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The African swine fever virus (ASFV) has the ability to infect both wild boars and domestic pigs, regardless of their breeds or ages,
often resulting in a mortality rate of 100%. Host innate immunity is the most important defense weapon against invasion of
pathogenic microbial infection. cGAS-STING signaling pathway is one of the greatest discoveries of the twenty-first century, which
is crucial in host’s innate immune response. Recent studies have found that the interaction between cGAS/STING pathway and
ASFV plays a key role during ASFV infection. At the same time, ASFV has also evolved different strategies to evade the killing of
the host cGAS/STING pathway and promote its survival. Here, we review the latest progress in the interaction between ASFV
infection, cGAS/STING pathways, and their related molecular mechanisms, aiming to provide new ideas for further research on
the pathogenesis of ASFV, the development of vaccines and therapeutic drugs.

1. Introduction

African swine fever virus (ASFV) causes a devastating dis-
ease in pigs [1, 2], it was the first outbreak in Kenya and was
reported in 1921 [3]. Subsequently, ASFV was found in
China on August 3, 2018 [4, 5], and soon spread across the
country with unprecedented speed, which caused at least 300
million pigs estimated to have died from infection or preven-
tive culling, with economic losses of about $100 billion [6].

ASFV infection is the product of the interaction between
virus and host antiviral [7–9]. Innate immunity, also known
as natural immunity or nonspecific immunity, is the most
important host defense weapon against pathogenic microbial
invasion [10, 11]. The immune system depends on a group of
receptors known as pattern recognition receptors (PRRs) to
detect pathogen-associated molecular patterns (PAMPs) and
trigger the production of immune molecules and cytokines
in host cells to fight pathogen microbial invasion [12]. DNA

is one of the important PAMPs, once the pathogen enters the
host cell, it will release its DNA into the cytoplasm. The DNA
sensor cGAS is able to detect cytoplasmic DNA and promptly
activate the innate immune response through the STING
protein, which is mediated by interferon-stimulating factor
[13, 14]. Following that, it was discovered that STING plays
a role in transmitting signals for type I interferon (IFN-I)
through interferon regulatory factor 3 (IRF3) [15, 16], and
it was also found that STING dimerization is crucial for initi-
ating subsequent signals [17, 18].

cGAS-STING is crucial for anti-DNA virus and RNA
virus infection [19–22]. Recent studies have confirmed that
cGAS-STING is essential for ASFV infection and pathogen-
esis. Meanwhile, ASFV has also developed a series of strate-
gies to manipulate the host’s defense function against viral
infection [23–25]. Hence, thorough investigation into ASF
immune evasion theory is crucial, alongside enhancing bio-
safety measures to combat the ASF outbreak and expediting
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the creation of reliable vaccines. At present, the understand-
ing of the pathogenesis of ASFV is incomplete, which seri-
ously affects the effective prevention and development the
efficient vaccines. Here, we review the interaction between
ASFV and cGAS-STING and their relatedmolecular mechan-
isms, aiming to provide new ideas for further research on the
pathogenesis of ASFV and effective vaccines.

2. Overview of ASFV

ASF has spread to more than 40 countries all over the world
since its discovery in 1921 [3] (Figure 1, incomplete statistics
until 2020). The first indigenous case of ASF was first
reported in Liaoning, China, on August 3, 2018 [4, 5], and
soon spread with unprecedented speed to all 30 provinces
and autonomous regions of the country within 8 months

(Figure 2, updated to April 19, 2019). Vaccination is the
most effective approach to prevent and control infectious
diseases [26, 27]. At present, there is still a lack of safe and
effective ASF vaccines, so vaccine development remains a
global challenge [28]. The most prominent feature of ASFV
is its ability to camouflage to evade the host immune system
and establish a complete infection, which is also the key factor
hindering ASF prevention, control, and development [29].

Currently available data have shown that ASFV can rep-
lication in primary cells and cell lines [30–32]. Among them,
ASFV had the best proliferation in alveolar macrophages
[33–35]. During infection, ASFV initially replicates in mono-
cytes and macrophages located in the tonsil and mandibular
lymph nodes, before spreading to other tissues through the
bloodstream and/or lymphatic system [35]. Among, the
spleen is the organ with the highest viral load and the
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FIGURE 1: The current global epidemiological scenario for ASFV (updated to 2020). Note. The lighter the color, the earlier the first outbreak.
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most serious pathological manifestations in all organs of
pigs. Infection with ASFV leads to the demise of numerous
monocytes in the spleen, leading to suppression of interferon
response and antigen expression, ultimately facilitating the
prolonged infection of ASFV [36, 37]. In the initial stage of
ASFV replication, virions first interact with cell surface
receptors, attach to cells, and then enter into macrophages
mainly through clathrin-mediated endocytosis [38, 39] and
micropinocytosis [40]. Prior research has indicated that host
proteins CD1d [41], CD163 [42–45], and SIGLEC1 [42] may
facilitate ASFV entry into cells; however, the role of CD1a,
CD163, and SIGLEC1 as ASFV receptors requires additional
confirmation. After the virion enters the cell, it travels from
the early endosome to the late endosome in a pH-dependent
manner along the endolysosome pathway and uncoating in
this place. The virus particles expose the inner envelope,
allowing it to interact, and then fuse the viral membrane
with the restrictive membrane of the endosome. The bare
kernel can be released into the cell solutes and transported

to the perinuclear viral replication factory to begin replica-
tion [46, 47].

3. Overview of cGAS-STING Signaling Pathway

cGAS was first discovered in mammalian cells in 2013 and
can synthesize cGAMP as a second messenger to directly
activate STING [13–48]. Following infection of host cells
by pathogenic microorganisms, cGAS as a crucial DNA sen-
sor, quickly identifies and detects foreign viral DNA in the
cytoplasm, leading to the formation of a 2 : 2 dimer and the
generation of 2′,3′-cGAMP. Subsequently, 2′,3′-cGAMP binds
to STING on the ERmembrane, triggering activation through
a change in structure. Activated STING then moves from the
ER to the Golgi intermediate compartment. Upon activation,
STING recruits active TBK1 using its carboxyl-terminal,
forming the STING-TBK1 complex on the Golgi membrane.
This complex further triggers IRF3 phosphorylation, leading
to IRF3 dimerization in the nucleus (Figure 3). Simultaneously,
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FIGURE 2: The current China epidemiological scenario for ASFV outbreak between August 3, 2018 and April 19, 2019. Note. The lighter the
color, the earlier the first outbreak.
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STING has the ability to directly trigger the Iκκ kinase, leading
to the phosphorylation of the inhibitor of NF-κB, ultimately
resulting in the degradation of the phosphorylated IκB through
the ubiquitin-proteasome pathway. NF-κB enters the nucleus
and phosphorylates IRF3 to induce the secretion of interferon
and inflammatory cytokines to promote host anti-infective
immunity [49, 50].

3.1. The cGAS-STING Signaling Pathway and Interferon.
IFNs are the initial defense mechanism of the host against
viral infections, with three distinct categories: IFN-I, IFN-II,
and IFN-III [51, 52]. Activation of cGAS/STING can stimu-
late the production of IFNs, which then trigger the transcrip-
tion of numerous downstream interferon-stimulating genes
by interacting with various IFN receptors located on the cell
membrane [53, 54]. IFN-I functions by attaching to IFN-α
receptor IFNAR1 and IFNAR2, while IFN-III binds to IL-
10R2 and IFNLR1. IFN-II forms a dimer through a hetero-
dimer consisting of IFN-γ receptors IFNGR1 and IFNGR2
[55] (Figure 3). When IFN-I and IFN-III bind to receptors, it
triggers the activation of janus kinase 1 (JAK1) and tyrosine
kinase 2 (TYK2), resulting in the phosphorylation of signal
transduction and transcriptional activators 1 and 2 (STAT1
and 2). STAT1/STAT2 combine to create a heterodimer, which
then brings in IFN regulatory factor 9 (IRF9) to produce IFN-
stimulating gene factor 3 (ISGF3) [56, 57] (Figure 3). When
IFN-II binds to the receptor, it causes JAK1 and JAK2 tyrosine
kinases to be phosphorylated, resulting in the phosphorylation
of STAT1. The phosphorylated STAT1 then forms an IFN-γ

activator (GAF) dimer, which activates the expression of anti-
viral genes [56] (Figure 3).

3.2. The cGAS-STING Signaling Pathway and Cell Death.
cGAS-STING is involved not just in the release of IFN and
inflammatory cytokines, but also plays a role in various cell
death mechanisms including apoptosis, necroptosis, pyrop-
tosis, and ferroptosis [58–60].

Activation of the cGAS-STING pathway may trigger cell
apoptosis [61, 62]. Stimulation with IFN-β can trigger apo-
ptosis in cells by activating JAK-STAT, inhibiting the PI3K/
AKT pathway, leading to the release of cytochrome C in the
cytoplasm, and subsequently activating caspase-9 through
cytochrome C [63]. Meanwhile, IFN-β can also induce apo-
ptosis dependent on caspase-8 [64], and downregulation of
IRF3 can negative regulation the proapoptotic effect of IFN-I
[65–67]. The levels of cGAS, STING, and NLRP3 were sig-
nificantly upregulated in intervertebral disc degeneration
(IDD) patients, and epigallocatechin gallate (EGCG) treat-
ment could inhibit cell apoptosis by target cGAS/STING/
NLRP3 [68, 69] (Figure 4).

The cGAS-STING signaling pathway promotes potassium
efflux activation of NLRP3 and induces pyroptosis by regulating
STING transport [70], although themolecularmechanism is still
unknown (Figure 4). Furthermore, cGAS-STING is capable of
stimulating the production of mixed kinase domain-like protein
(MLKL), a crucial element in necroptosis [71]. Additionally,
proapoptotic p53 can boost the phosphorylation of receptor-
interacting serine/threonine kinase 3 (RIPK3) and MLKL,
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FIGURE 3: Schematic diagram of cGAS/STING signal pathway.
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leading to the release of mitochondrial DNA (mtDNA) and
activation of STING, ultimately resulting in necroptosis [72]
(Figure 4). Ferroptosis is identified by lipid peroxidation that
relies on iron, and it is triggered by STING activation due to lipid
peroxidation instead of IFN signaling when faced with mtDNA
stress [73, 74] (Figure 4).

3.3. The cGAS-STING Signaling Pathway and Mitochondrial
Dysfunction. Mitochondria are the energy factories of living
organisms [75, 76]. Additionally, mitochondria play a key
role in producing reactive oxygen species (ROS) in living
organisms, particularly within the electron transport system
(ETS) [77]. Under normal physiological conditions, these
ROS may be secondary messengers that control the intracel-
lular signal transduction cascade [78–80]. However, large
amounts of ROS production can lead to oxidative stress [75].

ROS production and Ca2+ ion accumulation can trigger
the activation of mitochondrial permeability transition pore

(mPTP), resulting in the release of proapoptotic molecules
like cytochrome C, ultimately leading to apoptosis or necrop-
tosis (Figure 5). Apoptosis leads to the creation of large pores
in the mitochondrial outer membrane (MOM) by BAX and
BAK [81, 82], allowing mtDNA to move from the pore to the
cytoplasm via the cGAS-STING pathway, activating the
innate immune response [83].

4. Interaction between cGAS-STING Signaling
Pathway and African Swine Fever Virus

Viral infection depends on the interaction between virus and
host proteins. The ASFV p72 protein is a key element of the
ASFV capsid, which is essential for virus attachment and
entry [84–86]. Recent research indicates that p72 has the
ability to bind with CD63, B2M, YTHDF2, etc., cellular pro-
teins. The bioinformatics analysis of Go enrichment and
protein interaction network revealed that the host proteins
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played important roles in virus attachment, invasion, repli-
cation, assembly, and immune regulation [87]. Furthermore,
Sun et al. [88] also screened that p72 can interact with 2′,5′-
oligoadenylate synthetase gene 1 (OAS1), which is a interferon-
stimulating gene mediated by cGAS-STING activation. After
their interaction, TRIM21 is recruited through the ubiquitin-
proteasome pathway to degrade p72 at the K63 site, further
destroying the assembly of mature ASFV particles and reduc-
ing the production of mature virions [88]. Wu et al. [89] found
that the protein–protein interaction (PPI) network between
ASFV and host immune pathways revealed that certain genes
such as A151R, MGF360-11L, E165R, G1340L, MGF505-3R,
and A137R have a notable suppressive impact on IFN-β pro-
duction. Additionally, K421R, MGF360-11L, EP364R, C147L,
A151R, and A137R were shown to significantly inhibit NF-κB
production [89]. IFN-β and NF-κB are identified as down-
stream components of the cGAS-STING pathway, indicating
that ASFV might manipulate the host cGAS-STING pathway
by targeting these proteins to suppress the host immune
response and enhance viral replication.

ASFV can target cGAS-STING [90], NF-κB [91], TGF-β
[92], ubiquitination [93], and apoptosis [94] signaling path-
way promotes viral replication. The cGAS-STING pathway is
crucial in defending against DNA viruses in the host and is
the most extensively researched ASFV pathway in terms of
host pathogenicity and immune evasion. cGAS-STING has
strict and fine regulations in space and time to ensure that
while eliminating pathogen infection, it avoids damage to the
body due to insufficient or excessive immune response [95].

Replication strategies of ASFV strains and cell tropism
vary widely [25]. Over the long course of evolution, ASFV

encodes and expresses multiple immune escape proteins to
antagonize the host immune response. The escape of ASFV
to the natural immune system of the host is an important
strategy for causing persistent infection of the virus, and it is
also an important reason for the low immune protection and
persistent infection during the development of live attenu-
ated vaccine [96]. Earlier research has shown that the ASFV
genetic material is capable of producing various viral pro-
teins that disrupt the production of host cell proteins and
disrupt pathways, ultimately hindering and avoiding the
host’s immune response while promoting its own growth
and spread [97, 98] (Table 1).

Below, we will explain how ASFV hinders IFN-I and
enhances viral replication by interacting with signal mole-
cules on various cGAS-STING signaling pathways at the
molecular level.

4.1. Targeting cGAS Inhibits the Molecular Mechanism of
cGAS-STING Activation. cGAS, also known as C6ORF150
or MB21D1, is a member of the cGAS/DNCV-like nucleo-
tide transferase (CD-NTase) superfamily. The cGAS gene is
well-preserved across human, mouse, pig, and chicken spe-
cies (Figure 6). The catalytic domain is a two-leaf structure
composed of overlapping nucleotide transferase core domain
(NTase) andMab21domain. Including a central catalytic domain
and two different positively charged surfaces [125, 126]. It func-
tions as a DNA receptor in mammals, can recognize cytoplasmic
DNA and produce cGAMP, and activate STING regulate the
secretion of downstream IFN-I and other cytokines.

QP383R of ASFV is an unnamed protein composed of 383
amino acids. QP383R inhibits the inflammatory response
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during ASFV infection by inhibiting AIM2 inflammasome acti-
vation [127] (Figure 7). Additionally, QP383R functions as a
suppressor of cGAS/STING-driven innate immune responses,
with elevated levels of QP383R leading to reduced activation of
cGAS-STINGbydsDNA[99] (Figure 7). Further studies showed
that QP383R promoted the palmitoylation of cGAS through its
C-terminal (284-383 aa) interaction with the nucleotide trans-
ferase (NTase) domain of cGAS, inhibited the binding of cGAS
to ligandDNA and cGAS dimerization reduced the downstream
interferon reaction [99] (Figure 7).

4.2. Targeting 2′,3′-cGAMP Inhibits the Molecular Mechanism
of cGAS-STINGActivation.Wu et al. [14] discovered cGAMP
as a natural signaling molecule for innate immunity in
response to cytoplasmic DNA in 2012 and confirmed its
presence in mammalian cells. Subsequently, it was confirmed
that cGAMP is the catalytic product of cGAS (the substrate is
ATP and GTP) by liquid chromatography–mass spectrome-
try, and the small molecule cGAMP directly binds and acti-
vates STING to induce IFN-I production [13].

After ASFV infection, cGAS recognizes viral DNA and
synthesizes 2′,3′-cGAMP, triggering the production of inter-
feron to interfere with viral replication. ASFV protein EP364R
and C129R have the ability to hinder the host antiviral
response triggered by 2′,3′-cGAMP. These proteins not only
suppress IFN-I secretion by interacting with 2′,3′-cGAMP but
also increase their effectiveness in degrading 2′,3′-cGAMP
[101] (Figure 7). At the same time, ASFV EP364R has a
homologous domain with the interaction 2′,3′-cGAMP with
STING and is able to competitively with 2′,3′-cGAMP [101]
(Figure 7). ASFV B175L can interfere with the interaction
between cGAMP and STING by interacting with cGAMP,
thereby inhibiting downstream signaling of IFN-mediated
antiviral response [102].

4.3. Targeting STING Inhibits the Molecular Mechanism of
cGAS-STING Activation. STING is a 40 kDa adaptor protein
located in the endoplasmic reticulum or Golgi apparatus
[128, 129]. STING consists of a transmembrane N-terminal
domain and a globular C-terminal domain (CTD), and the

TABLE 1: ASFV’s immune evasion tactics on the cGAS-STING signaling pathway.

Target pathway moleculars Viral proteins References

cGAS I226R, QP383R [99, 100]

2′,3′-cGAMP EP364R, C129R, B175L [101, 102]

STING
MGF-505-7R, MGF-505-11R, E248R, p17,

L83L, E184L, B175L
[102–108]

TBK1
DP96R, MGF-505-7R, pI215L, MGF360-11L,
A137R, S273R, M1249L, MGF360-12L, S273R,

MGF-110-9L, pA151R
[109–119]

IRF3
MGF-505-7R, MGF360-14L, I226R, S273R,

M1249L, E301R, MGF360-12L, S273R, D129L,
E120R, DP96R

[100, 109–124]
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FIGURE 6: cGAS-STING signaling pathway can impact mitochondrial function and contribute to mitochondrial dysfunction, leading to a
feedback loop between mitochondrial metabolism and innate immunity.
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N-terminal contains four transmembrane helical structures
(TM1−4) anchored to the endoplasmic reticulum or other
organelles. The C-terminal CTD region is comprised of a
ligand-binding section (LBD) and a C-terminal tail segment
(CTT). LBD combines 2′,3′-cGAMP and CDNs. CTT can
bind TBK1 [130, 131].

ASFV MGF505-11R suppresses the activation of IFN-β
and ISRE by cGAS, IRF7, IRF3, STING, IKK-ε, TBK1, lead-
ing to decreased mRNA transcription of IFN-β, ISG15, and
ISG56 [106] (Figure 8). MGF505-11R was discovered to have
the ability to degrade STING, with the functional domains
responsible for this function being 1-191 aa and 182-360 aa
of MGF505-11R [106] (Figure 8). E248R binding to STING
and blocking the expression of STING suppresses to pro-
mote viral replication [105] (Figure 8). ASFV p17 (39-
59aa) inhibited the cGAS-STING pathway by interfering
with STING recruitment of TBK1 and IKKɛ through its
interaction with STING [107] (Figure 8). ASFV L83L

overexpression suppresses IFN-β promoter and ISRE func-
tion, while reducing L83L levels increases ISGs expression
and IRF3 phosphorylation in primary porcine alveolar
macrophages [103]. L83L enhances the autophagolysosomal
breakdown of STING by engaging cGAS and STING to bring
in Tollip, inhibiting the phosphorylation of TBK1, IRF3, and
IKB-α, which are downstream signaling molecules [103]
(Figure 8). The ASFV E184L protein suppresses the innate
immune responses of the host by interacting with the STING-
mediated signaling pathway. E184L hinders the dimerization
and oligomerization of STING by interacting with it [108].
Moreover, E184L hinders the assembly of the STING-TBK1-
IRF3 complex, leading to the suppression of STING phosphor-
ylation, IRF3 dimerization, and movement into the nucleus
[108] (Figure 8). ASFVB175L can interfere with the interaction
between cGAMP and STING by specifically interacting with
R238 and Y240 amino acids of STING, thereby inhibiting
downstream signal transduction of IFN-mediated antiviral

ASFV

Viral DNA

Receptor

cGAS

ATP
GTP

cGAMP

IRF3

TRK1

Endoplasmic
reticulum

STING

cGAMP

IRF3

IRF3
IFN-I

p50 p65

Proinflammatory
cytokines

Viral mRNA

QP383R

QP3
83

R

EP364RC129R

Palmitoylation
？？

Cytoplasm

Nucleus

Inhibition

Stimulation

Attenuation

PP
P

P

FIGURE 7: ASFV proteins modulating cGAS and cGAMP inhibit the molecular mechanism of cGAS-STING signaling pathway activation.
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response [102]. pH240R binds to the N-terminal trans-
membrane region of STING, preventing its oligomerization
and movement from the endoplasmic reticulum to the
Golgi apparatus. This interaction also blocks the phosphor-
ylation of IRF3 and TBK1, leading to reduced production of
type I interferon and ultimately promoting viral replica-
tion [132].

4.4. Targeting TBK1 Inhibits the Molecular Mechanism of
cGAS-STING Activation. TBK1 is the center of antiviral innate
immune signal transduction. On the one hand, TBK1 can be
activated by multiple PRRS. Conversely, TBK1, a crucial
enzyme, phosphorylates multiple targets like IRF3 and IRF7
when activated, triggering the start of an antiviral innate
immune reaction.

ASFV DP96R blocks cGAS/STING and TBK1, while not
affecting IRF3-induced IFN-β and ISRE promoter activation
[117]. DP96R inhibits TBK1 phosphorylation and inhibits its
induced antiviral response [117]. M1249L blocks TBK1 phos-
phorylation induced by excessive cGAS and STING expres-
sion [110]. M1249L can also colocate and interact with IRF3
to induce IRF3 degradation and inhibit host antiviral response
through the lysosome pathway [110] (Figure 8). ASFV pI215L
is a viral E2 ubiquitination binding enzyme. Reducing pI215L
levels suppresses ASFV replication and boosts the production
of IFN-β [111]. Additionally, pI215L induces polyubiquitina-
tion at K63 of TBK1, leading to the inhibition of type I IFN
production through its interaction with RING finger protein
138 (RNF138) [111] (Figure 8). MGF360-11L binds with
TBK1 and IRF7, leading to the degradation of both TBK1
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and IRF7 [118]. Meanwhile, MGF360-11L also inhibits TBK1
and IRF3 phosphorylation to antagonize the molecular mech-
anism of type I interferon-mediated antiviral activity [118].
MGF505-7R inhibits antiviral activity by interacting with
IRF7 and TBK1, degrading IRF7 via autophagy, cysteine, and
proteasome pathways, and degrading TBK1 via the proteasome
pathway [133] (Figure 8). Deletion of MGF110-9L reduced the
virulence of ASFV in pigs and provided complete protection
against the attack of parental lethal ASFV [119]. It was found
that MGF110-9L/505-7R blocks the degradation of TBK1
through the autophagy pathway and promotes viral replication
by targeting the autophagy associated protein PIK3C2B.
MGF110-9L promoted the degradation of TBK1 through the
autophagy pathway [119] Figure 8). PA151R negatively regu-
lates IFN-I production. Additional research revealed that
PA151R and TBK1 engage in a competitive interaction with
the E3 enzymeTNF receptor-related proteinTRAF6, leading to
the suppression of TRAF6 expression via the apoptosis path-
way. This ultimately results in the inhibition of TBK1 phos-
phorylation and the suppression of ASFV replication [113].
PA151R negatively regulates IFN-I production. Additional
research revealed that PA151R and TBK1 engage in a competi-
tive interaction with the E3 enzyme TNF receptor-related pro-
tein TRAF6, leading to the suppression of TRAF6 expression
via the apoptosis pathway. This ultimately results in the inhi-
bition of TBK1 phosphorylation and the suppression of ASFV
replication [109].

4.5. Targeting IRF3 Inhibits the Molecular Mechanism of
cGAS-STING Activation. IRF3 is expressed constitutively in
various tissues and cells. When the cells are resting, IRF3 is in
the cytoplasm and a self-inhibition state. Following the intru-
sion of the virus, TBK1 and IKKε phosphorylate numerous
serine and threonine sites at the C-terminus of IRF3. After
phosphorylation, conformational changes occur in IRF3, and
the C-terminal combines to form a dimer, which migrates
from the cytoplasm to the nucleus. CBP, a coactivator that
binds, stimulates the production of IFN-I.

Another study showed that the molecular mechanism of
ASFV DP96R inhibits IRF3-mediated antiviral immune
response. DP96R blocks the interaction between activated
IRF3 and KPNA, inhibiting the translocation of IRF3 to the
nucleus by binding to a crucial site on KPNA within IRF3
[120]. DP96R overexpression enhances DNA and RNA virus
replication by inhibiting the cGAS-STING signaling pathway
and suppressing antiviral gene transcription. Knocking out
DP96R with DP96R-specific siRNA leads to increased IFN
and ISG transcription during ASFV infection [120]. ASFV
pS273R is a cysteine protease specific to SUMO-1, and it
hinders the production of IFN-I by interacting with IRF3
[112], pS273R disrupts the interaction between TBK1 and
IRF3, inhibiting the phosphorylation and dimerization of
IRF3 [112] (Figure 8). A137-deficient ASFV virus can induce
higher IFN-I production [116], and A137R interacts with
TBK1 to promote autophagy-mediated TBK1 lysosomal deg-
radation, thereby blocking IRF3 nuclear translocation, result-
ing in reduced IFN-I production [116] (Figure 8). The ASFV
E120R protein is capable of inhibiting the phosphorylation of

IRF3 and the production of IFN-I by binding to IRF3 and
preventing its recruitment to TBK1 [121] (Figure 8). Elimina-
tion of theMGF505-7R gene fromASFVmay lead to increased
production of IL-1β and IFN-β. MGF505-7R hinders NF-κB
activation by interacting with IKKα and suppresses inflamma-
some formation by binding to NLRP3, leading to decreased IL-
1β production [134]. MGF505-7R can interact with IRF3, pre-
venting the nuclear translocation of IRF3, and increasing the
expression of autophagy-related protein ULK1 to break down
STING [104–134] (Figure 8). pD129L inhibits the IFN signal-
ing pathway by disrupting the interaction between transcrip-
tional coactivators p300 and IRF3, leading to the suppression of
IFN-I production and enhancement viral replication [124].

5. Conclusions and Perspectives

The development of a novel and highly effective ASFV vaccine
is the primary problem for researchers around the world. At
present, the research progress of live attenuated ASFV vaccine,
adenovirus vaccine, recombinant pseudorabies virus vaccine,
and antiviral drugs has been made, and the vaccines and drugs
have certain protective effects against the attack and replication
of ASFV parent strains [90, 135–141]. For example, the atten-
uated ASFV vaccine HLJ/18-7GD was capable of providing
effective immune protection against different wild strains
[142]; ASFV genotype II GeorgiaΔDP148RΔK145RΔEP153R-
CD2vmutantQ96R/K108D attenuated strain is able to provide
83%–100% immune protective efficiency against parental
strain for different doses of challenge [143]. These results
showed that HLJ/18-7GD and GeorgiaΔDP148RΔK145R-
ΔEP153R-CD2v_mutantQ96R/K108D have potential as can-
didate vaccines. It is worth noting that, vaccines are needed to
provide cross-protection against different ASFV genotypes.

The most striking feature of host defense is that once
infected with these viruses, cells can rapidly activate cGAS-
STING to produce an innate immune response to ASFV to
prevent viral infection. The host defense mechanism is essen-
tial for the balance between survival and death of the host.
However, the lack of detailed mechanisms of ASFV and host
interaction has greatly limited the development of effective
vaccines. ASFV proteins inhibit IFN-β production by target-
ing different molecules of the cGAS-STING pathway. There-
fore, it maybe impractical to develop drugs that target
different viral virulence proteins and apply them to clinical
prevention and control. Kuchitsu et al. [144] found that the
host VPS protein can promote the transport of STING from
the Golgi apparatus to the lysosome, reduce the residence
time of STING in the Golgi apparatus, and thus inhibit the
immune activation state of the host. In the future, the differ-
ences in susceptibility and pathogenicity of ASFV in different
animals can also be studied clinically, and the key host pro-
teins that differ in susceptibility and pathogenicity of ASFV
can be screened using high-throughput and single-cell
sequencing methods, to establish a knowledge base on the
host susceptibility system of ASFV.

mRNA vaccines (the third-generation vaccine) have
made a great contribution in blocking SARS-CoV-2 infection
and transmission [145–147]. mRNA vaccines activate the
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dual mechanism of humoral and T cell immunity, strong
immunogenicity, no need for adjuvants, and ease of mass
production support the key advantages of global supply
[148, 149]. There are also many studies on mRNA vaccines
for DNA viruses, such as the monkeypox virus [150–155]
and Epstein–Barr virus [156, 157], which suggests that
mRNA vaccines of DNA viruses have a good prospect.
ASFV p34, p72, p54, p30, and CD2v are the main immuno-
genic proteins and can effectively stimulate the body’s immune
response [143, 158, 159]. Meanwhile, Deletion B125R [160],
C84L [161], L11L/L7L [162], DP71L [163], DP96R [163],
B119L [164], and DP148R [163] significantly reduced the vir-
ulence of the virus and showed partial or complete protection
against infection with ASFV strains. Besides, a lot of conserved
B cell linear epitope in pB602L [165], p34 [166], p30 [167],
pA104R [168], and p72 [169] have been identified. About the
ASFV vaccine: (1) we can screen the optimal deletion combi-
nation of virulence genes (B125R, C84L, L11L/L7L, DP71L,
DP96R, B119L, and DP148R) to obtain attenuated and attenu-
ated vaccines; (2) we can concatenate mRNA vaccines that
express different immunogenic proteins (p34, p72, p54, p30,
and CD2v); and (3) we can also tandem mRNA vaccines that
express different B cell linear epitopes (pB602L, p34, p30,
pA104R, and p72) of the same immunogenic protein.
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