
Review Article
Scoping Review of Deep Learning Techniques for Diagnosis,
Drug Discovery, and Vaccine Development in Leishmaniasis

Alireza Sadeghi ,1 Mahdieh Sadeghi ,2 Mahdi Fakhar ,3 Zakaria Zakariaei ,4 and
Mohammadreza Sadeghi 5

1Intelligent Mobile Robot Lab (IMRL), Department of Mechatronics Engineering, Faculty of New Sciences and Technologies,
University of Tehran, Tehran, Iran
2Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
3Toxoplasmosis Research Center, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital,
Mazandaran University of Medical Sciences, Sari, Iran
4Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning,
Antimicrobial Resistance Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
5Student Research Committee, Sari Branch, Islamic Azad University, Sari, Iran

Correspondence should be addressed to Mahdi Fakhar; mahdifakhar53@gmail.com

Received 27 May 2023; Revised 15 October 2023; Accepted 21 December 2023; Published 17 January 2024

Academic Editor: Long-Xian Zhang

Copyright© 2024 Alireza Sadeghi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Leishmania, a single-cell parasite prevalent in tropical and subtropical regions worldwide, can cause varying degrees of leishmani-
asis, ranging from self-limiting skin lesions to potentially fatal visceral complications. As such, the parasite has been the subject of
much interest in the scientific community. In recent years, advances in diagnostic techniques such as flow cytometry, molecular
biology, proteomics, and nanodiagnosis have contributed to progress in the diagnosis of this deadly disease. Additionally, the
emergence of artificial intelligence (AI), including its subbranches such as machine learning and deep learning, has revolutionized
the field of medicine. The high accuracy of AI and its potential to reduce human and laboratory errors make it an especially
promising tool in diagnosis and treatment. Despite the promising potential of deep learning in the medical field, there has been no
review study on the applications of this technology in the context of leishmaniasis. To address this gap, we provide a scoping review
of deep learning methods in the diagnosis of the disease, drug discovery, and vaccine development. In conducting a thorough
search of available literature, we analyzed articles in detail that used deep learning methods for various aspects of the disease,
including diagnosis, drug discovery, vaccine development, and related proteins. Each study was individually analyzed, and the
methodology and results were presented. As the first and only review study on this topic, this paper serves as a quick and
comprehensive resource and guide for the future research in this field.

1. Background

Leishmaniasis is a neglected parasitic disease caused by dif-
ferent species of the Leishmania parasite and is endemic in
over 90 countries in tropical and subtropical regions world-
wide. Leishmania is a single-celled parasite that exists in two
forms: a motile form (promastigote) found in the vector’s
body (female Phlebotomus mosquitoes) and a nonmotile
form (amastigote) that resides in the host’s body, usually in
infected humans or domestic or wild animals [1, 2]. Different
species of Leishmania can cause a variety of clinical

manifestations with a wide range of severity. Mild forms of
the disease typically present as self-resolving skin lesions,
while more advanced forms can lead to life-threatening vis-
ceral involvement, often affecting the spleen, liver, and bone
marrow [3, 4]. In general, clinical classification, leishmaniasis
is divided into four main categories: cutaneous leishmaniasis
(CL, it can be seen locally or diffusely), mucocutaneous leish-
maniasis (MCL), visceral leishmaniasis (VL), and post-kala-
azar dermal leishmaniasis (PKDL) [5]. In spite of the recent
advancements in diagnostic techniques for leishmaniasis [6],
traditional methods still remain the primary approach for
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diagnosis. These methods can be broadly classified into three
subgroups all of which are based on microscopic examination
of stained tissue or parasite cultures [7, 8]. The treatment of
this disease comprises of antimonials, amphotericin B, milte-
fosine, paromomycin, pentamidine; and a combination of
these medications used together [9–12]. However, the existing
drug regimens are old-fashioned and have certain disadvan-
tages, including cytotoxicity, resistance, and the need formore
effective, and less toxic alternatives. It is important to urgently
develop novel drug regimens that offer improved efficacy and
reduced toxicity [12]. Fortunately, advancements in artificial
intelligence (AI) and machine learning have the potential to
revolutionize the field of leishmaniasis drug discovery. These
technologies can help in analyzing complex data sets, and
predict potential drug candidates. By reducing human error
and providing a more targeted and efficient strategy, AI can
accelerate the process of finding effective treatments for leish-
maniasis [13]. It is important to note that, our understanding
of leishmanial pathogenesis is still limited and incomplete.
Despite numerous efforts, the development of a prophylactic
vaccine for leishmaniasis remains a challenging task. How-
ever, the use of AI/deep learning algorithms has led to the
development of various analytical approaches, including
computational/in-silico based tools. These tools can specifi-
cally design the immunoinformatic based multiepitope vac-
cine, which offer innovative vaccine candidates [14].

Early diagnosis and prompt treatment are crucial for
controlling leishmaniasis [15], but repeated failures in con-
ventional diagnostic methods have led to delays in starting
chemotherapy and increased mortality in endemic areas. On
the other hand, nowadays deep learning techniques [16, 17],
a category of methods that have the capability to recognize
intricate patterns in vast datasets, have shown the state-of-
the-art performance in many medical applications [18–20].
Compared to the traditional machine learning methods,
deep learning is more precise and flexible [17]. For example,
many machine learning techniques are limited in processing
raw natural data, such as images or voice signals, which
require the use of a feature extractor approach in the first
step [21]. Although several studies have investigated the
application of deep learning methods to protozoan parasites
[22–25], to the best of our knowledge, no review studies have
been conducted on the implementation of deep learning
methods for the Leishmania parasite in different domains.
Therefore, this paper presents a scoping review of studies
that have explored deep learning methods in the aforemen-
tioned field.

2. Methodology

In this review, a meticulous methodology was employed to
identify and select relevant articles pertaining to the applica-
tion of deep learning techniques in Leishmania research. The
process involved searching two prominent databases, Google
Scholar, Scopus, and PubMed, to gather articles published
from 2018 to the present. The aim was to encompass the
latest advancements in the intersection of Leishmania and
deep learning. Specific keywords and their combinations

were utilized in the search to ensure precision: “deep learning
and Leishmania,” “Leishmania and image classification,”
“Leishmania and image segmentation,” “deep learning and
leishmania examination,” “deep learning and Leishmania
protein,” and “deep learning and Leishmania diagnosis”.

Tomaintain relevance, articles were included based on the
defined criteria: First, only articles that explicitly employed
deep learning techniques were considered. Studies that uti-
lized general machine learning techniques without a deep
learning focus were excluded. Moreover, articles written
exclusively in English were considered for inclusion. Finally,
articles had to directly relate to the interface of Leishmania
and deep learning, encompassing image classification, image
segmentation, examination, protein analysis, and diagnosis.
Articles not meeting these criteria were excluded from the
review, particularly those using nondeep learning machine
learning techniques or published in languages other than
English.

3. Telemedicine and Deep Learning

Telemedicine has become an increasingly important field of
healthcare in recent years. By utilizing technology such as
video conferencing, remote monitoring devices, and mobile
apps, telemedicine provides patients with access to medical
care from anywhere, at any time. Telemedicine has the
potential to improve healthcare access for patients who live
in remote or underserved areas, as well as those who have
difficulty accessing traditional healthcare services due to
mobility issues or other disabilities [26].

One of the most promising areas of development in tele-
medicine is the use of deep learning techniques [16, 17].
Deep learning is a subfield of AI that utilizes neural networks
to analyze vast amounts of data and identify patterns. In the
context of telemedicine, deep learning can be used to analyze
medical images, patient data, and other types of medical
information to improve diagnosis and treatment. For exam-
ple, deep learning algorithms can be trained to identify early
signs of diseases such as cancer [27] or diabetes [28], which
can help doctors to provide early intervention and improve
patient outcomes.

Another area where deep learning can be beneficial in
telemedicine is in remote patient monitoring. With the use
of wearable devices and other remote monitoring tools,
patients can transmit data to their healthcare providers in
real-time, allowing for more effective monitoring of their
condition. Deep learning algorithms can be used to analyze
this data, identifying patterns that may be indicative of health
issues before they become serious. This can help healthcare
providers to intervene earlier and provide more effective
treatment.

Despite the many potential benefits of deep learning in
telemedicine, there are also some challenges that must be
overcome. One of the biggest challenges is the need for large
amounts of high-quality data to train the algorithms [14].
Additionally, there are concerns around the ethical implica-
tions of using deep learning to make medical decisions [29],
and the potential for bias in the algorithms [30, 31].
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In the following paragraphs, we will explore several spe-
cific deep learning models that have been applied in the field
of leishmaniasis research. These models have been developed
to address specific challenges of detecting, monitoring, and
predicting the occurrence of this parasitic disease. As we will
see, the application of deep learning models in leishmaniasis
research has shown immense promise in improving disease
management and control.

3.1. Artificial Neural Networks (ANN). The concept of an
ANN was first proposed by McCulloch and Pitts [32] in
1943. It is a model structure that consists of a set of fully
connected layers. The inputs are first fed into an ANN, and
after passing through several hidden layers, the output is
generated in the last layer. The model then adjusts itself by
comparing the generated output with the ground-truth
value, aiming to improve its performance. When an ANN
contains many hidden layers, it is referred to as a deep neural
network (DNN) [17].

3.2. Convolutional Neural Networks (CNNs). CNN is a widely
used neural networkmodel in various applications. Unlike the
DNN, in which all neurons in a given layer are connected to
all neurons in the adjoining layers, every layer in a CNN
model only focuses on specific parts of the previous layer’s
outputs to extract useful features at each step [33]. This makes
CNNs computationally efficient and less time-consuming.

3.3. VGGNet. VGGNet [34], proposed by researchers from
the Visual Geometry Group at Oxford University, is a simple
arrangement of several convolutional, pooling, and dense
layers that won the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) in 2014 [35]. The VGGNet16 model,
which contains 16 layers, has become a widely used model in
deep learning applications.

3.4. ResNet. During the training of a CNN, as the model
becomes deeper, some of the information may lose its impact
on the final output. In order to address this issue, He et al. [36]
proposed the use of skip connections for DNNs, and their
model won the ILSVRC competition in 2015. According to
their method, skip connections add information from a
specific layer to the output of a few layers ahead. ResNet
models are typically denoted by a number that indicates the
number of convolutional and dense layers used in the model.
For example, ResNet34 has 34 of these layers.

3.5. U-Net. The U-Net model, proposed by Ronneberger
et al. [37], is a widely used architecture for image segmenta-
tion tasks, specifically in assigning every pixel of an image to
a particular class. The U-Net model consists of two main
steps: downsampling and upsampling. In the downsampling
step, the model extracts feature from the image, while in the
upsampling step, a pixel-wise label map is generated using
the extracted features. The architecture of the U-Net model is
named after its shape, which resembles the letter “U”.

3.6. Generative Adversarial Network (GAN). The GAN was
first proposed by Goodfellow et al. [38], consisting of two
main components: the generator and the discriminator. The

primary goal of the GAN is to train the generator to generate
new images similar to real images, while simultaneously
training the discriminator to distinguish fake images from
real images as accurately as possible. Through this conflict
between the two units, the model can produce new fake
images that are nearly indistinguishable from the real images
in the dataset. Figure 1 illusterates the deep learning models
described above.

3.7. Transfer Learning. In the context of deep learning, the
size and quality of data used to train the model have a sig-
nificant impact on its ability to generalize and perform well
on new data [39]. However, in medical studies, it can be
challenging to obtain sufficient amounts of high-quality
data due to several factors such as privacy regulations, ethical
considerations, and the complexity of medical data. As a
result, medical datasets are often limited in size, making it
difficult to train deep learning models for the clinical appli-
cations [40]. To address this challenge, researchers have
turned to an alternative approach known as transfer learn-
ing. Transfer learning involves pretraining a deep learning
model on large datasets from other domains and then fine-
tuning it on the smaller medical dataset. By leveraging the
features learned from the large datasets, transfer learning can
help to improve the generalization and performance of the
model on the smaller medical datasets [41].

3.8. Assessments. A deep learningmodel’s performance can be
evaluated using variousmetrics, depending on the objective of
the model. Typically, these models are created to address one
or more specific problems, such as classification, segmenta-
tion, regression, or generation. Each of these problems has its
own set of metrics to evaluate model performance.

One of the most common metrics used to evaluate deep
learning models is accuracy. Accuracy is the ratio of correctly
predicted samples to the total number of samples. However,
accuracy alone is not always the most appropriate metric,
particularly in cases where the data are imbalanced [42]. In
such cases, a model with a high level of accuracy may still
perform poorly on the minority class, which is typically of
the greatest interest in many applications.

To overcome this issue, a number of alternative metrics
have been developed. One such metric is precision. Precision
is the ratio of true positives (TP) to the sum of true positives
and false positives (FP). Essentially, it measures the percent-
age of positive predictions that are actually true positives.
This metric is particularly useful in cases where false posi-
tives are more problematic than the false negatives.

Another metric that is commonly used is recall, also
known as sensitivity. Recall is the ratio of true positives to
the sum of true positives and false negatives (FN). This met-
ric measures the percentage of true positives that the model
was able to correctly identify.

In addition to the metrics mentioned above, specificity is
another important performance metric that is sometimes
used in deep learning models. Specificity is the ratio of true
negatives (TN) to the sum of true negatives and false posi-
tives. Essentially, it measures the percentage of negative pre-
dictions that are actually true negatives. Similar to recall or
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sensitivity, specificity is a measure that is useful in specific
problem domains, particularly in medical diagnosis or fraud
detection where accurate negative predictions are important.

F1-score is another popular metric that combines preci-
sion and recall, providing a more balanced measure of a
model’s performance. Specifically, F1-score is the harmonic
mean of precision and recall. Other metrics used for specific
tasks include mean-squared error and root-mean-squared
error for regression tasks, and Dice score for the segmenta-
tion tasks.

The Dice score and Jaccard index represent two widely
employed metrics within the domain of image segmentation

tasks. These metrics serve to quantify the efficacy of a deep
learning model in delineating and accurately segmenting
objects within an image. This concept is further explained
in Figure 2.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð1Þ

Precision¼ TP
TPþ FP

; ð2Þ

Recall or Sensitivity ¼ TP
TPþ FN

; ð3Þ
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Specificity ¼ TN
TNþ FP

; ð4Þ

F1 − Score¼ 2 × Precision × Recall
Precisionþ Recall

; ð5Þ

Dice Score¼ 2 × Area of Overlap
CombinedArea

; ð6Þ

Jaccard index¼ Area of Overlap
Area of Union

: ð7Þ

Among the deep learning models delineated earlier,
CNNs have gained substantial prominence within diverse
medical applications, encompassing diagnoses, vaccine
development, and drug detection. Their innate capacity to
autonomously acquire hierarchical features from images ren-
ders them exceedingly versatile for a myriad of undertakings
within the medical realm. VGGNet and ResNet, both stem-
ming from the CNN paradigm, have found predominant
utility in the domain of medical diagnosis. Notably, UNet’s
architectural configuration renders it particularly well-suited
for tasks involving the segmentation of medical images—
wherein precise delineation of regions of interest, such as
tumors or anatomical structures, assumes pivotal signifi-
cance. GANs have garnered widespread employment in
medical contexts, primarily for the generation or manipula-
tion of medical images. For example, GANs can be effectively
harnessed for denoising medical images. A summary of the
applications of these techniques within the medical domain
is presented in Table 1.

4. Leishmaniasis Diagnosis

In the field of leishmaniasis diagnosis, various conventional
(microscopic examination, culture, and serological tests) and
novel diagnostic (molecular-based approaches) techniques
are used for the detection and diagnosis of leishmaniasis,
however, microscopic examination is widely accepted as

gold standard. On the other hand, molecular-based techni-
ques can overcome on several limitations of the conventional
methods. In this regard, microscopic examination is widely
used due to its low cost and simplicity [70, 71]. However, this
method is time-consuming and prone to the human errors
[72]. On the other hand, deep learning has shown outstand-
ing performance in various image-related applications such
as image classification [73, 74], object detection [75, 76], and
image segmentation [77, 78]. Therefore, deep learning can be
considered as an alternative method for quicker and more
accurate diagnosis of leishmaniasis from the microscopic
images. The method is a smart tool for identifying Leish-
mania amastigotes (known as Leishman-Donovan bodies)
on stained microscopic slides, including archival ones, which
can be achieved without the need for experienced personnel
and without the need for tools, equipment as well as physical
space. Furthermore, this can be done remotely and in field
conditions, while some conventional and novel techniques
will not have such advantages. Table 2 summarizes the stud-
ies conducted on Leishmania diagnosis and their respective
particulars.

One of the first studies to employ deep learning as a tool
for microscopic examination was presented in [79]. The
study aimed to classify various microscopic objects into dif-
ferent categories, with the help of a two-step method. In the
first step, the authors employed the popular U-Net model
[37] for image segmentation, the process of partitioning an
image into multiple segments or regions that are relevant to
specific objects or features of interest. Using the segmented
images, the authors then proceeded to classify objects into six
categories. The categories included background, cytoplasm,
nucleus, promastigote, adhered, and amastigote. This classi-
fication was achieved through deep learning algorithms that
considered various features of the segmented image.

The authors used a total of 45 microscopic images that
were manually annotated by experts using a specific tool
developed for this task. These images were provided by the
Computational Biology and Complex Systems Group at Uni-
versitat Politecnica de Catalunya. While this study provided

TABLE 1: Diverse applications of deep learning models in the field of medicine.

Deep learning model Medical applications

CNN

Diagnosis: Detecting heart arhythmia in ECG [43], diagnosis of epileptic seizure in EEG [44], automatically
detect pneumonia in X-ray images [45], screening COVID-19 in chest X-ray images [46], detecting COVID-
19 from CT scans [47], and knee osteoarthritis classification in MRI [48]
Drug discovery: Target identification and drug repurposing [49], predicting constitutive androstane receptor
agonists [50], predicting molecules’ effects to find SARS-CoV-2 drugs [51], and
Vaccine: Creating a vaccine: SARS-CoV-2 example [52]

VGGNet
Diagnosis: Detecting COVID-19 in chest X-ray [53], classifying the ocular disease in eye image [54],
detection of pneumonia from Chest X-Ray [55], early detection of skin cancer [56], and tuberculosis
detection in X-Ray Image [57]

ResNet
Diagnosis: Diagnose intracranial hemorrhage in CT Scanning [58], COVID-19 diagnosis from X-ray images
[59], diagnosis of knee osteoarthritis [60], and automatic schizophrenia detection from EEG [61]

U-Net
Diagnosis: Segmenting COVID-19 chest CT images [62], brain tumor segmentation and survival prediction
[63], liver and lesion segmentation [64], and dental CBCT images segmentation [65]

GAN
Generating structured data in the medical domain [66], low-dose CT denoising [67], data augmentation in
breast ultrasound mass classification [68], and ECG denoising framework [69]
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valuable insights into the use of deep learning for micro-
scopic examination, the authors suggested that the model’s
performance could be improved by using more images to
train it and implementing a more accurate method for anno-
tation. This highlights the importance of accurate annotation
in deep learning, which is critical to the performance of the
model.

The study presented in [80], introduces a model called
Cell Explorer, which can identify and count three types of
parasites in the microscopic images. The parasites include
Leishmania, Trypanosome, and Plasmodium, and the model
can identify more than one parasite in a single image, making
it a multiple-label model.

The model was trained and implemented using 401
microscopic images obtained from the blood samples of 15
mice, with five mice infected with one of the three parasites.
To identify the parasites, the images were preprocessed and a
pretrained ResNet18 model [81] was used.

Apart from identifying parasites, the model was also able
to count the number of cells present in the microscopic
images. This was achieved using the simple linear interactive
clustering algorithm [81]. The Cell Explorer model achieved
an impressive accuracy of about 95%, with an F1-score
of 0.766.

The study in [82], aimed to address the ongoing chal-
lenge of accurately detecting cutaneous leishmaniasis (CL)
from skin lesion images using a transfer learning approach
with VGG19 [34] as the base model in a mobile application.
The dataset used in the development of the model comprised
2022 images representing diverse categories, including CL
images, melanoma, and a range of other diseases that could
potentially be mistaken for CL during diagnosis. The dataset
was carefully selected to simulate real-world conditions,
where misdiagnosis can occur frequently and impede appro-
priate medical intervention, ultimately exacerbating the neg-
ative clinical outcomes of CL.

Additionally, the study assessed the model’s performance
against the skills of human experts by requesting seven CL
experts to classify 100 random images. The results demon-
strated the superiority of the model, recording an impressive
accuracy rate of 99%, relative to 83% for the human experts.
These results indicate that the developed mobile application
has the potential to offer significant support to healthcare
practitioners in achieving improved diagnoses, particularly
within regions where CL is endemic and medical resources
may be limited.

In [83], an automated imaging platform called Octopi was
introduced for the diagnosis of parasitic diseases from blood
smear. The platform is highly modular and can diagnose
different parasitic diseases by utilizing different modules.
Octopi is capable of identifying Plasmodium falciparum,
Leishmania donovani, Trypanosoma brucei rhodesiense, and
several other parasites. Additionally, the platform can count
the number of red blood cells, which can be useful for identi-
fying the presence of parasites in infectious blood. To achieve
this, Octopi implemented a 91-layer fully convolutional Den-
seNet [84] model for counting the red blood cells. A total of
22,680 images, all automatically annotated, were used to train

the model. Moreover, the model was modified to achieve real-
time performance.

In the field of leishmaniasis diagnosis, microscopic images
can often be blurry or out-of-focus due to defects in instruments
or human error, leading to misdiagnosis by the experts [85].
Furthermore, these issues can negatively impact the performance
of related research. To address these challenges, a GAN-based
model was proposed in [86] that is capable of deblurring and
correcting out-of-focus images. This model was trained on two
different datasets that were both self-collected and publicly
accessible. This study not only enhances the quality of leishman-
iasis microscopic imaging, but it also aids further research in
deep learning for leishmaniasis, as the provided dataset includes
a large number of leishmaniasis microscopic images. To evaluate
the proposedmodel, the authors compared its performance with
several similar models and demonstrated that their model out-
performs others.

5. Leishmaniasis Drug Discovery

Currently available treatments for leishmaniasis are associ-
ated with high costs, long treatment periods, and potential
side effects, as highlighted in [87]. This presents a significant
challenge, particularly in endemic regions where resources are
limited. Therefore, there is a pressing need for developing new
treatments that are more cost-effective, safe, and efficient.

One promising approach to develop new treatments for
leishmaniasis is the repurposing of existing drugs used to
treat other diseases [88]. This approach, also referred to as
drug repositioning, has been employed successfully for other
infectious diseases like SARS-CoV-2 [89, 90]. The concept
involves screening all known drugs to identify those that
have potential therapeutic effects against leishmaniasis.

In this context, molecular docking plays a crucial role. It is
a computational technique that predicts whether two mole-
cules, the receptor and the ligand, can chemically bind. The
conventional software for molecular docking includes Auto-
Dock Vina, Rosetta Ligand, and AutoDock 4, which are
widely used in the scientific community [91–93]. However,
these conventional methods often face limitations, such as the
inability to operate in complex biological environments, inef-
ficiency, and imperfect prediction of the binding affinities.

In recent years, deep learning approaches have been
applied in different fields and have shown promising results
in prediction tasks [94, 95]. These techniques can support drug
discovery by predicting molecular interactions between drugs
and target proteins, paving the way for drug repurposing for
the treatment of various diseases, including leishmaniasis.

Therefore, by combining molecular docking and deep
learning techniques, drug repurposing could be accelerated,
with the potential to identify novel drugs and optimize exist-
ing ones for managing leishmaniasis. This could lead to more
cost-effective and efficient treatment options, improving the
prognosis and quality of life for patients suffering from
leishmaniasis.

In 2020, the Indaba Grand Challenge was conducted and
it sought to identify effective combinations of Leishmania
proteins and small molecules that could be used to develop
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a new drug for leishmaniasis. The competition produced a
dataset consisting of 4,021 ligands (small molecules) and 512
targets (Leishmania proteins), which researchers then used to
try to find a suitable drug. In an effort to achieve this objective,
Dassi et al. [96] employed a hybrid approach that combined
deep learning with molecular docking. Specifically, they uti-
lized the DeepPurpose [97] which is a deep learning library to
predict drug-target interactions. After screening the entire
dataset, the researchers identified 3,400 promising pairs
from a pool of over 2million possible pairs. The next step
was to test these pairs using AutoDock Vina, a widely used
molecular docking software that can predict how a ligand will
bind to a protein. AutoDock Vina was used as a ground truth
method to rank the 3,400 promising pairs and the results
obtained using this software were then compared to the rank-
ings predicted by the deep learning library. The comparison
revealed that although deep learning was unable to rank the
pairs accurately, molecular docking was a more reliable
method. However, by leveraging the power of deep learning,
they were able to significantly reduce the time required for the
entire procedure. From a process that initially took 2 months,
the researchers were able to conduct it in just 14 hr.

In a similar investigation to that carried out by Dassi et al.
[96]; researchers, Smith et al. [98] sought to identify a viable
drug for treating leishmaniasis, utilizing two different deep
learning frameworks: DeepPurpose [97] and a multiobjective
neural network binding affinity prediction model (MONN)
[99]. The DeepPurpose model was trained on the BindingDB
dataset [100], which comprises more than 2-million binding
data, while the MONN model was trained on the PDBBind
v2018 dataset [101], which includes over 17,000 protein-
ligand complexes. After implementing these two frameworks
and comparing their results with the general truth methods of
Autodock Vina [93] and PyRosetta docking [102], Lacosa-
mide was identified as a prospective treatment for leishmani-
asis. The researchers also represented each molecule as a real-
value vector usingMordred [103] and RDKit. By computing a
distance matrix among drug candidates, Conivaptan and
Midostaurin were identified as other promising drugs that
could potentially aid in the treatment of leishmaniasis.

AI can actually be used to evaluate the toxicity parameters
of drugs. AI algorithms can analyze large data sets, including
chemical structures and biological data, to predict the safety
and effectiveness of drugs. For toxicity assessment, AI models
can be trained on existing data from various sources, such as
databases and published studies, to recognize patterns and
predict potential toxic effects of new drugs. This could help
identify drug candidates with a lower risk of toxicity early in
the drug discovery and development process, thereby reduc-
ing the need for extensive animal testing [96–98]. In addition,
AI can also be used to evaluate other pharmacological param-
eters such as drug interactions, absorption, distribution,
metabolism, and excretion (ADME) and pharmacokinetic
profiles. By analyzing known molecular properties and
structure–activity relationships, AI algorithms can help pre-
dict these parameters for new drug candidates [104].

Overall, AI can improve the drug development process by
providing valuable information on toxicity and pharmacological

parameters, enabling more informed decisions and potentially
reducing the time and resources required to bring safe and effec-
tive drugs to the market.

6. Leishmaniasis Vaccine

Leishmaniasis is responsible for a significant number of fatal-
ities every year, particularly in countries located in Africa
and the Middle East [2, 105]. Despite the availability of sev-
eral methods of therapy and drugs, the burden of this disease
continues to be a major public health issue. One of the most
effective methods of controlling and eradicating infectious
diseases is through vaccination. Vaccines help to prevent the
transmission of diseases by providing immunity against the
pathogen responsible for the disease.

Therefore, the development of an effective and safe vac-
cine against leishmaniasis is essential in preventing and con-
trolling this disease. Although there have been some successes
in developing vaccines to prevent Leishmania transmission
from dogs to humans, such as Leishmune and CaniLeish,
there is currently no licensed vaccine available for humans
[106, 107]. Hence, there is an urgent need to develop and test
new vaccines for human protection against leishmaniasis.

There is considerable research interest in developing
anti-leishmaniasis vaccines, however, the development of
an effective vaccine against leishmaniasis presents several
challenges, including the complex nature of the parasite’s
life cycle and the differences in the immune response gener-
ated by different Leishmania species.

In an effort to address this issue, Saha et al. [14] devel-
oped an immunoinformatics-based chimeric vaccine using
four different Leishmania donovani (L. donovani) proteins:
an ATP-dependent zinc metallopeptidase, a histidine secre-
tory acid phosphatase, a rhomboid-like protein, and an
amastin-like surface protein (ALSP). The chimera was con-
structed by linearly arranging the most effective helper T-
lymphocytes (HTL), cytotoxic T-lymphocytes (CTL), and B-
cells epitopes of the mentioned proteins. The most promising
CTL epitopes were identified using NETMHC 4.0, which
utilizes an ANN [108], while the most efficient B-cells epi-
topes for all four L. donovani proteins were detected using
ABCpred, another ANN model [109]. The secondary struc-
ture of the vaccine was produced using the PSIPRED web
server, which contains two neural network models [110],
while the 3D structure of the proposed vaccine was generated
using the RaptorX web server, a deep learning model [111].

Overall, an active area of research in leishmaniasis is
multiepitope vaccines. These vaccines are designed to pro-
vide broad protection by integrating multiple epitopes from
different Leishmania antigens into a single vaccine construct.
Here are some of the tools and approaches used to develop
vaccine targets against multiepitope leishmaniasis [112–114]:

(1) Bioinformatics tools: Various bioinformatics soft-
ware and databases are used to predict potential epi-
topes of Leishmania antigens. These tools include
algorithms such as NetMHC, BepiPred, and Propred,
which help in predicting T and B cell epitopes based
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on a specific criteria, including antigen processing
and presentation.

(2) Epitope mapping: Experimental methods like peptide
microarrays and mass spectrometry are employed to
identify potential epitopes by mapping the regions of
antigens that are recognized by the immune system.
This information is useful for choosing themost effec-
tive and consistent epitopes for the development of
vaccines.

(3) Immunoinformatics: Immunoinformatics combines
the fields of immunology and computer science in
order to forecast and examine immune responses.
Computational techniques, such as those utilized by
the Immune Epitope Database (IEDB) and VaxiJen,
are employed to predict the immunogenicity and anti-
genicity of epitopes. These tools assist in the selection
of epitopes that have a strong binding affinity tomajor
histocompatibility complex (MHC) molecules, which
are capable of triggering immune responses.

The process of developing multiepitope vaccines for
leishmaniasis is indeed a dynamic and ongoing effort.
Researchers are continuously improving and refining the
tools and techniques used for epitope prediction and map-
ping, as well as exploring novel approaches and technologies
to enhance vaccine effectiveness. This iterative approach
allows for continuous progress and the potential for break-
throughs in the fight against leishmaniasis.

7. Leishmaniasis 3D Protein Structure

Predicting the structure of proteins is a crucial step in under-
standing their function and behavior in the biological sys-
tems. Proteins are involved in virtually all cellular processes,
such as metabolism, signaling, and regulation, and their
activity is strongly influenced by their three-dimensional
structure. Knowing the precise structure of a protein can
help researchers to identify potential drug targets, design
new therapeutics, and develop treatments for a wide range
of diseases. Additionally, predicting the structure of proteins
has important implications for fields such as biotechnology
and bioengineering, where it can be used to engineer new
proteins with the desired properties.

In the field of bioinformatics, predicting the structure of
proteins has been a significant challenge. Different approaches
have been employed in the past to achieve this, ranging from
statistical to deep learning methods [115–117]. Among these,
deep learning has shown remarkable success in the recent years,
including AlphaFold2 [118] and RoseTTAfold [119]. These
models utilize multiple sequence alignments to predict the 3D
protein structure accurately. AlphaFold2 was the winner of the
Critical Assessment of protein Structure Prediction (CASP)
competition (CASP14) [120], demonstrating its ability to accu-
rately predict the structure of proteins.

However, while AlphaFold2 has performed well in predict-
ing the structures of many species, its accuracy in predicting the
structure of proteins from species like Leishmania infantum has
been suboptimal. This issue arises from the underrepresentation

of such species in the AlphaFold2 databases. To address this,
researchers in [121] have collected additional data from public
protein sequence datasets. The data used in this study consisted
of 243 genomes and transcriptomes obtained from different
sources. Some of the sources included in the dataset were Tri-
TrypDB [122, 123], a comprehensive database of genomic infor-
mation on trypanosomatid species, NCBI, a leading source of
genetic information that incorporates data from multiple
sources, sequencing read archive (SRA), a public repository of
sequencing data from different studies, transcriptome shotgun
assembly (TSA), which provides transcriptomic data to comple-
ment genomic information, and Marine Microbial Eukaryotic
Transcriptome Sequencing Project (MMETSP), which provides
transcriptome data from marine eukaryotic organisms. In par-
ticular, 83 genomes were sourced from TriTrypDB, NCBI, and
SRA while 160 transcriptomes were obtained from TSA,
MMETSP, and NCBI SRA. By combining data from these dif-
ferent sources, the researchers provided a more representative
and comprehensive set of protein sequences to the deep learning
model, AlphaFold2. This allowed the model to achieve higher
performance in predicting protein structures from a broader
range of species, including understudied species like L. infantum.

To evaluate the resulting improvement in the model’s
performance, the predicted local distance difference test
score (pLDDT) [124] was used. This metric measures the
quality of protein structure predictions, where higher scores
indicate better quality. The updated AlphaFold2 model dem-
onstrated remarkable improvements in its ability to predict
the structure of proteins from species like L. infantum.

Overall, the incorporation of additional data sources into
deep learning models can enhance their performance in pre-
dicting protein structures accurately. Improved models can
support drug discovery efforts, ultimately leading to more
effective treatments for diseases like leishmaniasis that result
from protein dysfunction.

8. Conclusion

This scoping review, as a pioneering review study in this
field, is an important first step in the development of
machine learning and deep learning techniques, a branch
of AI, for diagnosing, treating, and preventing leishmaniasis.
Table 3 presents a summary of the studies that have been
analyzed within the context of this research. By providing a
comprehensive overview of the current state of research, this
review can help to guide future studies and accelerate prog-
ress in this critical area. Deep learning holds great promise
for the future of leishmaniasis research in terms of diagnosis,
treatment, and vaccine development. Here are some perspec-
tives on how deep learning can revolutionize these aspects:

(1) Improved diagnostic accuracy: This can greatly assist
healthcare professionals in making timely and accurate
diagnoses and enable rapid initiation of treatment.

(2) Drug discovery and reuse: This approach could
potentially streamline the drug development process
and lead to more efficient and cost-effective treat-
ments for leishmaniasis.
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(3) Accelerated vaccine development: Deep learning algo-
rithms can identify potential antigen targets for vaccine
development. With its ability to recognize subtle pat-
terns and relationships in large data sets, deep learning
can accelerate the process of predicting immunogenic
antigens, thereby facilitating the development of effec-
tive vaccines against leishmaniasis.

A significant hurdle in the advancement of deep learning
models for applications within the domain of leishmaniasis
revolves around the constraint imposed by the limited size of
available datasets. The proficiency and reliability of a deep
learning model are dependent upon its exposure to an exten-
sive dataset that encompasses a wide variety of samples. The
samples present in the existing datasets often originate from
timeframes predating the current period, consequently fail-
ing to accurately capture potential shifts in the manifestation
of Leishmania within microscopic images as they may appear
in the contemporary scenarios.

The application of deep learning techniques also merits con-
sideration due to their capacity to effectively process intricate
datasets, conduct complex analyses, and assemble insightful
information that may be beyond the human comprehension.
The incorporation of these two domains has the potential
to yield substantial advancements in the realm of Leishmania
vaccine development, deserving in-depth investigation in

subsequent research endeavors. It is imperative to recognize
the pivotal role that vaccine development can undertake in the
eradication of leishmania, thereby preventing its evolution into a
substantial public health concern.

As a whole, despite these challenges, the future perspective
of deep learning in leishmaniasis research is immense. Con-
tinued research, collaboration, and investment in both data
collection and algorithm development will be essential to fully
unlock the benefits that deep learning can offer in the diagno-
sis, treatment, and vaccine development for leishmaniasis.
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TABLE 3: Summary of the reviewed studies.

Study Objective Model Dataset

Górriz et al. [79]
Segmenting Leishmania

microscopic images and classifying
objects in the images

U-Net
45 Microscopic images annotated

manually

Mainye et al. [80]
Identifying and counting

Leishmania, Trypanosome, and
Plasmodium in microscopic images

ResNet18
401 Microscopic images from the

blood samples of 15 mice

Arce-Lopera et al. [82]
Designing a mobile application to

detect CL
VGG19

2,022 Images (containing CL
images, melanoma, and other
diseases mistaken for CL)

Li et al. [83]

Introducing Octopi, an automated
imaging platform, for the diagnosis
of parasitic diseases from blood

smear

DenseNet
22,680 Images automatically

annotated

Zhang et al. [86]
Deblurring and correcting out-of-

focus microscopic images
GAN-based model

Two self-collected and publicly
accessible datasets

Dassi et al. [96]
To identify a potential treatment for

leishmaniasis
DeepPurpose

A dataset with 4021 small molecules
and 512 Leishmania proteins

Smith et al. [98]
To identify a potential treatment for

leishmaniasis
DeepPurpose and MONN

BindingDB dataset and PDBBind
v2018 dataset

Saha et al. [14]
Immunoinformatics-based chimeric

vaccine for Leishmaniasis

Neural network platforms
(NETMHC 4.0, ABCpred,

PSIPRED, RaptorX)

An ATP-dependent zinc
metallopeptidase, a histidine secretory
acid phosphatase, a rhomboid-like
protein, and an amastin-like surface

protein (ALSP)

Wheeler and Yurchenko
[121]

To increase the accuracy of
AlphaFold2 in predicting the
Leishmania infantum protein

structure

—

83 Genomes from TriTrypDB, NCBI,
SRA, and 160 transcriptomes from
TSA, MMETSP, and NCBI SRA
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