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Astroviruses have frequently been found in mammals and poultry, but only a few have been successfully isolated for extensive
research. Here, we isolated a strain of porcine astrovirus type 5 (PAstV 5) on LLC-porcine kidney (LLC-PK) cells, from the
intestinal contents of diarrhea piglets, namely PAstV 5-HNPDS-01. The complete genome sequence length of this strain was
6,419 nt, which has 77.2%–91.1% nucleotide homology with other PAstV 5 strains and 45.0%–50.0% nucleotide homology with
other mammalian astroviruses. The recombination analysis indicated that the recombination events were occurred in ORF 2 region
(4,444–5,323 nt) in PAstV 5-HNPDS-01 strain. Subsequently, the pathogenicity of PAstV 5-HNPDS-01 was evaluated in 5-day-old
piglets. It showed that the PAstV 5-HNPDS-01 could cause mild diarrhea, growth retardation, minor damage to intestinal villi
clinically. Meanwhile, PAstV 5-HNPDS-01 infection could affect the microbiota diversity and composition of cecum in piglet from
phylum to genus level. After infected with PAstV 5, there was a significant downregulation of beneficial bacteria, including
Faecalibacterium, Bacteroides, Lactobacillus, and Prevotella, while harmful bacteria such as Subdoligranulun showed a significant
upregulation. These results provided a research basis for pathogenic mechanisms, vaccine development, and beneficial symbiotic
bacteria development for PAstV 5 infection.

1. Introduction

Astroviruses (AstVs) belong to the family Astroviridae, which
includesMammalian astrovirus andAvian astrovirus [1]. Cur-
rently, AstVs contain 33 Mamastrovirus and 7 Avastrovirus
species, and they were widely detected around the world
within many hosts, including humans, pigs, dogs, roe deer,
turkey, bats, and other host animals [2–7]. AstVs are positive-
sense, single-stranded, and nonenveloped RNA viruses with a
genome length of 6.4–7.3 kb [8], consisting of 5′ untranslated
region (5′-UTR), open reading frame (ORF) 1a, ORF 1b, and
ORF 2 (3′-UTR). ORF 1a and ORF 1b encode the nonstruc-
tural proteins 1ab (nsp1ab), which further process to serine
protease and RNA-dependent RNA polymerase [8]. ORF 2 is

located at the 3′ end of the genome, which encodes viral capsid
protein.

Porcine astrovirus (PAstV) is a member of the mamma-
lian astrovirus family and is mainly associated with gastro-
enteritis and neurological diseases in pigs. Mostly, PAstV
infections can cause vomiting, diarrhea dehydration in pig-
lets [9, 10]. Some infections can cause viremia and viral
encephalitis, leading to growth retardation and other symp-
toms in piglets. At present, PAstV can be divided into five
serotypes according to the difference in ORF 2 gene, includ-
ing PAstV 1 to PAstV 5 [9, 11], and all of these genotypes
were found to be prevalent in swine herds, especially com-
mon for the PAstV 1, PAstV 3, and PAstV 5 [9, 11, 12].
It has been proven that PAstV 1 mainly caused diarrhea
and vomiting in piglets [9], while PAstV 3 caused nervous
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system diseases and infected the central nervous system
[11, 13]. Currently, frequent detection of PAstVs in both
healthy and ill pigs with significantly positive rates worldwi-
dely, including South Korea (19.4%), the United States
(64.0%), Hungary (85.7%), Italy (67.4%), and Australia
(100.0%) [14–19]. In China, Xiao detected the different ser-
otypes of PAstV in Hunan province with the positive rate of
46.3% and PAstV 5 was found to be the predominant geno-
type (24.8%), followed by PAstV 4 (16.1%) [20]; and in Sich-
uan province, Cai et al. [21] reported that the prevalence rate
was 10.0% for PAstV 2% and 7.5% for PAstV 5. In Yunnan
Province, the infection rate of PAstV 2 and PAstV 5 was
39.9% [22]. In the meanwhile, the coinfections of PAstV
with other swine viruses, including porcine kobuvirus
(PKoV), porcine teschovirus (PTV), classic swine fever virus
(CSFV), porcine rotavirus (PoRV), and porcine coronavirus 2
(PCV 2) were also common in pig industry, causing much
difficulties in clinical detection and diagnosis to the pig indus-
try [12, 23]. Although there have been multiple evidences in
the epidemiology of PAstVs, the PAstV epidemic strains that
have been isolated in cell culture systems are very few.

The gastrointestinal tract, as the largest immune organ,
plays a crucial role in the host’s resistance to pathogen infec-
tions [24, 25]. Accumulating evidences suggest that enteric
virus infections can induce gut microbiota dysbiosis, some
viruses even utilize these bacteria to promote infection. Both
virus infection and altered gut microbiota could further dis-
turb the normal function of the gut barrier and lead to diar-
rhea [26–28]. Several studies reported that PDCoV or PEDV
infections altered the bacterial diversity and microbial com-
munity in the colon of piglets. Some bacteria likeMitsuokella
showed a strong correlation with proinflammatory cytokines
TNF-α, IL-6, and IL-8 expression [26, 27]. The bacterial
microbiome in the intestines of COVID-19 patients has
also changed significantly, which is characterized by the
reduction of beneficial symbiotic bacteria in the intestines
and the enrichment of conditional pathogenic bacteria. After
it was cured, the abundance of gut microbiota did not return
to its original level [29]. However, there is no relevant report
on the impact of PAstV 5 on piglets’ intestine microbiota and
little is known about the role of the gut microbiota during
PAstV 5 infection.

In this study, a PAstV 5 Henan strain, HNPDS-01, was
isolated and its biological characteristics were determined.
The pathogenicity of PAstV 5 HNPDS-01 was evaluated in
5-day-old piglets. These results enhanced the understanding
of the biological characteristics of PAstV 5. Meanwhile, 16S
rRNA microbial sequencing of thececum contents from pig-
lets infected with PAstV 5 was performed to analyze the char-
acteristics of cecal microbiota, which provided a research
basis for the screening of beneficial symbiotic bacteria.

2. Materials and Methods

2.1. Cells. The LLC-PK cells, swine testis (ST) cells, and
IPEC-J2 cells were purchased from Institute of China Veter-
inary Medicine Inspection. The LLC-PK cells were used to
isolate PAstV 5. The growth medium for LLC-PK cells were

minimum essential medium (MEM,Gibco, USA) supplemented
with 5% fetal bovine serum (FBS, Gibco, USA), 1% penicillin–
streptomycin solution (anti–anti, Gibco, USA), 1% nonessential
amino acids (NEAA, Gibco, USA), and 1% 4-(2-hydroxyerhyl)
piperazine-1-erhane sulfonic acids (HEPES, Gibco, USA). The
LLC-PK cells’maintenancemedium isMEMcontaining 5μg/mL
trypsin. The ST cells were cultured in Dulbecco’s modified
Eagle medium (DMEM, Gibco, USA), supplemented with
8% FBS (VivaCell, China) and 1% anti–anti. The ST cells’
maintenance medium was DMEM containing 1% pancreatin
(Gibco, USA). The IPEC-J2 cells were cultured in Dulbecco’s
modified Eagle medium nutrient mixture F-12 (DMEM/F-12,
Gibco, USA) and supplemented with 5% FBS (Gibco, USA)
and 1% anti–anti. The maintenance medium for IPEC-J2 cells
is DMEM/F-12 containing 2.5μg/mL trypsin.

2.2. Virus Isolation and Propagation. The intestinal contents
from diarrhoeal pigs were collected from a commercial pig
farm in Henan, China. The sample was diluted five times
with MEM, containing 1% anti–anti and then centrifuged
at 3,000 rpm at 4°C for 15min. The supernatant was col-
lected and filtered with 0.22 µm filters. The filtrate was
used as the inoculum for virus isolation on LLC-PK cells.

LLC-PK cells were seeded in six-well cell culture plates.
When the cell monolayers reached about 90% confluence
after about 24 hr of growth, cells were washed twice with
phosphate-buffered saline (PBS). The above filtrate was
added to the cell culture and incubated in a 5% CO2 incuba-
tor at 37°C for 1 hr, then washed twice with PBS. The MEM
containing 1% anti–anti, HEPES, and NEAA 5 μg/mL tryp-
sin was added into the cell culture. The culture was further
incubated at 37°C in 5% CO2 and monitored for cytopathic
effect (CPE). When the CPEs reached over 80%, the cell
culture plate was frozen and thawed twice at −80°C. The
virus was collected and further passaged in LLC-PK cells.

2.3. Virus Plaque Purification. The virus was plaque-purified
on LLC-PK cells according to the reported method [30].
LLC-PK cells were seeded in a six-well plate and grew to
100% around 24 hr. After washing twice with PBS, the virus
was added to each well. After adsorbed for 1 hr in 5% CO2

incubator at 37°C, the plates were washed twice with PBS.
Then 2mL of agarose-MEM, which contained 1.5% (w/v)
seaPlaque agarose (Lonza, Rockland), 1% anti–anti 5 μg/mL
trypsin, were added to covered the underlying cells. After
being cultured for about 24 hr, the plaque was stained with
0.01% neutral red for 20min. The typical plaques were
selected and dissolved in 0.5mL MEM and stored at −80°C

2.4. RNA Extraction, Deep Small RNA Sequence Assembly.
Viral RNA was extracted from intestinal contents and tissues,
cell culture samples by the TRIzol method (Vazyme, China).
The total RNA, which was extracted from the plaque-purified
virus, was subjected to next-generation sequencing (NGS) on
the Illumina platform (Tanpu Biotechnology Co., Ltd. China).
After quality control (QC) of the obtained sequencing data,
the clarified total RNAwas used to complete the whole genome
sequence and the Illumina PE library was constructed. The
reads obtained from the above QC and decontamination
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sequence are assembled by de novo. SPAdes and MEGAHIT
software assembled the second-generation data. The contigs
obtained from the above assembly were compared with the
virus NT database by BLAST (V2.10.0+) to determine the
candidate reference sequence with the closest evolutionary
relationship.

2.5. Transmission Electron Microscopy (TEM). The virus pas-
sage 14 (P14) was centrifuged at 8,000 rpm for 30min at 4°C.
The supernatant was filtered with 0.45 and 0.22 μm filters
successively to remove cell debris. The filtrate was added
with a final concentration of 5% (w/v) polyethylene glycol
8,000 (PEG 8,000) stirred with a magnetic stirrer for 2 hr
at 4°C. Viral particles were pelleted by centrifugation at
140,000x g for 3 hr at 4°C, then resuspended in 1.5mL PBS
to wash viral particles with the same speed. The viral parti-
cles were dispersed in 50 μL PBS. The 2.5% (v/v) glutaralde-
hyde was added to inactivate the virus for 8min. The viral
particles were adsorbed on a copper square mesh size 300.
Then 2% (v/v) phosphotungstic acid staining solution for
negative staining. The viral particles were observed by elec-
tron microscope (Tecnai G2 Spirit Bio, USA) after natural
drying.

2.6. Indirect Immunofluorescence Assay (IFA). For IFA stain-
ing, cells monolayers were washed twice with PBS and fixed
with absolute ethanol for 8 hr, at 4°C. Then permeated with
PBS containing 0.05% (v/v) Triton X-100 (solarbio, China)
to membrane permeabilization at room temperature for
15min. Cells were blocked with PBS containing 5% (w/v)
bovine serum albumin (Sigma, USA) for 2 hr at room tem-
perature (RT), then incubated with PAstV 5 capsid-protein-
specific monoclonal antibody (6C6, prepared by our lab, 1 :
200 dilution) for 8 hr, at 4°C. After washing with PBS con-
taining 0.05% (v/v) Tween-20 (PBST) for five times, the
FITC-conjugated affinipure goat anti-mouse IgG (H+ L)
secondary antibody (1 : 200 dilution, Proteintech Group,
Inc, China) was added and incubated around 50min at
37°C. The plates were washed five times with PBST. The
nucleus was stained with 4′, 6-diamino-2-phenylindole
(DAPI) (Solarbio, China) for 10min at RT and washed five
times with PBST. Finally, cells were observed with the fluo-
rescence inverted microscope (EVOSM5000, USA) and took
photos.

2.7. Western Blot (WB). For western blot, cell monolayers were
washed with PBS and lysed with NP-40 with 1% (v/v) phenyl
methane sulfonyl fluoride (Beyotime, China) for 20min. Then
6x protein loading buffer (TransGen Biotech, Beijing) was added
to the collected samples. Samples were separated by SDS-PAGE
and transferred onto a nitrocellulose filter membrane (Cytiva,
USA). Themembranes were blockedwith 5% (w/v) skimmilk in
tris-buffered salinewith 0.05% (v/v) Tween-20 (TBST) for 2hr at
RT. Incubated with PAstV 5 capsid-protein-specific monoclonal
antibody 6C6 (1 : 2,000 dilution) for 8hr at 4°C. After washing
three times with TBST, secondary antibody HRP–conjugated
affinipure goat anti-mouse IgG (H+L; 1 : 5,000 dilution, Pro-
teintech Group, Inc, China) was added and incubated around
1 hr, at RT. Nitrocellulose filter membrane was washed three
times with PBST and incubated with ECL (Beyotime, China)
to visualize protein bands.

2.8. Tissue Culture Infective Dose 50 (TCID50) Assay. TCID50

assay was performed to assess viral titer. Confluent LLC-PK
cell monolayers in 96-well plates were inoculated with tenfold
serially diluted viruses (100μL per well) at 37°C for 1 hr. After
washing twice with PBS, 200 μL of LLC-PK maintenance
medium was added to each well. The CPE was recorded daily.
Virus titers were calculated using the Reed–Muench method
and recorded as TCID50 per 100μL.

2.9. RT-PCR and qRT-PCR Based on the PAstV 5 ORF 1a
Gene. HiScript II 1st Strand cDNA Synthesis Kit (Vazyme,
China) was used to synthesize into cDNA. According to the
relatively conservative region of ORF1a of PAstV 5, the specific
primers (PAstV 5-207-F: 5′–CCAACTCTGATCGT-
GATCCT–3′ and PAstV 5-207-R: 5′–TACCACCGGTTCA-
CATTCTCTCTT–3′) were designed for RT-PCR. The
RT-PCR program was as follows: 95°C for 5min; 35 cycles of
95°C for 20 s, 58°C for 15 s, 72°C for 15 s, 72°C for 5min, and
4°C for storing the production. The primers for qRT-PCR were
PAstV 5-117-F (5′–CTTACAGGTGTGTCCAATGCATGA–3′)
and PAstV 5-117-R (5′–TACCATGCATCCCGTAGA–3′) with
the program of 95°C for 1min; 40 cycles of 95°C for 5 s, 58°C for
30 s, and 72°C for 30 s.

2.10. Complete Genomic Sequence and Phylogenetic
Recombination Analysis. Based on the result of NGS, the
specific primers (Table 1) were designed with the sequence

TABLE 1: The primer information for the complete genome of PAstV 5-HNPDS-01.

Primers’ Sequences’ (5′−3′) Products’ (bp)

PAstV 5-F1 TTTAAGGCTTGCGTGGTGGAGGGTTT
395

PAstV 5-R1 TGCGTGGTGGAGATCTTTCTCTTTCGT

PAstV 5-F2 TATGATAACGCGTACCCGTTA
2,314

PAstV 5-R2 GTGAAAATGGGCGTATACCA

PAstV 5-F3 GACGCTTCACTGGGATCAGA
1,417

PAstV 5-R3 ATGATGTCATCAGGATCAGGAC

PAstV 5-F4 CTGGGAGTTCTTGGACGATG
1,883

PAstV 5-R4 CACCAATTAGACTGATCTG

PAstV 5-F5 TGATGCAGAATTGAACAACCCTGT
1,149

Oligo-dT TTTTTTTTTTTTTTTTTT
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of candidate PAstV 5 (Genbank: KP747574.1). The genes
were amplified by Phanta® Max Super-Fidelity DNA Poly-
merase (Vazyme, China). According to the manufacturer’s
protocol, PCR products were purified and cloned into
pMD18-T vectors (TaKaRa, China) for sequencing. The com-
plete sequence of PAstV 5HNPDS-01was obtained by assem-
bling overlapping contigs followed by trimming the primer
sequence. Phylogenetic trees were constructed using the
neighbor-joining method in MEGA X software (http://www.
megasoftware.net/) with the bootstrap analysis of 1,000 repli-
cates. To detect possible recombination events of PAstV
5 HNPDS-01, the RDP4 package, including RDP, BootScan,
GENECONV, Maxchi and Chimera, was used to analyze the
potential recombination events.

2.11. Animal Experiment. Six 5-day-old piglets were pur-
chased from a commercial pig farm. The virus-specific
PCRswere performed to exclude the common enteric viral patho-
gens, porcine sapelovirus (PSV), porcine epidemic diarrhea virus
(PEDV), transmissible gastroenteritis virus (TGEV), porcine delta
coronavirus (PDCoV), and porcine reproductive and respiratory
syndrome virus (PRRSV). The protocols for animal experiments
on live piglets were approved by the Animal Care and Use Com-
mittee of Henan Agricultural University (Zhengzhou, China) and
the approval number is HNND2020031012. Six piglets were ran-
domly divided into two groups and orally infected with PAstV
5-HNPDS-01 P14 (1×107TCID50/piglet, n=3). The control
group was orally inoculated with 10mL MEM culture for
each piglet (n= 3). All piglets were evaluated daily for clinical
signs and body condition.

2.12. Samples Collection. Fecal samples were collected daily
from each piglet with sterile cotton swabs. After 4 days post-
infection (dpi), piglets in both groups were euthanized. Then,
heart, liver, spleen, lung, kidney, duodenum, jejunum, ileum,
cecum, colon, and rectum mesenteric lymph samples were
collected for pathological examination and viral distribution
detection. Fresh pathological tissues were fixed in a 4% (w/v)
paraformaldehyde solution at RT. The cecal content samples
were collected and stored at −80°C, which was used for
microbial DNA extraction.

2.13. Histopathology and Immunohistochemical. For histopa-
thology and immunohistochemical staining, after 2 days of
fixation, the tissues were washed with running water for
12 hr. The tissues were attached to the glass slide by dehydra-
tion, transparency, wax immersion, and section dehydration.
Then, hematoxylin–eosin (H&E) staining was used. Then,
the slides were examined by conventional light microscopy.
Among them, the other part needs to use sodium citrate
solution for antigen repair for immunohistochemical detec-
tion. Incubated with PAstV 5 capsid-protein-specific mono-
clonal antibody 6C6 (1 : 200 dilution) for 8 hr at 4°C, then the
immunohistochemical ultrasensitive reagent kit was used for
testing to test (MXB, China). Finally, the slides were reacted
with 3,3′-diaminobenzidine (DAB). After hematoxylin coun-
terstaining, neutral gum was used to seal. Finally, the slides
were observed under a light microscope.

2.14. Microbial DNA Extraction and 16sRNA Sequencing.
The total nucleic acid of microbiota in the piglets cecal con-
tents was extracted. The community DNA fragments were
sequenced by using the Illumina platform for paired-end
sequencing (Shanghai Personal Biotechnology Co., Ltd,
China). The specific primers were 5′–ACTCCTACGG-
GAGGCAGCA–3′ and 5′–GGACTACHVGGGTWTCTA
AT–3′. The software package DADA 2 method [31] was
used for primer removal, quality filtering, noise removal,
and splicing chimerism removal and then compared with
the Release 13.8 database [32]. The results were scored and
judged for taxonomic annotation. Through the statistics of
the characteristic table after the removal of singleton, the
visualization of the composition and distribution of each
sample at the six classification levels of phylum, class, order,
family, genus, and species were realized.

2.15. Bioinformatics Analysis. The ASV/OTU abundance
chart was used for community analysis. Alpha diversity
(Shannon, Simpson) was used to evaluate the microbiota
community. Beta diversity, based on the Bray–Curtis dis-
tance, reflected the diversity of species composition among
different communities through principal coordinate analysis
(PCoA). The species composition of each sample at the six
classification levels of phylum, class, order, family, genus,
and species was realized by a stacked bar chart (QIIME2).
The LDA effect size (LEfSe) indicated the microbiota com-
munity as the significantly enriched species in each group.
The minimal threshold of linear discriminant LEfSe was set
at 4.

2.16. Statistical Analysis. All the above statistical analysis were
performed with a one-way analysis of variance (ANOVA)
or evaluated with a multiple t test. Compared with the
corresponding control, the difference was significantly relative
when ∗P <0:05 and ∗∗P <0:01.

3. Results

3.1. Isolation, Identification, and Purification of PAstV
5-HNPDS-01 Strain. LLC-PK cell monolayers were inoculated
with the filtered diarrhea samples collected from the diarrheic
piglets. After 24 and 48hr postinfection (hpi), the cells showed
a significant CPE, which was characterized by expansion, frag-
mentation, small particles detachment of the LLC-PK cells
(Figure 1(a)). Thus, viral RNA was extracted from cell culture
samples and the common swine enteric viruses (PEDV, TGEV,
PSV, PDCoV, and porcine rotavirus) were tested by viral-
specific RT-PCRs. But the CPE-positive isolate was negative
for all these viruses. So, the isolated virus RNA was further
sequenced by NGS on the Illumina platform. The result
indicated that this isolate was PAstV 5, and no other viruses
were included.

Furthermore, the viral particles in the supernatant cul-
ture were purified and concentrated. The viral particle mor-
phology was observed by TEM. It showed that the viral
particles were about 30 nm in diameter, which was consistent
with the size of most astroviruses (Figure 1 (b)). The isolated
virus was plaque purified on LLC-PK cells (Figure 1(c)), and
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the positive plaque clone was selected for further serially passage
on LLC-PK cells. To further identify the replication of PAstV 5
on the LLC-PK cells, LLC-PK cells were infected with PAstV
5-HNPDS-01 at an MOI of 0.02. IFA and WB were conducted
with PAstV 5 capsid-protein-specific monoclonal antibody 6C6.
The infectious cells showed large numbers of IF-stained cells at
12 and 24hpi (Figure 1(d)). PAstV 5 replication was increased
dramatically at 12 and 24hpi (Figure 1(e))

Meanwhile, the same experiment was conducted on ST
and IPEC-J2 cells. The results showed that PAstV 5 was
more susceptible to LLC-PK cells than that on the ST and
IPEC-J2 cells at the same infective dose (Figure 1(f )–1(i)).
The above results identified that a PAstV 5 strain was suc-
cessfully isolated in LLC-PK cells. It was named PAstV
5-HNPDS-01 strain.

3.2. Replication Kinetics of PAstV 5 Strain HNPDS-01 in
LLC-PK Cells. To further investigate the biological characteriza-
tion of PAstV 5-HNPDS-01 strain on its sensitive cells LLC-PK,
the plaque-purified PAstV 5-HNPDS-01 P14was incubated into
LLC-PK cells. Cells and supernatants were harvested together at
6, 12, 18, 24, 48, and 72hpi. Viral gene copies and titers were
detected by qRT-PCR and TCID50. The results showed that the
gene copies of the PAstV 5-HNPDS-01 strain in LLC-PKpeaked
at 48hpi (11.44 lgGE/mL; Figure 2 (a)). Its viral titer peaked at
48hpi (5.9 lgTCID50/mL), then began to decline at 60 hpi (4.7 lg
TCID50/mL; Figure 2 (b)).

3.3. Complete Genome Sequence and Phylogenetic Analysis of
PAstV 5-HNPDS-01. The complete genome of the PAstV
5-HNPDS-01 P10 was amplified by RT-PCR and sequenced

twice (data was not show). The complete genome sequence
was assembled and deposited in GenBank database
(OQ781001). The full-length genome was 6,419 nt, including
5′′UTR–ORF1a—ORF 1b—ORF 2–3′UTR—poly A. Subse-
quently, astrovirus sequences were downloaded from the
GenBank database, including human, porcine, cat, white-
tailed deer, roe deer, cattle, domestic sheep, duck, and
chicken, among 57 different sequences of different species.
The phylogenetic tree, based on complete genome sequences,
was constructed by the neighbor-joining method in MEGA X
(Figure 3(a)). The results showed that the nucleotide homol-
ogy between PAstV 5-HNPDS-01 with other mammalian
astroviruses was 45.0%–50.0%, and with 77.2%–91.1% of
the nucleotide homology with other PAstV 5 strains. All
the PAstV strains were divided into five groups in the phy-
logenetic tree, representing the five distinct genotypes from
PAstV 1 to PAstV 5 (Figure 3(a)). Furthermore, analysis of
the PAstV 5 strains indicated that all the strains from Japan
and U.S. clustered into a subclade, while PAstV 5 strains
from China were clustered in a separately subclade. The
homology analysis of ORF 2 gene of PAstVs was also found
to be in general agreement with the abovementioned results,
the PAstV 5-HNPDS-01 ORF2 gene clustered with the
PAstV 5 group (Figure 3(b)).

3.4. Recombination Analysis of PAstV 5-HNPDS-01 Strain.
To analyze the association between PAstV 5-HNPDS-01
strain and other PAstV strains, the recombination analysis
was performed by RDP4. First, the 57 strain genome
sequences, including PAstV 5-HNPDS-01 strain sequence,
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were compared with the RDP4. One recombination event
was predicted in the PAstV 5-HNPDS-01 at 4,344–5,732
nt, when the PoAstV-VIRES-JL01 (MK378540) was used
as major parent strain and the PAstV 5-JPN-Ishi-Im1-2
(LC201620) was served as the minor parent of the recombi-
nant strain (Figure 4(a)). The sequences in the suspicious
recombination region (4,344–5,732 nt) were further ana-
lyzed. The amino acid homology of PoAstV-VIRES-JL01
(MK378540) and PAstV 5-JPN-Ishi-Im1-2 (LC201620) in
this region is 84.9% and 83.2%, respectively; and two histi-
dine were inserted at the 244 and 245 amino acid position
(marked as magenta sticks model) in PAstV 5-HNPDS-01
strain (Figure 4(b), Table 2).

3.5. Clinical Manifestations and Necropsy of Piglets
Challenged with PAstV 5-HNPDS-01. The pathogenicity of
PAstV 5-HNPDS-01 was evaluated in 5-day-old piglets. The
PAstV 5 infection group showed slight and transient diar-
rhea at 2 dpi (Figures 5(a)and 5(b)). The body temperature
and weight of the two experimental groups did not show
significant changes (Figures 5(e) and 5(f )). PAstV 5 RNA
was detected in the fecal swabs by qRT-PCR from 1 to
4 dpi. Peak viral RNA shedding was observed at 3 dpi
(Figure 5(g)). The control pigs showed no clinical signs dur-
ing the study period.

The PAstV 5 infected piglets showed symptoms of yellow
fluid accumulation in the intestinal tract, thinning of the
intestinal wall, and slight flatulence (Figures 5(c) and 5(d)).
To explore the PAstV 5 distribution in the organs of the
infected piglets, the viral load in each tissue was detected
by RT-PCR and qRT-PCR. The PAstV 5 nucleic acid was
detected in the ileum, cecum, and colon lymph nodes of the
infected group (Figures 5(h) and 5(i)). All the corresponding
tissues from the control group were negative for PAstV 5.

3.6. Histopathology and Immunohistochemistry on the
tTissue of the Piglets Inoculated with PAstV 5-HNPDS-01
Strain. Fixed intestinal tissues were detected by histopathol-
ogy and immunohistochemistry. The PAstV 5 infection

groups showed intestinal villi shedding and slighting atrophy
(Figure 6(a)–6(f)). Compared to the control group, the PAstV
5 infection group had enlarged and fewer lymph follicles in the
ileum, and the outline of lymphatic follicles was unclear (marked
blue arrow, Figures 6(a) and 6(d)). In the cecum, the number of
glands in the PAstV 5 infection group was significantly reduced
when compared to the control group (P <0:05, marked black
dotted boundary, Figures 6(b), 6(e), and 6(g)). In the colon, the
number of glands in the PAstV 5 infection group significantly
increased compared to the control group (P <0:05, marked
green dotted boundary, Figures 6(c), 6(f), and 6(g)) in contrast
to the cecum. No lesions were found in the intestines of the
control piglets. PAstV 5 antigens were detected in the epithelial
cells of the ileum (marked red arrow, Figures 6(i), and 6(k)), while
the intestine of uninfected piglets was negative (Figures 6(h)
and 6(j)).

3.7. The Alteration of the Microbiota Diversity in the Cecum of
Piglets between the Control and PAstV 5-HNPDS-01 Infection
Groups. The total microbial DNA acid was extracted from
cecum contents. The community DNA fragments were
double-end sequenced by the Illumina platform. The cecum
contents of the control and PAstV 5-HNPDS-01 infection
group were annotated with ASV/OUT for domain, phylum,
order, family, genus species. The Venn diagrams showed that
the number of OTUs in the control and PAstV 5-HNPDS-01
infection group were 5,201 and 5,034, respectively; whereas
only 397 ODUs were commonly shared (Figure 7(a)).

The control and PAstV 5-HNPDS-01 infection group
showed significant differences in cecum microbiota by using
α-diversity analysis (Simpson, P <0:05), while the Shannon
showed no significant difference in these two groups
(P >0:05) (Figure 7(b)); and the β-diversity analysis results
showed there existed significant difference in the cecum
microbiota of piglets between the control and PAstV
5-HNPDS-01 infection groups (P <0:05). The PCo1 and
PCo2 was 6.1% and 84.2%, respectively (Figure 7(c)). These
results indicated that PAstV 5-HNPDS-01 infection signifi-
cantly altered the microbial diversity in cecum of piglets.
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FIGURE 2: Replication kinetics of PAstV 5-HNPDS-01 in LLC-PK cells. (a) LLC-PK cells were infected with PAstV 5-HNPDS-01 at an MOI of
0.02. Samples were collected at 6, 12, 18, 24, 48, and 72 hpi. The genomic copies were detected by qRT-PCR. (b) Virus titer in LLC-PK cells
was titrated with TCID50.
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FIGURE 3: Continued.
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3.8. The Alteration of the Microbiota Composition in the
Cecum of Piglets between the Control and PAstV 5-HNPDS-
01 Infection Groups. The microbial community abundance at
the different levels was further analyzed. There were signifi-
cant differences in the relative abundance at the phylum,
family, and genus levels. At the phylum level, Firmicutes
and Bacteroidetes showed no significant difference between
control and PAstV 5-HNPDS-01 infection group (P >0:05).
Meanwhile, Actinobacteria in the PAstV 5-HNPDS-01 infec-
tion group significantly increased compared with the control
group (P <0:05; Figure 7(d)). At the family level, Bacteroida-
ceae, Prevotellaceae, and Paraprevotellaceae showed downre-
gulation significantly (Figure 7(e)). Compared with the
control group, another promising finding was that Coriobac-
teriaceae was showed upregulated in the PAstV 5-HNPDS-01
infection group (P <0:05; Figures 7(f) and 7(g)). At the genus
level, there was a significant downregulation of Faecalibacter-
ium, Bacteroides, Prevotella, and Blautia in the PAstV
5-HNPDS-01 infection group (P <0:05), when compared to
the control group. Meanwhile, Subdoligranulum and Collin-
sella showed significant upregulation (P <0:05) in the PAstV
5-HNPDS-01 infection group significantly increased com-
pared with control group (P <0:05 Figures 7(h) and 7(i)).

3.9. Differences of Special Taxa between the Control and
PAstV 5-HNPDS-01 Infection Groups. The marker species
of cecum microbial between the control and PAstV
5-HNPDS-01 infection groups were analyzed by the LEfSe.
Eight potential microbial biomarkers were identified in the
control group, including Faecalibacterium, Ruminococcaceae,
Bacteroidaceae, Bacteroides, Prevotellaceae, Prevotella, Para-
prevotellaceae, Prevotella, and Anaerovibrio. Meanwhile, 14
potential microbial biomarkers were identified in the PAstV
5-HNPDS-01 infection group’s cecum contents, including
Subdoligranulun, S24-7, Actinobacteria, Coriobacteriia, Cor-
iobacteriaceae, Collinsella, Coriobacteriales, Erysipelotrichales,
Lachnospiraceae, Erysipelotrichaceae, Catenibacterium, Phas-
colarctobacterium, and Runinococcurs (Figure 8). These
results showed that PAstV 5-HNPDS-01 infection altered
the special taxa of the cecum in piglets.

4. Discussion

Porcine enteroviruses could lead to economic losses in pig
breeding industry. Viruses that do not cause serious clinical
symptoms in pigs may have an impact on public health
[17, 33]. Previous research showed that PAstV infections
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FIGURE 3: Complete genome sequence and phylogenetic analysis of PAstV 5-HNPDS-01. (a) Complete genome sequence of PAstV
5-HNPDS-01 was amplified by RT-PCR with full-sequence amplification primers (Table 1). (b) The whole genome sequence was assembled
by seqMan the phylogenetic tree was subsequently constructed from the aligned sequences using the neighbor-joining method (bootstrap was
1,000 replicates) of MEGA X software. Red triangles indicated the PAstV 5-HNPDS-01. Phylogenetic tree for the ORF 2 gene was constructed
with above method, of which red triangles indicate the ORF 2 of PAstV 5-HNPDS-01.
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can cause vomiting, diarrhea dehydration in piglets [10, 34].
In this study, we isolated the PAstV 5-HNPDS-01 in LLC-PK
from a clinical diarrheic sample and analyzed for its biologi-
cal characteristics. The pathogenicity of the isolated strain on
5-day-old piglets showed that this strain caused mild diar-
rhea, growth retardation, and minor damage to intestinal
villi clinically. Meanwhile, PAstV 5-HNPDS-01 infection sig-
nificantly altered the microbial diversity and community
abundance in cecum of piglets.

Many astroviruses did not produce regular CPE in cell
culture, which caused many difficulties in virus isolation.
Among these, Lee and Kurtz [35] first found that human
astrovirus could multiply replication on human embryonic
kidney (HEK) cells under the condition of adding exogenous

trypsin; and a PAstV strain was isolated from pigs with acute
gastroenteritis and showed obvious CPE, which was charac-
terized by enlarged cells and fine particles in the cytoplasm
[36]. The majority of previous isolates of PAstV have come
from samples of pigs with different clinical signs. In this
study, we successfully isolated a PAstV 5 strain from the
clinical sample of diarrhea pigs by adding exogenous trypsin.
It had a significant CPE, which was characterized by expan-
sion, fragmentation, and small particles detachment on the
LLC-PK cells. The LLC-PK adapted-cultured strain (PAstV
5-HNPDS-01) titer was 5.5 lg TCID50/mL was more sensitive
to LLC-PK than ST or IPEC-J2 cells.

PAstV is mainly related to gastroenteritis and nervous
system disease in piglets [9, 10]. Due to the characteristics of
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FIGURE 4: Recombination analysis of PAstV 5-HNPDS-01. (a) Analysis of recombination events in this strain by RDP4, supported by five
recombination detection programs (Av. P-Val of 1.919× 10−04 for RDP, GENECONVDE, BootScan Av. P-Val of N.A., Av. P-Val of MasChi
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PAstV 5 genome that is easy to mutate, the risk of cross-
species transmission of PAstV 5 and the occurrence of more
pathogenic mutations and recombination cannot be ignored
[15, 16]. Compared with mammalian astrovirus, avian astro-
virus has stronger pathogenicity, which mainly causes viral
hepatitis and nephritis in birds [37, 38]. Because of the high
mutation rate of genomics, there is also the possibility of
transmission from birds tomammals [15, 16]. Recombination
events and mutations in RNA viruses are one of the main
factors determining the molecular evolution of RNA viruses.
The results showed that the nucleotide homology between
this strain and other PAstV 5 strains was 77.2%–91.2% in
ORF 2 gene.

Previous research showed that symbiotic microbiota can
prevent pathogens from invading create a microenvironment
that is adverse to intestinal pathogens [39, 40]. After PAstV
5-HNPDS-01 infection, the microbial composition of cecum
in piglets was altered significantly from phylum to genus
level. These results showed that the cecum microbial com-
munity and composition were significantly different between
the control group and the PAstV 5-HNPDS-01 infection
group. Bacteroidota, Firmicutes, and Actinomycetes are all

dominant bacteria in the gut microbiota of mammalian
[41]. However, compared with the control group, there
was a significant increase in Actinomycetes in the PAstV
5-HNPDS-01 infection group. At the family level, Coriobac-
teriaceae showed a significant upward trend in the PAstV
5-HNPDS-01 infected group, while Bacteroidaceae, Prevo-
teaceae, and Paraprevoteaceae showed a significant down-
ward trend. Actinomycetes and Coriobacteriaceae had the
effect of reducing the oxidation reaction in animals with
intestinal injury, which was negatively correlated with induc-
ible nitric oxide synthase (iNOS) and short-chain fatty acid
(SCFA) [28]; that can conducive to the recovery of the intestinal
barrier [28]. At the genus level, compared with the control
group, Faecalibacterium, Bacteroides, Lactobacillus, and Prevo-
tella were significantly downregulated in the PAstV 5 infection
group, while Subdoligranulun and Collinsellawere significantly
upregulated. Faecalibacterium is one of the most important
bacteria in the microbiota, accounting for 5%–15% of the total
number of bacteria detected in healthy animals [42]. It is one
of the important producers of butyric acid. It has anti-
inflammatory effects, maintains bacterial enzyme activity
protects the digestive system from intestinal pathogens [42].
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Besides, Collinsella produces ursodeoxycholic acid in the intes-
tinal tract, which can prevent the binding of COVID-19 to infec-
tion receptors and inhibit inflammation, cellular decay oxidation.
Its increase may inhibit pathogen invasion to some extent [43].
Others, including Bacteroides, Prevotell, and Blautia are also ben-
eficial bacteria, which jointly build the intestinalmicrobial barrier.
But the PAstV 5-HNPDS-01 infected group showed significant
downregulation. The results of the experiment found clear sup-
port for the PAstV 5-HNPDS-01 destroyed the intestinal flora
balance of piglets, and it had the function of self-protection and
repair. Our results indicated that Subdoligranulun was signifi-
cantly upregulated in the PAstV 5-HNPDS-01 infected group.
A previous study has reported that this strain may cause rheu-
matoid arthritis (RA) in high-risk individuals with clonal IgA and
IgG auto-antibodies [44]. From these results, it is clear that PAstV
5-HNPDS-01 was obvious to change the intestinal barrier and
gut microbiota of piglets.

In summary, a strain of PAstV 5 named HNPDS-01 was
isolated successfully and its biological characteristics was
analyzed. Recombination analysis showed that the genome
may be recombined at 4440–5737 nt in ORF 2 region. The
pathological autopsy revealed yellow exudate, abdominal gas,
and high viral loads in the intestine. In addition, there were
significantly different in the cecum microbiota from phylum
to genus levels in the PAstV 5-HNPDS-01 infected and the
control groups. These results may help to understand the
pathogenicity of PAstV 5, and the intestinal microbiota asso-
ciated with PAstV 5 infection. Meanwhile, the influence on
cecum microbiota in piglets may provide a research basis for
beneficial symbiotic bacteria.
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