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In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of
Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting
grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while
specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains
were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%).
Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified
as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-
generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas
crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The
phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated
with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of
critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health.

1. Introduction

The concept of One Health has its origins in ancient times.
Specifically, the Greek physician Hippocrates emphasized
the importance of the environment in ensuring overall
health. In the 1800s, the German physician and pathologist
Rudolf Virchow laid the foundation for the modern concept
of One Health with his definition of the term “zoonosis” [1].
More recently, Calvin Schwabe, a veterinary epidemiologist,
emphasized the role of veterinary medicine in ensuring
human health with the term “One Medicine,” promoting
the awareness that veterinary public health includes wildlife,
domestic animals, and humans [1, 2].

In 2004, the Wildlife Conservation Society defined the
principles of Manhattan to provide guidance for a global,
One World, One Health approach to the prevention of epi-
demic/epizootic diseases and to maintain biodiversity, which
is the foundation of ecosystem health [3].

Indeed, 60% of emerging infectious diseases that are
reported globally are zoonoses and have originated in wildlife
[4]. In this regard, the antibiotic resistance, defined by the
World Health Organization (WHO) as one of the main chal-
lenges of the twenty-first century, has been investigated in
wildlife, with an annual increase in scientific production of
7% from 1979 to 2019 [5].

In detail, the studies have mainly focused on the antibi-
otic susceptibility of Gram-negative bacteria such as Escher-
ichia coli and Salmonella spp. [5]. E. coli, being part of the gut
microbiota and easily dispersed in different ecosystems, has
been widely used as an indicator of antibiotic resistance
contamination [5]. Indeed, the first antibiotic-resistant bac-
terium to be described in a wild animal was an E. coli isolated
from a pigeon around 1975 [6].

Other bacterial species, such as Salmonella spp., have
been studied in wildlife as potential food-borne pathogens
[5]. Indeed, the first outbreak of salmonellosis in wild birds
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was described by Wilson and MacDonald in the 1960s and
later studies to quantify the risk to humans and domestic
animals have been carried out since then [7].

Several free-ranging species have been investigated on
this topic of antibiotic resistance, and the most represented
group of animals in scientific literature is wild birds [5].
Indeed, the migratory capacity of some species makes them
able to create links between areas with different anthropo-
genic impact exploring long-distance routes [8]. However,
few studies that include a phenotypic investigation of antibi-
otic resistance together with genetic analysis are available for
wild aquatic birds. Considering the ecology of waterfowl and
the specialization of some species as filter feeders, these ani-
mals can come into contact with pathogens present in the
environment and with antibiotic-resistant bacteria. Further-
more, hunted aquatic birds may be a human source of these
pathogens or resistant bacteria through the consumption of
raw or undercooked meat [9, 10].

Given the limited available data, the current study aimed
to evaluate the presence of resistant Gram-positive andGram-
negative bacteria and food-borne pathogens, such as Salmo-
nella spp., in wild aquatic birds hunted or found dead in
wetlands of Northern Italy, where numerous migratory spe-
cies from different breeding grounds congregate seasonally.

2. Materials and Methods

2.1. Background and Sample Collection. A total of 67 wild
aquatic birds hunted or found dead were included in this
study, selected among 124 individuals sampled within the
application of the National Avian Influenza (AI) Surveillance
Plan 2021 (https://www.izsvenezie.it/documenti/temi/influe
nza-aviaria/piani-sorveglianza/piano-nazionale-influenza-a
viaria-2021.pdf, accessed on October 2021) and the Commis-
sion Delegated Regulation (EU) 2020/689. Only individuals
sampled within 6 hr from hunting and kept at +4°C or fresh
carcasses were included in this study.

Sampling activities were conducted from October 2021
to January 2022 in two private hunting grounds (Figure 1) of
the province of Bologna, Emilia-Romagna region, Northern
Italy. These sites were selected due to numerous overwinter-
ing waterfowl species that congregate and intermingle with

resident populations of wild birds. AI surveillance activities
were performed on the behalf of the Local Health Authority
A.U.S.L. of Imola (BO) by sampling birds provided by local
hunters or found dead by local ornithologists. Game species
were hunted according to the National Hunting Law
157/1992, without the necessity of any additional permits.
Cloacal swabs (CS) were collected from each animal using
single sterile wooden swabs immersed in BPW, transported
at +4°C and immediately processed.

2.2. Bacteria Isolation and Antibiotic Susceptibility Test. The
isolates were obtained through a nonselective enrichment
process of CS for 24 hr at 37°C with buffered peptone water
(BPW) (Liofilchem, Italy), followed by subculture using the
streak plating technique on MacConkey agar (Liofilchem,
Italy) at 37°C for 18–24 hr and Slanetz–Bartley agar (Liofil-
chem, Italy) at 37°C for 48 hr [12, 13]. After the aforemen-
tioned procedures, 1–2 colonies were subcultured to obtain
pure cultures for further analysis.

In addition, the detection of Salmonella spp. was performed
by enrichment and plating out on selective media. Specifically,
100μl of nonselective enrichment of CS were incubated in 10
ml Rappaport Vassiliadis broth (Liofilchem, Italy) at 41°C for
24hr. Afterward, aliquots of cultures were spread onto xylose
lysine deoxycholate agar (Liofilchem, Italy), and the plates were
incubated at 37°C for 24−48 hr [14].

The species identification of colonies and the antimicro-
bial susceptibility testing were performed using a Vitek 2
system (Biomerieux, France) and MIC Test strip (Liofilchem,
Italy). The European Committee on Antimicrobial Suscepti-
bility Testing breakpoints were applied when available; oth-
erwise, CLSI breakpoints were used instead [15, 16].

The antimicrobial susceptibility patterns were determined
for a variety of bacteria and antibiotics, with consideration given
to the main antimicrobial classes used in veterinary medicine
and molecules that are critically important for humanmedicine,
according to European Medicines Agency andWHO guidelines
[17, 18]. Gram-negative isolates were tested for 14 antimicro-
bials: ampicillin, piperacillin/tazobactam, cefotaxime, ceftazi-
dime, ertapenem, extended-spectrum beta-lactamase (ESBL),
meropenem, amikacin, gentamicin, ciprofloxacin, tigecycline,
tetracyclines, nitrofurantoin, colistin, and trimethoprim/sulfa-
methoxazole. Susceptibility testing of Enterococcus spp. was per-
formed for vancomycin, teicoplanin, linezolid, quinupristin/
dalfopristin, gentamicin, kanamycin, streptomycin, ciprofloxa-
cin, levofloxacin, daptomycin, tetracyclines, tigecycline, and
nitrofurantoin. The susceptibility of Streptococcus spp. to ampi-
cillin, benzylpenicillin, cefotaxime, ceftriaxone, chloramphenicol,
clindamycin, erythromycin, gentamycin, levofloxacin, linezolid,
moxifloxacin, rifamycin, teicoplanin, tetracycline, tigecycline,
and trimethoprim/sulfamethoxazole was evaluated. Finally, sus-
ceptibility of Staphylococcus spp. was performed for benzylpeni-
cillin, cefoxitin screening, ceftaroline, clindamycin, daptomycin,
erythromycin, fusidic acid, gentamicin, levofloxacin, linezolid,
mupirocin, oxacillin, rifampicin, teicoplanin, tetracycline, tigecy-
cline, trimethoprim/sulfamethoxazole, and vancomycin.

2.3. Whole Genome Sequencing and Phylogenetic Analysis.
Considering that Salmonella spp. is a zoonotic and indicator

FIGURE 1: Wetlands in the Bologna province, Emilia-Romagna
region, Northern Italy, where hunted waterfowl or wild bird car-
casses were collected. Map realized with QGIS software v.3.26 [11].
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bacterium investigated in annual European Reports on anti-
biotic resistance in humans, animals, and food [19, 20], the
Salmonella isolate identified in this study was analyzed by
whole genome sequencing.

Total genomic DNA from single selected colony was
extracted using MagPurix 12A Nucleic Acid Extraction Sys-
tem (Zinexts Life Science Corp., Taipei, Taiwan).

The Nextera XT kit (Illumina, San Diego, CA, USA) was
used to prepare the DNA library, and sequences were
obtained via the MiSeq instrument (Illumina, San Diego,
CA, USA) with a 2× 300 paired-end run with double index-
ing. The Bioanalyzer 2100 (Agilent Technologies, Palo Alto,
CA) was utilized to validate the library, while the Qubit 2.0
Fluorometer (Invitrogen, Waltham, USA) was used to quan-
tify the starting material and library. All bioinformatics anal-
yses were performed using the designed pipeline on the
public ARIES Galaxy server [21], including quality checks,
and trimming of the raw reads by FastQC v0.11.9 and Trim-
momatic v0.36. Contigs were assembled from the trimmed
data using SPAdes [22], followed by the tool “Filter SPAdes
repeats.” In silico identification of acquired antimicrobial
resistance genes, virulence genes, plasmids, and clonal anal-
ysis were carried out using dedicated tools (MLST v.2.0,
ResFinder v.3.2, Virulence Finder v.2021-03-01.1, Plasmid
Finder v.2020.11.19, ABRICATE, SISTR) available at the
Center for Genomic Epidemiology (http://www.genomice
pidemiology.org/) and by the Basic Local Alignment Search
Tool suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The freely available computational tool, PHASTER [23],
was used to identify prophages and analyze the genomes in
March 2023. Furthermore, a further analysis was performed
on the putative plasmid contigs assembled using plasmid
SPAdes v.3.15.0 [24] and annotated using the Rapid Annota-
tions using Subsystems Technology (RAST) server [25].

In addition, raw reads were uploaded to EnteroBase
(http://enterobase.warwick.ac.uk/species/index/senterica)
under accession Barcode SAL_QB2921AA.

Phylogeny of Salmonella was examined by performing a
search in Enterobase to identify all Salmonella isolates with
the same sequence type (http://enterobase.warwick.ac.uk/spe

cies/senterica/search_strains) and GrapeTree was used to
construct a rapid neighbor joining (RapidNJ) minimum
spanning tree based on the core genome multi-locus
sequence typing (cgMLST) V1+ hierarchical clustering
(HierCC) V1 scheme in EnteroBase [26, 27].

2.4. Detection of Antibiotic Resistance Genes. Polymerase
chain reaction (PCR) was used to screen for genes associated
with resistance to beta-lactams (blaTEM, blaSHV, blaCTX-M,
blaCMY-1, and blaCMY-2), carbapenems (blaIMP, blaOXA-48-
like, blaNDM, and blaKPC), colistin (mcr-1, mcr-2, mcr-3,
mcr-4, and mcr-5), tetracyclines (tetA, tetB, tetC, tetL, tetM,
and tetK), sulfonamides (sul1, sul2, and sul3), and aminogly-
cosides (aacC1, aac3, aacA4, aphA6, armA, rmtB, rmtC, and
rmtF) in Gram-negative isolates, with the exception of Salmo-
nella isolate, as previously described [13]. The PCR protocols
for Gram-positive isolates were conducted to detect genes
associated with resistance to quinupristin/dalfopristin (vgA,
msrC, vatD, vgbB, vgbA, ermB, and vatE), vancomycin (vanA,
vanB, vanC1, vanC2, vanD, vanG, vanM, and vanN), line-
zolid (cfr, cfrB, cfrD, optrA, and poxtA), nitrofurantoin (nfsA,
nfsB), tetracyclines (tetA, tetB, tetC, tetL, tetK, and tetM),
macrolides (ermA, ermB, ermC, ermTR, andmefA/E), quino-
lones (gyrA), and beta-lactams (PBP1a, PBP2x, and PBP2b),
as previously described [13].

3. Results

A total of 39 Eurasian teals (Anas crecca), 16 Northern shov-
eler (Spatula clypeata), six Northern lapwings (Vanellus
vanellus), three graylag geese (Anser anser), one mallard
(Anas platyrhynchos), one gadwall (Mareca strepera), and
one spotted redshank (Tringa erythropus) were sampled.
Of these, 65.7% (44/67) were identified as females and
34.3% (23/67) as males (Figure 2(a)). According to age clas-
ses as defined by trained ornithologists, 58% (39/67) of the
birds were aged as adults, and 42% (28/67) were juveniles
(first calendar year) (Figure 2(b)). All the samples used for
this study resulted negative for AI.

Bacteriological investigations allowed to isolate 157
strains from 67 CS collected from the abovementioned
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FIGURE 2: The number of sampled individuals according to sex (a) and age classes (b), as defined by trained ornithologists.
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population of interest. Table 1 and Figure 3 summarize all
the bacterial strains detected and the animal species involved.

In detail, 80 isolates were Gram-negative, while 77 iso-
lates were Gram-positive (Figure 4).

The most frequent isolates were Enterococcus faecalis
(36/157; 22.9%) and E. coli (23/157; 14.6%). Overall, 77 iso-
lates (77/157; 49%) showed phenotypic resistance to at least
one antibiotic, and eight isolates (8/157; 5%) were classified
as multi-drug resistant (MDR) bacteria showing resistance to
at least three different classes of antibiotics. In addition, 12
Gram-negative (12/80; 15%) and seven (7/77; 9%) Gram-
positive bacteria were found to be resistant to at least one
critically important antibiotic. Among them, seven bacteria
were MDR too. The details concerning the phenotypic and
genotypic profiles are reported in Tables 2–4.

Whole genome sequencing has allowed to describe the
serovar Salmonella Braenderup ST22 (Barcode: SAL_-
QB2921AA) with a single plasmid, which was identified as
an IncI1. The plasmid sequence contained the mediator of
hyperadherence YidE and resistance factors to copper, mer-
cury, and zinc (CcmF, CcmH, CopD, CopC, CueO, and

ZitB). In addition, ABRIcate identified the chromosomally
located antibiotic resistance gene aac(6′)-Iaa, which is reported
to confer resistance to amikacin and tobramycin [28].

Eleven prophages were detected by the PHASTER web
server and two of these were classified as intact. No resistance
or virulence genes were identified within the prophage’s
sequences.

The phylogenetic relationship with all ST22 sourced in
2021 and 2022 showed SAL_QB2921AA belonged to large
clade of isolates, of which the vast majority (351/666; 52.7%)
were associated with human salmonellosis cases. Addition-
ally, other isolates were identified from poultry (48/666;
7.2%), environment (plant, soil, or water) (46/666; 6.9%),
livestock (36/666; 5.4%), food (8/666; 1.2%), wild animals
(8/666; 1.2%), and companion animals (1/666;0.1%)
(Figure 5). SAL_QB2921AA was placed in a cluster contain-
ing 78 isolates from the United States of America (USA),
France, United Kingdom (UK), and Mexico. In detail, the
isolates from France and UK were associated with human
samples, while the isolates from Mexico were identified from
environmental samples, and the isolates from USA were
linked to livestock, poultry, wild animals, and other unspeci-
fied source types. The most closely related isolate (SAL_-
XC6709AA_AS) showed eight cgMLST allelic differences
to SAL_QB2921AA, and it was detected from unspecified
source type in North America during 2022.

4. Discussion

The results of our study provide additional information on
antibiotic resistant bacteria isolated fromwild aquatic birds in
Italy. In detail, this report provides the first phenotypic and
genotypic analysis combined to describe antibiotic resistance
in Gram-positive and Gram-negative bacteria isolated from
hunted wild aquatic birds, such as graylag goose (A. anser),
gadwall (M. strepera), Northern shovelers (S. clypeata), and
Northern lapwing (V. vanellus). Indeed, similar available
studies are mainly focused on Eurasian teal (A. crecca), mal-
lard (A. platyrhynchos), and other families of wild birds
(Columbidae, Corvidae, Falconidae, Stringidae, and Laridae)
[29–37]. Additionally, the investigations carried out in above-
mentioned studies are mostly focused on phenotypic or geno-
typic analysis of E. coli and/or Enterococcus spp.

E. coli isolates identified in this study involve waterfowl for
which no data on resistant bacteria are present in the literature,
namely gadwall (S. clypeata), Eurasian teal (A. crecca), and gray-
lag goose (A. anser). Comparing the results hereby obtained for
E. coli with those of other manuscripts focused on aquatic birds,
the same phenotypic resistance to cefoxitin and ESBL was found
in specimens recovered from a rehabilitation center in Northern
Italy and from carcasses examined in Netherlands, while
colistin-resistant isolates have previously been described only
in strains from free-living animals in Poland and Spain
[30, 34, 37, 38]. The resistance to piperacillin/tazobactam
reported in this study has not been documented in other
E. coli strains isolated from wild aquatic birds surveyed else-
where. Information regarding piperacillin/tazobactam resistance
in E. coli is of interest considering that this molecule is used for

TABLE 1: Bacterial species isolated from wild aquatic birds sampled
in Northern Italy.

Bacterial species Total

Acinetobacter lwoffi 5
Aeromonas hydrophila/caviae 3
Aeromonas sobria 13
Citrobacter braaki 1
Citrobacter freundii 2
Enterococcus casseliflavus 4
Enterococcus durans 5
Enterococcus gallinarum 8
Enterococcus gallinarum∗ 7
Escherichia coli 23
Enterococcus faecalis 36
Enterococcus faecium 11
Enterococcu shirae 1
Enterobacter cloacae 2
Hafnia alvei 2
Kluyvera criocrescens 1
Leclercia adecarboxylata 2
Morganella morganii 1
Pantotea spp. 2
Pseudomonas fluorescens 4
Pseudomonas putida 1
Pseudomonas stutzeri 2
Salmonella enterica 1
Serratia fonticola 12
Serratia liquefacens 1
Staphylococcus lentus 2
Streptococcus alactolyticus 1
Streptococcus thoraltensis 1
Yiesinia kristensenii 2
Total 157
∗CAMP test positive isolates by Vitek 2 system (Biomerieux, France).
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empirical treatments of various infections in human medi-
cine and resistant strains have been increasing in recent
years [39]. Regarding the resistance genes related to the
phenotypic resistance described and identified in this study,
the blaTEM gene has been reported in studies involving
aquatic bird species performed with culture-independent
methods in the USA and Australia [40, 41], while blaCMY-1,
mcr-3, andmcr-4 have been described for the first time in the
category of animals under investigation. These aforemen-
tioned genes have previously been described in other species
of domestic and wild animals, as well as in various water
sources [42–48].

Regarding the Enterobacterales strains other than E. coli and
the Pseudomonadales strains identified in the study, it was pos-
sible to describe profiles of colistin resistance for the first time in
water bird species not including seagulls. The resistance to third-

generation cephalosporins and carbapenems, documented in
this study, has been described in wild bird species other than
those studied, in animals sampled in a wildlife recovery center in
Spain and in various studies investigating the role of gulls and
white storks as reservoirs of antibiotic resistance [35, 38, 49].
Indeed, the related carbapenem resistance genes described in
this study have also been previously documented in gulls in
Spain [32].

Additionally, it was possible to describe resistance profiles
not yet reported in aquatic birds. In a recent study conducted
on animals of a wildlife recovery center in Southern Italy,
resistance profiles of Serratia spp., Citrobacter spp., Entero-
bacter spp., and Pseudomonas spp. were described [50]. In our
study, it was also possible to characterize other species such as
Aeromonas sobria, Aeromonas hydro/caviae, Leclercia adecar-
boxylata, and Acinetobacter lwoffii. Aeromonas spp. is a
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bacterial species of interest given its emergence as a food-
borne pathogen implicated in human gastroenteritis and extra-
intestinal diseases [51]. Furthermore, Aeromonas spp. has previ-
ously been discovered in food, animals, and birds, and it has been
described in surface water in Italy [13, 51, 52]. Indeed, the
aquatic environment is considered a potential vehicle for human
infections with aeromonads [51].

Leclercia adecarboxilata has been also defined as an
emerging human pathogen with the potential to cause severe
infection in immunocompromised patients [53]. In this view,
the resistance profile of this bacterium isolated in aquatic
context appears to be relevant.

A. lwoffii was previously described in a variety of envir-
onments (i.e., animals, human skin and gut, and water
sources) [54] and has been increasingly reported as a hospital
pathogen responsible of septicemia, pneumonia, meningitis,

urinary tract infections, skin and wound infections, and gas-
troenteritis [55, 56].

Regarding the results on Enterococci, the resistance to
vancomycin, beta-lactams, and lincosamides reported in this
study has been previously described in different wild birds
from Australia, Sweden, Poland, Portugal, Spain, and Italy
[35, 57–62]. On the contrary, for the first time, the linezolid
resistance and the related optrA gene were described in iso-
lates from hunted aquatic birds. The optrA gene was first
identified in E. faecalis and E. faecium strains from humans
and food-producing animals in China [63]. However, the
optrA gene has also been detected in E. gallinarum and
E. hirae of human origin in China and from pigs in Italy
[63]. The dispersion of transferable oxazolidinone resistance
genes among enterococci of different ecosystems poses a
serious problem to human health [64].
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Enterococcus faecium
Enterococcus gallinarum camp.
Enterococcus hirae
Streptococcus thoraltensis

FIGURE 4: Distribution of bacterial species obtained from wild aquatic birds sampled in Northern Italy.

TABLE 2: Multi-drug resistant (MDR) bacteria isolated from wild aquatic birds sampled in Northern Italy.

Bacterium Animal Multidrug resistant phenotype
Number of classes

of antibiotics
Number
of isolates

S. fonticola Anas crecca AK CAZ CN ETP FOX 3 1
E. hirae Spatula clypeata AMP LNZ QD TEIC VAN 4 1
E.casseliflavus Spatula clypeata LNZ QD TEIC 3 1
E.gallinarum camp. Spatula clypeata AMP LNZ QD TEIC 4 1
Staph. lentus Spatula clypeata CLIN DAP LNZ OX RD SXT TEIC TET VAN 8 1
Staph. lentus Spatula clypeata CLIN OX STX 3 1
Strep. alactolyticus Anas crecca BEN CLIN CTX CRO ERY LEV MXF VAN 5 1
Strep. thoralensis Spatula clypeata BEN CLIN CTX ERY LEV TET 5 1

AMP, ampicillin; AK, amikacin; BEN, benzypenicillin; CAZ, ceftazidime; CLIN, clindamycin; CN, gentamycin; CTX, cefotaxime; CRO, ceftriaxone; DAP,
daptomycin; ERY, erythromycin; ETP, ertapenem; FOX, cefoxitin; LEV, levofloxacin; LNZ, linezolid; MXF, moxifloxacine; OX, oxacillin; QD, quinupristin/
dalfopristin; RD, rifampicin; SXT, trimethoprim/sulfamethoxazole; TEIC, teicoplanin; TET, tetracycline; and VAN, vancomycin.
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TABLE 3: Phenotypic and genotypic resistance profiles of Gram-negative bacteria isolated from wild aquatic birds sampled in Northern Italy.

Resistant isolates Animal Antibiotics Resistance genes

A. sobria

Anas crecca CS mcr-3, mcr-4
Anas crecca TZP MRP —

Anas crecca MRP —

Spatula clypeata TZP CS —

Anas crecca ESBL —

Spatula clypeata ESBL blaTEM

A. hydrophila/caviae

Anas crecca CS mcr-4
Spatula clypeata ESBL blaTEM
Spatula clypeata CS mcr-2, mcr-3, mcr-4
Anser anser CS mcr-2, mcr-4

Ac. lwoffi
Anas crecca CS ESBL mcr-4, blaCMY-2

Anas crecca ESBL —

C. braaki Spatula clypeata FOX∗ CS ESBL, mcr-4

Ent. cloacae
Spatula clypeata FOX∗ CAZ∗

—

Anas crecca FOX∗ CAZ∗ ESBL ETP blaNDM, blaKPC

E. coli

Spatula clypeata TZP —

Spatula clypeata ESBL blaCMY-1, blaTEM
Spatula clypeata FOX —

Spatula clypeata ESBL blaCMY-1, blaTEM
Anas crecca ESBL —

Spatula clypeata ESBL —

Spatula clypeata ESBL —

Spatula clypeata ESBL —

Anas crecca ESBL blaTEM, blaCMY-1

Anser anser ESBL CS blaTEM, blaCMY-1, mcr-3, mcr-4
Anser anser ESBL blaTEM, blaCMY-1

Anser anser ESBL blaTEM, blaCMY-1

Anser anser ESBL blaCMY-1

Anser anser ESBL blaCMY-1

H. alvei Spatula clypeata ESBL —

K. criocrescens Spatula clypeata ESBL blaTEM
L. adecarboxylata Anas crecca FOX ESBL blaSHV, blaTEM
Morg. morganii Anas crecca ETP —

Pantotea spp. Anas crecca FOX CAZ ETP ESBL blaCMY-1, blaCMY-2, blaNDM, blaKPC

P. fluorescens

Spatula clypeata ESBL —

Anas crecca CS ESBL mcr-2, mcr-4
Anas crecca ESBL —

Anas crecca ESBL —

P. putida Spatula clypeata ESBL —

P. stutzeri
Anas crecca CS mcr-4
Anas crecca ESBL —

S. fonticola

Anas crecca FOX —

Anas crecca ESBL —

Spatula clypeata FOX —

Anas crecca AK FOX CAZ CN ETP blaNDM, blaKPC
Mareca strepera ESBL blaCTX-M
Mareca strepera ESBL blaCTX-M

Salmonella enterica Anas crecca — aac(6′)-Iaa

S. liquefacens Anas crecca FOX —

AK, amikacin; CAZ, ceftazidime; CN, gentamycin; CS, colistin; ESBL, extended-spectrum beta-lactamase; ETP, ertapenem; FOX, cefoxitin; MRP, meropenem;
TZP, piperacillin/tazobactam; and ∗, intrinsic resistance.

Transboundary and Emerging Diseases 7



On this topic, another transferable poxtA oxazolidinone
resistance gene, previously described in methicillin resistant
Staphylococcus aureus isolated in Italy [63], has been hereby
identified in a phenotypically resistant Staph. lentus. This
isolate was found to be MDR, as were other strains, including
Streptococcus thoraltensis and Streptococcus alactolyticus.

The Staphylococcus lentus (part of the Staphylococcus
sciuri group) is an uncommon and opportunistic pathogen,
being associated with urinary tract infections in humans,
mink (Mustela vison), and companion animals [65–67]. It
has recently been described in a case of pyometra in wild
European hedgehogs, and it has been reported in the feces of
wild turkeys [68, 69].

Streptococcus thoraltensis and S. alactolyticus have previ-
ously been described in feces of rabbits and in humans with
infections without any relevant antibiotic resistance pro-
files [70–72].

Another interesting finding is the presence of vancomycin
resistance associated with vanG and vanM genes, providing
new information on this occurrence in Northern Italy.
Indeed, the van operons most investigated in previous studies
are vanA and vanB [73].

In light of these findings, taking a more comprehensive view
of intestinal bacterial species, including not only E. coli, E. fae-
cium, and E. faecalis, could allow to obtain a broader under-
standing of resistance profiles in the aquatic niches. Indeed,
aquatic systems have been defined as major transmission routes
between wildlife and humans [74, 75]. Therefore, investigating
resistance profiles in aquatic birds, including migratory birds,
can provide information regarding environmental contamina-
tion from emerging and relevant resistant bacteria for public
health, as shown by the data reported in this study.

In this way, it has been possible to identify resistance profiles
related to critically important antibiotics for human medicine

TABLE 4: Phenotypic and genotypic resistance profiles of Gram-positive bacteria isolated from wild aquatic birds sampled in Northern Italy.

Resistant isolates Animal Antibiotics Resistance genes

E. casseliflavus

Anas crecca QD vatD, vatE, vgA
Spatula clypeata QD —

Spatula clypeata QD LNZ TEIC vatD, vgA, vgbB
Vanellus vanellus QD vatD, msrC
Vanellus vanellus QD vgA, msrC

E. durans Anas crecca QD vatE, msrC

E. faecalis Anas crecca DAP —

E. faecium

Anas crecca QD —

Anas crecca QD vatE, msrC
Anas crecca QD vatD, msrC

Vanellus vanellus QD vatE, vgA, msrC

E. gallinarum

Anas crecca QD —

Anas crecca QD vatD, vgA
Spatula clypeata QD —

Spatula clypeata QD ermB, msrC, vatE, vgbA
Anser anser QD vgbB
Anas crecca QD msrC, vatD, vgA

Vanellus vanellus QD msrC, vatD, vgA
Vanellus vanellus QD vatD, msrC

E. gallinarum∗

Mareca strepera QD ermB, msrC, vgaB
Mareca strepera QD ermB, vgaB

Anas platyrhynchos QD ermB, vatE, vgA
Anas platyrhynchos QD ermB, vatE, vgA, vgaB
Anas platyrhynchos AMP LNZ QD TEIC msrC, optrA, vanC1/C2, vanM, vanG, vgaB

E. hirae Spatula clypeata AMP LNZ QD TEIC VAN optrA, vanM, vgbB

Staph. lentus
Spatula clypeata CLIN DAP LNZ OX RD STX TEIC TET VAN InuA, poxtA, tetK, vanD
Spatula clypeata CLIN OX STX sul2

Strep. thoraltensis Spatula clypeata BEN CLIN CTX ERY LEV TET gyrA, InuA, mefA/E

Strep. alactolyticus Anas crecca BEN CTX CRO CLIN ERY LEV MXF VAN ermB, gyrA, InuA, mefA/E

AMP, ampicillin; BEN, benzypenicillin; CLIN, clindamycin; CTX, cefotaxime; CRO, ceftriaxone; DAP, daptomycin; ERY, erythromycin; LEV, levofloxacin;
LNZ, linezolid; MXF, moxifloxacine; OX, oxacillin; QD, quinupristin/dalfopristin; RD, rifampicin; SXT, trimethoprim/sulfamethoxazole; TEIC, teicoplanin;
TET, tetracycline; VAN, vancomycin; and ∗CAMP test positive isolates by Vitek 2 system (Biomerieux, France).
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(linezolid, vancomycin, carbapenems, third-generation cepha-
losporins, and fluoroquinolones), which are considered the last
resources for treating of multiresistant bacteria [17]. These types
of resistance have been identified inMDR bacteria and inmicro-
organisms that are included in theWHO’s list of priority patho-
gens (carbapenem-resistant Enterobacterales and third-
generation cephalosporin-resistant Enterobacterales), as simi-
larly observed for seagulls [35].

The resistance results can be interpreted as arising from
the ecological behavior of the species involved. Indeed, ducks
filter water and sediments to trap plant and animal material. It
is possible that ducks ingest large numbers of bacteria while
dabbling, as previously suggested by other authors [40].

In this regard, wild birds have been defined as potential
carriers not only of antibiotic-resistant bacteria but also of
other relevant or zoonotic pathogens that can affect animals,
humans, and the environment [76–78]. In many studies, they
have been investigated for the presence of food-borne patho-
gens, such as Salmonella spp., in their intestines [31].

Salmonella spp. has previously been described in various
species of free-living birds in Germany, Spain, and Poland, as
well as in species housed in rehabilitation centers in Italy
[29, 50, 79, 80]. The presence of Salmonella spp. has also
been investigated in healthy game birds in UK [9], as well
as in healthy migratory birds, including hunted waterfowl in
Finland, Spain, Bulgaria, and Texas [31, 33, 81, 82]. The
SAL_QB2921AA isolate identified in this study is the only
Salmonella Braenderup ST22 isolate sourced from aquatic
birds available in literature. A similar strain was recently
investigated by European Food Safety Authority for a multi-
country outbreak presumed to be linked to imported melons
in Europe during 2021 [83]. However, the phylogenetic anal-
ysis of our isolate revealed a closer correlation with other
isolates identified in USA during an outbreak involving 75
people, but with potential foods linked to illness still unknown
(https://www.fda.gov/food/outbreaks-foodborne-illness/inve
stigations-foodborne-illness-outbreaks). These results under-
score the importance of providing useful genetic information

United States of America (271)
Country 

70

United Kingdom (207)
France (102)
Denmark (23)
South Africa (20)
Brazil (19)

Mexico (9)
Chile (8)
Czechia (5)
Italy (1)
Missing (1)

FIGURE 5: Phylogenetic tree showing the relatedness of Salmonella enterica serovar Braenderup isolate SAL_QB2921AA and Salmonella
Braenderup ST22 isolates identified in Enterobase and collected during 2021 and 2022. GrapeTree was used to construct a rapid neighbor-
joining (RapidNJ) minimum spanning tree based on the core genome multi-locus sequence typing (cgMLST) V1+ hierarchical clustering
(HierCC) V1 scheme. The SAL_QB2921AA isolate is highlighted with a red circle with the cluster circled in black. The source type of each
isolate is written on node and where is not available is indicated wit ND. Scale bar indicates the number of cgMLST allelic differences.
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that can allow to identify possible routes of pathogen spread in
the environment [84]. In fact, migratory species have been con-
sidered relevant for their ability to cover long distances and link
different countries and environments [5, 74]. As hypothesized
for antibiotic-resistant bacteria, the ability of these animals to be
carriers of food-borne pathogens is closely linked to their eco-
logical behavior. Eurasian teal (A. crecca), the hunted species in
which Salmonella ST22was isolated, is a long-distancemigratory
dabbling duck that moves along the Black Sea-Mediterranean
flyway for breeding in Siberia and Northern Europe and winter-
ing in Western Europe, including Italy [85]. It usually inhabits
low-anthropized wetlands, such as the ones of the study area,
where it can encounter also pathogenic bacteria spread from
inefficiently treated municipal sewage or agricultural practices
[86]. This further highlights the potential health risks for hunters
and consumers related to the consumption of wild gamemeat, as
previously suggested by other authors [9, 33]. Good hygiene
during game bird handling, storing the game bird meat frozen,
and proper heat treatment before consuming remain important
measures to reduce the risk of human exposure to food-borne
diseases [33].

5. Conclusions

The migratory aquatic birds may serve as a relevant carrier of
critically important antibiotic resistant bacteria and zoonotic
food-borne pathogens which may have a potential impact on
public health [33, 87]. The results of this study provide new
data about the environmental contamination of antimicro-
bial resistance and food-borne pathogens useful for public
health specialists.
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