
birds flew from Korea to their northern breeding grounds
in the spring of 2014 and migrated to wintering sites in

HPAI H5N8 cases Directional distribution
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FIGURE 3: Directional distribution analysis of H5N8 HPAI events for global poultry and wild birds from 2014 to 2022. The points and ellipses
represent the H5N8 HPAI events and standard deviation ellipses for the different phases. The red color depicts 2014–2015, the yellow color
depicts 2016–2019, and the blue color depicts 2020–2022.
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Europe and North America in autumn, which is the most
plausible explanation for the large-scale geographic spread of
H5N8 HPAI in 2014 [14]. Zhang’s epoch discrete phylogeo-
graphic model also demonstrated that wild bird migration
networks were positively associated with H5N8 HPAIV
transmission since early 2020 and were the key driver of
the bidirectional movement of H5N8 HPAIV between Eur-
ope and Asia [65].

To determine the high-risk areas and risk factors for
H5N8 HPAI in poultry, we used bioclimate, geographical
landscape, and anthropogenic variables to establish a maxi-
mum entropy model for H5N8 HPAI in poultry. Based on
the results of the jackknife test of variable importance and
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constructed with other variables besides this one, the blue color depicts the gain of the model constructed with this variable only, and the red
color depicts the gain of the model constructed with all variables. (a) Train gain. (b) Test gain.

TABLE 2: Percent contribution of variables in poultry H5N8 HPAI
model.

Variable Percent contribution (%)

Chicken 60
bio1 9.6
People 8.1
Land cover 5.7
Duck 5.6
Road 5.5
Wind 3.3
Elevation 2
bio12 0.2
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the percentage contribution, chicken density, duck density,
population density, bio1 (annual mean temperature), and
land cover had significant effects on H5N8 HPAI in poultry.
From the response curve, the occurrence probability of
H5N8 HPAI gradually increased with the increase of chicken
density, duck density, and population density, and the curve

remained stable after reaching a specific value, with an over-
all roughly positive correlation trend. The number of poultry
flocks is a risk factor for highly pathogenic avian influenza
[66], and an increase in poultry population contributes to the
spread of highly pathogenic avian influenza [67]. Kim’s study
also found similar results, with “farm with≥ seven poultry
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(e) Land cover (the land cover specific categories with corresponding numeric codes are shown in Table S1).
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flocks” and “a flock size> 2000” being risk factors for H5N8
HPAI outbreaks in duck farms in South Korea [68]. A pos-
sible explanation is that the higher the density of birds, the
higher the frequency of contact with birds for persons carry-
ing H5N8 HPAIV. And farms with large flocks of chickens
and ducks may be difficult to disinfect thoroughly. The effect
of population density on H5N8 HPAI is similar to that on
H5N1 HPAI. Gilbert and Pfeiffer [58] reviewed spatial anal-
ysis studies of H5N1 HPAI, in which H5N1 HPAI occur-
rence was positively correlated with population density in
many countries and regions. Densely populated areas may
represent more intensive live poultry trade and associated
agricultural activities, increasing the probability of detection
and spread of avian influenza outbreaks [58]. The response
curve of bio1 (annual mean temperature) shows that the
occurrence of H5N8 HPAI is preferred at lower mean annual
temperatures (about 5−19°C). However, the annual mean
temperature is an arithmetic mean, and the specific temper-
ature suitable for the survival of H5N8 HPAIV needs to be
further studied. A study has shown that the highly patho-
genic avian influenza viruses can survive longer at lower
temperatures [69]. Combined with the seasonal characteris-
tic that H5N8 HPAI is more frequent in winter, it seems that
places with lower mean annual temperatures may have
colder winters, thus providing suitable conditions for the
spread of H5N8 HPAI. The response curve of land cover
illustrates the types of land cover suitable for the occurrence
of H5N8 HPAI, including crops and built areas. Crops rep-
resent crops humans grow, such as rice, wheat, and soybeans.
The study revealed that rice fields on the one hand represent
the distribution of free-grazing ducks and on the other hand
provide habitat for wild birds [70, 71]. Crops may increase
the chance of direct contact between free-grazing poultry and
wild birds, which also increases the risk of H5N8 HPAI

transmission. Built areas refer to human-made structures,
such as dense villages, towns, and cities. Built areas were similar
to the effects caused by population density on H5N8 HPAI.
Built areas represent the distribution and range of human activ-
ity and often imply frequent poultry-related social activities.

The significance of ecological niche modeling in infec-
tious diseases lies in its ability to explore the relationship
between disease occurrence and climate and environmental
variables and to map this relationship to new regions,
thereby predicting the distribution of diseases. The risk
map of H5N8 HPAI in poultry shows that the high-risk areas
for the occurrence of H5N8 HPAI in poultry are mainly dis-
tributed in the midlatitude areas (30°−60°). These areas are
located in temperate zones, mostly characterized by cold win-
ters and hot summers, which are compatible with the seasonal
characteristics of the H5N8 HPAI outbreak. Notably,
although noH5N8HPAI has ever occurred in South America,
the suitability map reveals a high risk for the occurrence of
H5N8 HPAI in the southern region of South America. These
areas possess climate and environmental conditions suitable
for the occurrence of H5N8HPAI. Once introduced, there is a
high likelihood of triggering a series of outbreaks. For high-
risk areas, first of all, poultry immunization should be carried
out on schedule, and strict biosecurity measures should be
implemented. Secondly, wild bird monitoring should be
strengthened to keep poultry away from wild bird contact.
In addition, poultry trade activities should be strictly moni-
tored, and virus sampling and testing should be conducted
regularly to detect the H5N8 HPAI outbreak on time and
prevent its rapid spread.

There are some limitations to our study. Due to the lack
of relevant data, wild bird migration data were not used in
the establishment of the poultry H5N8 HPAI niche model.
The migration of wild birds may have played a crucial role in
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FIGURE 6: Suitability map for the H5N8 HPAI occurrence of poultry. The warmer colors depict areas of high suitability, while the cooler colors
depict areas of low suitability.
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the intercontinental prevalence of H5N8 HPAI in recent
years [14]. Although we selected variables that may be rele-
vant to wild bird ecology (wind speed, elevation, and land
cover), they can only reflect their habits to a certain extent.
On the other hand, the historical outbreak data of H5N8
HPAI in our study, all from official reports, may differ
from the actual outbreak data. If there is underreporting in
the official data, then some of the findings in this study may
be biased.

5. Conclusion

From 2014 to 2022, there were three intercontinental epi-
demics of H5N8 HPAI in the world, all showing a southeast-
to-northwest distribution direction. The seasonal cycle of
H5N8 HPAI occurrence was obvious, mostly in winter and
less in summer. The results of the ecological niche model
suggested that the southwestern border region and the
southeastern region of North America, the southern region
of South America, most of Europe, the southern border
region and the northern border region of Africa, and the
southwestern region and the southeastern region of Asia
are at high risk for the occurrence of H5N8 HPAI in poultry.
Chicken density, duck density, population density, bio1
(annual mean temperature), and land cover are key factors
influencing the occurrence of H5N8 HPAI in poultry. This
study has strategic significance for the prevention and con-
trol of H5N8 HPAI.
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