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The dissemination of antimicrobial resistance (AMR) severely degrades the performance of antibiotics and constantly paralyzes the
global health system. In particular, plasmid-mediated transfer of antibiotic resistance genes (ARGs) across bacteria is recognized as
the primary driver. Therefore, antiplasmid transfer approaches are urgently warranted to resolve this intractable problem. Herein,
we demonstrated the potential of azidothymidine (AZT), an FDA-approved anti-HIV drug, as a broad-spectrum horizontal
transfer inhibitor to effectively prevent the transmission of multiple ARGs, including mcr-1, blaNDM−5, and tet(X4), both in vitro
and in vivo. It was also noteworthy that the inhibitory effect of AZT was proved to be valid within and across bacterial genera under
different mating conditions. Mechanistic studies revealed that AZT dissipated bacterial proton motive force, which was indispens-
able for ATP synthesis and flagellar motility. In addition, AZT downregulated bacterial secretion systems involving general and
type IV secretion systems (T4SS). Furthermore, the thymidine kinase, which is associated with DNA synthesis, turned out to be the
potential target of AZT. Collectively, our work demonstrates the broad inhibitory effect of AZT in preventing ARGs transmission,
opening new horizons for controlling AMR.

1. Introduction

Antimicrobial resistance (AMR) poses a significant risk to pub-
lic health at alarming rates. The ubiquitous overuse of antibiotics,
especially in animal husbandry, is a leading cause of AMR in
humans, animals, and environments [1, 2]. For example, as a
vast reservoir of antibiotic resistance genes (ARGs), the maricul-
ture system could give rise to the development of multidrug-
resistant (MDR)pathogens [3].Undoubtedly, the rapid horizontal
transmission of ARGs between different bacterial cells accounts
for the accumulating AMR crisis [4, 5]. Conjugation is generally
considered the main mechanism of horizontal gene transfer

(HGT) [6, 7], which permits the transfer of genetic informa-
tion between bacterial cells [8]. It is a process of DNA transfer
from the donor to the recipient bacteria through a pilin bridge
across the cell membrane [9]. Another HGT pathway is trans-
formation, which involves the uptake of extracellular DNA
fragments and the incorporation of genetic elements by com-
petent cells [10].

Given the rampant evolution and prevalence of AMR, poten-
tial inhibitors against ARGs transfer are urgently required. For
instance, the synthetic fatty acid 2-hexadecynoic acid inhibited
the conjugative transfer of themodel plasmids in controlled water
microcosms [11]. Similarly, our previous study demonstrated that
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melatonin, known as a neurohormone that facilitates sleep, pre-
vented conjugative transfer ofmcr-positive plasmids by disrupting
the proton motive force (PMF) [12]. Despite the identification of
several conjugation inhibitors, no compounds have been allowed
in the clinic owing to their pharmacological and toxic properties.
Meanwhile, these conjugative transfer inhibitors are only active
against specific plasmid types or plasmids carrying specific ARGs.
Thus, we speculated whether there are some compounds with
broad-spectrum inhibitory effects on the transmission of multiple
resistance genes.

Azidothymidine (AZT), an FDA-approved nonantibiotic
compound, has been used for human immunodeficiency
virus (HIV) treatment. AZT is a prodrug activated within
the cell by a thymidine kinase-mediated phosphorylation
event, producing AZT-triphosphate, the active ingredient
in DNA strand termination [13]. In addition to the treatment
of acquired immune deficiency syndrome (AIDS), our previ-
ous study also indicated that AZT decreased tet(X)-mediated
bacterial resistance to tigecycline in Escherichia coli [14].
However, the potential of AZT as a novel horizontal transfer
inhibitor remains unexploited.

In this study, we comprehensively investigated the effect
of AZT on the transmission of multiple plasmids carrying
clinically relevant ARGs within and across bacterial genera.
Furthermore, we elucidated the potential mechanisms of
AZT behind its broad inhibitory effect on HGT. Finally,
we conducted a murine model to confirm the feasibility of
an AZT-based antiplasmids strategy.

2. Materials and Methods

2.1. Bacterial Strains and Mating System. Different clinical
strains containing mcr-1, blaNDM−5, and tet(X4)-bearing plas-
mids were selected as donor bacteria, while E. coli EC600 and
K. pneumoniae YZ6 were chosen as recipient bacteria for the
conjugation system. The detailed information on strains and
plasmids used in this study was shown in Table S1. The conju-
gation assay was conducted as follows: a single bacterial colony
was selected into 1mL antibiotic-containing LB broth and cul-
tured to achieve OD600 of 0.5. After centrifugation for 10min,
PBS was replenished, and different concentrations of AZT were
added to the mating system while the donor and recipient bac-
teria were mixed in a ratio of 1 : 1. After 12hr culture in the
horizontal shaker at 37°C, the transconjugants and recipient
bacteria were selected in a plate containing corresponding
antibiotics. Specifically, the transconjugants were screened with
2μg/mL colistin and 300μg/mL rifampicin when E. coli LD93-1
and E. coli LD67-1 as donor bacteria and E. coli EC600 as recipi-
ent [15]. 2μg/mL meropenem and 300μg/mL rifampicin were
applied when E. coli L65 and K. pneumoniae C12 were used as
donor bacteria [16]. The transconjugants from the mating sys-
tem using E. coli (RS3-1 and RF2-1) [17] and Proteus (TCP70-4
and ICP17-4) [18] as donor and E. coli EC600 as recipient
bacteria were selected using 4μg/mL tigecycline and 300μg/mL
rifampicin. Meanwhile, plate agar containing 4 μg/mL tigecy-
cline and 100 μg/mL hygromycin was used to screen the
transconjugants when tet(X4)-bearing plasmids transferred
from E. coli to K. pneumoniae YZ6. The conjugation frequency

was calculated using the number of transconjugants divided by
the recipient bacteria.

Minimum inhibitory concentration (MIC) determina-
tion was conducted using the broth microdilution for anti-
microbial susceptibility testing according to the EUCAST
clinical breakpoints methods [19]. The results were recorded
as the lowest concentration of the antimicrobial agent, which
inhibited the visible growth of the bacteria. Also, PCR verifi-
cation of the mcr-1 [20], blaNDM−5 (16), and tet(X4) [21]
primers and gel electrophoresis analysis were performed
using the optimized primer sequences (Table S2). All experi-
ments were performed with biological replicates.

2.2. Killing Kinetics Determination. The donor bacteria E. coli
LD67-1, E. coli L65, E. coli RF2-1, and recipient bacteria
E. coli EC600 were cultured to exponential phase and then
cultured with different concentrations of AZT ranging from
0 to 1 μg/mL. The corresponding CFUs per mL of the bacteria
were counted by plate counting method at 0, 6, and 12 hr. All
experiments were performed with three biological replicates.

2.3. Chemical Transformation Assay. The transformation
system was established using competent cell E. coli DH5α
as the recipient bacteria and plasmids pUC19, pBAD, and
pWM91 as the DNA vectors. The plasmid was mixed with
E. coli DH5α to reach the final concentration at 1 ng/μL in
the precooled tube. Then, different concentrations of AZT
were added to the transformation system and incubated on
ice for 30min. After that, a 90s heat-shock with 42°C was
conducted, followed by immediate placement on ice. After 5
min, 900 μL LB broth was appended to the transformation
system before being incubated at 37°C for 1 hr. The liquid
was serially diluted and plated on the ampicillin-containing
plates to select the transformants, and the recipient bacteria
was determined on the LB agar plates, which contained no
antibiotics. The transformation frequency was calculated
through dividing the transformants by the recipient bacteria.

2.4. Measurement of Bacterial Respiration Levels. Bacterial
respiration levels were determined using resazurin dye.
E. coli RF2-1 and EC600 were washed with PBS to achieve
OD600 of 0.5 and mixed with 10 μL different concentrations
of AZT in a 96-well plate with a dark bottom. Then, 0.1μg/mL
resazurin dye was added to the mixed system. A 15min
continuous determination was conducted with an excitation
wavelength of 550 nm and an emission wavelength of
590 nm.

Bacterial NADH was detected using the Detection Assay
Kit according to the manufacturer’s instructions. The donor
and recipient bacteria were treated as described above. After
amplification, centrifugation, and resuspending with PBS, bac-
teria were coincubated with different concentrations of AZT for
6hr before centrifugation, and the supernatant was removed,
respectively. Then, the lysis solution was added and centrifuged
to collect the supernatant to determine NADH after heating it at
60°C. The intracellular NADH levels were measured when the
absorbance was at 450nm. Experiments were performed with
three biological replicates.
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2.5. Detection of Membrane Potential (ΔΨ) and ΔpH. E. coli
RF2-1 and EC600 bacteria were incubated as described above
to achieve OD600 of 0.5 after washing with PBS. 0.5 μM
DiSC3(5) (Aladdin, Shanghai, China) fluorescence dye was
added and then cultured in the darkness for 30min. After
that, 190μL bacteria cells were mixed with 10μL AZT in a
96-well black plate. After incubating for 1hr in the darkness,
the fluorescence intensity was measured with the excitation
wavelength of 622nm and emission wavelength of 670nm.
All experiments were performed with three biological replicates.

For the detection of ΔpH, BCECF-AM (pH) fluorescence
dye (Beyotime, Shanghai, China) was added to achieve the
final concentration of 10 μM for 30min in the darkness.
Intracellular changes in pH after the addition of different
concentrations of AZT were monitored continuously for
10min. Fluorescence intensity was measured by a Microplate
reader (Tecan) with an excitation wavelength of 488 nm and
emission wavelength of 535 nm.

2.6. RNA Extraction and RT-qPCR Determination. E. coli
RF2-1 and EC600 were cultivated to exponential phase
respectively, and resuspended to OD600 of 0.5 with PBS.
Then 0, 0.0625, 0.25, and 1 μg/mL AZT were added to the
conjugation system. After incubation for 6 hr, the total RNA
was extracted using the Total RNA Extraction Reagent
(Vazyme) and quantified by the ratio of absorbance
(260/280 nm) using a Nanodrop spectrophotometer (Thermo
Scientific). Following the manufacturer’s instruction, reverse
transcription of 1 μg RNAwas performed using the HiScript®

III RT SuperMix for qPCR (+gDNA wiper) Kits (Vazyme).
RT-qPCR assay was performed by 7500 Fast Real-Time PCR
System (Applied Biosystem, CA, USA) using the ChamQ™
Universal SYBR® Color qPCR Master Mix Kits (Vazyme)
with the optimized primers. The relative expression levels of
the target genes were normalized using the internal control
gene (16S rRNA). The reaction conditions were set as follows:
pre-denaturation step at 95°C for 30 s, and 40 cycles of dena-
turation for 10 s at 95°C, primer annealing for 30 s at 60°C,
and extension for 30 s at 72°C. The primer sequences used in
this study were shown in Table S3.

2.7. Swimming Motility Assay. LB broth with 0.3% agar pow-
der was used to assess the swimming motility of E. coli RF2-1
and EC600. The agar plates were appended with 0, 0.0625,
0.25, and 1 μg/mL AZT, respectively, and inoculated with
2 μL bacteria cells stuck to the center of agar plates. After
incubating at 37°C for 48 hr, the inhibition zones in the
plates were filmed, and the bacteria zones were measured.

2.8. The Determination of ATP Level. Intracellular ATP levels
of E. coli RF2-1 and EC600 bacteria were determined by the
Enhanced ATP Assay Kits (Beyotime, Shanghai, China). The
bacteria were cultured to stationary phase and then washed
by PBS to achieve OD600= 0.5. After being treated with 0,
0.0625, and 0.25 μg/mL AZT for 1.5 hr, the bacteria were
centrifuged, and the supernatants were removed. Then, the
ATP lysis solution was added to release the ATP before
centrifugation to collect the supernatant for the following
step. Finally, 100 μL ATP assay solution and 20 μL lysed

sample were added to the well according to the instruction
book. The intracellular ATP levels were measured using a
Microplate Reader (Tecan).

2.9. Metal Ions Measurement. Ten millimolar metal ions,
including Na+, K+, Mg2+, and Ca2+, were added to the con-
jugation system after mixing the E. coli RF2-1 and EC600
bacteria. The process of conjugation assay was in accordance
with Section 2.1, except for the conjugation media, which
was LB broth instead of PBS. All experiments were per-
formed with biological replicates.

2.10. Bacterial Passaging Assay and SNP Analysis. Sequential
passaging culture of E. coli RF2-1 and E. coli RS3-1 was con-
ducted in the presence of subinhibitory concentrations of AZT.
The serial bacteria passaging was repeated every 12 hr, and the
MICwas determined by brothmicrodilution every 24 hr. Then,
the conjugative transfer frequency between the original and
passaged bacteria was compared. In addition, we extracted
the original and passaged bacterial DNA to conduct Illumina
sequencing and SNP analysis to explore the distinction of dif-
ferent bacteria.

2.11. Docking Analysis. A template was created using the
crystal structure of the thymidine kinase. Then, thymidine
kinase and AZT were molecularly docked using the Auto-
dock Vina tool without the use of water molecules. In a 2D
graphic, Discovery Studio 4.5 depicted the interactions of
AZT with the residues of the binding sites in thymidine
kinase.

2.12. In Vivo Assay. Female ICR mice (n= 9 per group) were
intraperitoneally infected with a single dose of 2.0× 108

CFUs/mL bacteria suspension of the donor (E. coli LD67-1,
E. coli L65, E. coli RF2-1) and recipient (E. coli EC600) bacte-
ria mixture (1 : 1). At 15min post infection, a dose of 200μL
PBS or AZT (10 mg/kg) was injected intraperitoneally,
respectively. After 24 hr, mice were euthanized by cervical
dislocation. The liver was aseptically removed, homogenized,
serially diluted, and plated on the antibiotic-containing agar
for CFUs titers of conjugants as described in our previous
study.

2.13. Statistical Analysis. Statistical analysis was performed
using GraphPad version 9.0 software. All data were pre-
sented as meanÆ SD. Unpaired t-test (normally distributed
data) between two groups and one-way ANOVA or two-way
ANOVA analysis among multiple groups were used
to calculate P-values. Differences with P <0:05 were
considered significant. Significance levels were indicated by
numbers of asterisks: ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001, and
∗∗∗∗P<0:0001. n.s. not significant.

3. Results

3.1. AZT Prevents the Horizontal Transfer of ARGs. Prior to
conjugative transfer assays, we conducted the time-killing
kinetics to determine whether the tested concentrations of
AZT influence bacterial growth. The results indicated that
adding selected concentrations of AZT had no effect on
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bacterial growth (Figure S1). Next, we investigated the impact
of AZT on the conjugative transfer of plasmids carrying clini-
cally important ARGs, including mcr-1, blaNDM−5, and tet
(X4) genes, which confer bacterial resistance to colistin, mer-
openem, and tigecycline, respectively. Intriguingly, we found
that AZT caused a dose-dependent reduction of the conjuga-
tive transfer frequency in twomcr-1 carrying plasmids (belong
to IncX4 and IncI2 types) and two tet(X4)-bearing plasmids
(IncF type) (Figures 1(a), 1(c), S2(a), and S2(c)). With regard
to blaNDM−5-positive plasmids, AZT inhibited the conjugal
transfer of blaNDM−5-bearing IncX3 plasmid of E. coli L65.
However, only 1 μg/mL AZT restrained the plasmid transfer
from K. pneumoniae C12 to E. coli EC600 (Figures 1(b) and
S2(b)). Meanwhile, MIC determination and PCR analysis
were conducted to confirm the accuracy of transconjugants.
MIC results showed that these transconjugants displayed cor-
responding resistance phenotypes to colistin, meropenem,
tigecycline, or rifampicin, respectively (Figure S3(a)). Consis-
tently, the corresponding ARGs were confirmed from the
agarose gel electrophoresis results (Figure S3(b)).

Although the inhibition effect of AZT is effective for the
clinical strains, whether it is due to the genetic background of
the clinical strains is still unknown. Based on this, we applied
the engineered bacteria E. coli TOP10 carrying three differ-
ent clinical plasmids as the donor to exclude the impact of
host bacteria. Similarly, we found that AZT could also exhibit
a dose-dependent inhibitory effect on conjugative transfer
(Figure S4).

Furthermore, we assessed the inhibitory effect of AZT
under varying mating conditions, including mating tempera-
ture, bacteria ratio of donor and recipient cells, and mating
time, providing a perspective for the optimal conditions for the
potential application of AZT in clinical settings. Specifically,
AZT inhibited the plasmid transfer frequency obviously from
E. coli RF2-1 to E. coli EC600 at different mating temperatures
(from 25 to 37°C), and 37°C was often regarded as the opti-
mum temperature (Figures 1(d) and S2(d)). Also, the inhibi-
tory effect of AZT on conjugation was observed in five
different ratios of donor and recipient cells (Figures 1(e) and
S2(e)). The mating time also played an important role in the
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FIGURE 1: Effects of AZT on the conjugative transfer of different types of plasmids carrying multiple antibiotic resistance genes. (a–c) Fold
changes of conjugative transfer frequency of mcr-1-bearing IncX4 and IncI2 plasmids (a), blaNDM−5-bearing IncX plasmids (b), and tet(X4)-
bearing IncFI and IncFII plasmids (c) from different bacteria species to E. coli EC600. (d–f ) Effects of 0.25 μg/mL AZT on conjugative
transfer of tet(X4)-positive plasmid from E. coli RF2-1 to E. coli EC600 under different conditions, including mating temperature (d), bacteria
ratio of donor and recipient (e), and mating time (f ). Significant differences were evaluated by two-way ANOVA analysis and shown with
∗P<0:05, ∗∗∗P<0:001, and ∗∗∗∗P<0:0001. n.s. not significant.
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conjugation as the effects of AZT were strengthened along
with prolonged mating time (Figures 1(f) and S2(f)).

Next, we evaluated ARGs transfer frequency exposed to AZT
under different conditions. We first determined the intergenera
conjugative transfer frequency from two kinds of tet(X4)-positive
Proteus, including P. vulgaris and P. terrae, to E. coli EC600. As
expected, a low concentration of AZT (0.25μg/mL) significantly
repressed the transfer of tet(X4)-carrying plasmids from Proteus
to E. coli (Figures 2(a), 2(b), S5(a), and S5(b)). In addition,
AZT also restrained the plasmid transfer from E. coli RF2-1 to
K. pneumoniae YZ6 by 10.0-folds (Figures 2(c) and S5(c)). AZT
also inhibited the transfer of three engineered plasmids carrying
amp resistance gene, including pUC19, pBAD, and pWM91,
through chemical transformation (Figures 2(d), 2(e), 2(f), S5(d),
S5(e), and S5(f)). Taken together, these results demonstrated the
broad-spectrum and excellent inhibitory effect of AZT on the hori-
zontal transmission of ARGs.

3.2. AZT Prevents Conjugative Transfer by Dissipating
Bacterial PMF. Bacterial cells largely depend on multiple
cellular events to maintain normal physiological activities,

including bacterial electric transfer chain (ETC), PMF, and
ATPase activities [22]. ETC, also called the respiratory chain,
has high-productivity efficiency and is the main way for
bacteria to obtain energy [23], which is important for the
conjugation process. Therefore, we first detected the bacterial
respiration levels using resazurin dye. As expected, we found a
decrease in the resazurin fluorescence along with 0–1 μg/mL
AZT addition, indicating a reduction of bacterial respiration
level (Figure 3(a)). Moreover, during aerobic respiration,
NADH (nicotinamide adenine dinucleotide), mainly involved
in material and energy metabolism in bacterial cells and pro-
duced in the citric acid cycle, would transform to NAD+, its
oxidative state [24, 25]. As shown in Figure 3(b), AZT
repressed the production of NADH with the addition of
AZT, suggesting the suppression of the tricarboxylic acid
(TCA) cycle and the disruption of ETC activities.

Meanwhile, protons would be pumped out of the cyto-
plasmic membrane to form a transmembrane electrochemi-
cal gradient through ETC, named PMF. As one of the critical
components of PMF, the electric potential (Δψ) could be
detected with a fluorescent dye DiSC3(5) [26]. As shown in
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FIGURE 2: AZT represses horizontal gene transfer through conjugation and chemical transformation. (a and b) Fold changes of conjugative
transfer frequency of resistance plasmids from P. vulgaris (a) and P. terrae (b) to E. coli EC600 under 0.25 μg/mL AZT. (c) Fold changes of
conjugative transfer frequency of tet(X4)-positive plasmid from E. coli RF2-1 to K. pneumoniae YZ6 following treatment with AZT. (d–f )
Fold changes of transformation frequency from pUC19 (d), pBAD (e), and pWM91 (f ) plasmids to E. coli DH5α with the addition of AZT.
Unpaired t-test between two groups or one-way ANOVA among multiple groups were used to calculate P-values (∗P<0:05, ∗∗P<0:01,
∗∗∗P<0:001, and ∗∗∗∗P<0:0001. n.s. not significant).
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FIGURE 3: AZT prevents conjugative transfer via disrupting bacterial proton motive force. (a) The bacterial respiration level of donor and
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6 Transboundary and Emerging Diseases



Figure 3(c), we found that the fluorescence intensity of the
E. coli RF2-1 was escalated along with AZT addition, indi-
cating the dissipation of Δψ. However, only 1 μg/mL AZT
upregulated the fluorescence intensity of E. coli EC600. To
maintain the stability of PMF, the dissipation of Δψ would be
compensated by an increase in transmembrane proton gra-
dient (ΔpH). Consistently, we detected the ΔpH across the
cell membrane using a BCECF fluorescence probe and
found a promotion effect in donor bacteria, suggesting the
increased ΔpH. Also, this phenomenon was not found in
recipient bacteria (Figure 3(d)).

PMF is also regarded as a necessary driving force of intra-
cellular ATP synthesis and bacterial motility [27, 28]. To fur-
ther evaluate the downstream processes caused by AZT-
induced PMF dissipation, we first performed a swimming assay
to detect bacterial flagellar motility. When exposed to different
concentrations of AZT, the swimming zones were repressed
obviously in donor and recipient bacteria (Figure 3(g)). There-
after, the determination of intracellular ATP levels suggested
that the production of ATP was decreased in donor and recipi-
ent bacteria. As shown in Figure 3(e), the ATP level was down-
regulated in the bacteria, and the relative expression of atpA
and atpE genes was also inhibited (Figure 3(f)). These results
indicated that the dissipated PMF induced by AZT finally lim-
ited the energy supply. To further verify the role of dissipated
PMF in the inhibitory effect of AZT on conjugation, we tried to
recover the dissipated PMF by adding exogenous ions. Consis-
tently, the supplementation of metal ions, especially divalent
ions (Mg2+ and Ca2+), could remit the suppression of AZT on
transmission to a large extent (Figure 3(h)), indicating the
critical role of stable PMF in the conjugation process.

3.3. AZT Suppresses Bacterial Secretory System. Bacterial
pathogens utilize several methods to invade mammalian
hosts and damage tissue cells. Bacterial proteins across phos-
pholipid membranes, namely bacterial secretion systems,
have been recognized as an essential component of this pro-
cess [29]. Mounting evidence suggests that bacteria absorb
the substances through a secretion system, which is majorly
dependent on the cell membrane channels [30]. Among the
secretion systems, the Type IV secretion system (T4SS), as a
transmembrane channel structure, could deliver substrates
containing DNA, protein, and other macromolecules to the
target cells [31], and the general secretion system participates
in the formation of T4SS [4, 32]. In E. coli, the general secre-
tory system exports proteins from the cytoplasm before they
are stably folded [33]. Considering the indispensable role of
the secretion system in conjugation, we detected the relative
expression of the secretion system-related genes, including
the Tra and T4SS secretion system. Specifically, secA, which

is an inner membrane component of the Sec protein secretion
system and is peripherally linked with the multi-subunit
translocation apparatus SecYEG [34, 35], was inhibited obvi-
ously along with AZT. Genes related to the positive regulation
of the general secretion, such as secY and sxy, were also down-
regulated, indicating the inhibition of HGT (Figure 4(a)). In
addition, we determined the Tra system-related genes, such as
the traC, traW, and traF gene, which also exhibited an evident
downregulation in the IncF plasmid (Figure 4(b)). The
expression of the ppdD gene, related to the type IV pilus
[36], was also downregulated along with AZT. The soxR
gene, contributing to the formation of DNA, was suppressed
obviously in E. coli RF2-1. Some other genes, including rhsA
and hofB gene, also showed an inhibition phenomenon with
the addition of AZT (Figure 4(c)). Taken together, these
results denoted that the downregulated expression of bacteria
secretory system may be one of the reasons why AZT sup-
pressed the transmission of ARGs.

3.4. AZT Inhibits Conjugation by Acting on Bacterial Thymidine
Kinase. Previous assays indicated that the resistance against
AZT under its own pressure could be generated rapidly [37].
Therefore, we conducted the sequential culturing of E. coli RF2-
1 and E. coli RS3-1 in the presence of subinhibitory concentra-
tions of AZT. The serial passaging of bacteria was repeated every
12hr, and the MIC value was determined by broth microdilu-
tion daily. As a result, AZT-resistant E. coli cells evolved along
with continuous passages under increasing sub-MIC concentra-
tions of this drug. As shown in Figure S6, two clinical bacteria,
E. coli RF2-1 and E. coli RS3-1, obtained AZT resistance higher
than 2,500 folds as the initial MIC was no more than 10μg/mL
within 20 passages. Furthermore, we used these two passaged
bacteria as donor bacteria and E. coli EC600 as recipient bacteria
to conduct conjugation. Strikingly, the inhibitory effect of AZT
on the gene transfer was apparently declined (Figure 5(a)). Next,
we conducted SNP analysis to explore the mutation site and
locked the thymidine kinase gene tdk as the primary site
(Table 1). Thymidine kinase plays a central role in DNA syn-
thesis during cell division and is involved in the mediation of
deoxythymidine [38]. In order to better understand how AZT
inhibits the enzymatic activity of thymidine kinase, we con-
ducted in silico docking analysis with thymidine kinase as recep-
tor and AZT as the ligand, showing that AZT had a high affinity
for thymidine kinase with a binding energy of −9.2 kcal/mol.
Specifically, AZT could attach to thymidine kinase through Van
del Waals (ASP119, VAL170, ILE172, PHE91, ASP41, and
GLN90), hydrogen bond with PHE120 and GLN169, and
attractive charge with LYS15, GLU88, and ARG43 (Figure 5(b)).

In addition, we constructed the Δtdk strain carrying tet(X)
plasmid as the donor bacteria and performed the conjugation

RF2-1 and E. coli EC600 after treatment with AZT, detected using DiSC3 (5) fluorescence dye. (d) The intracellular pH changes in the two
bacteria were determined using BCECF fluorescence dye. (e) The ATP level of E. coli RF2-1 and E. coli EC600 after exposure to different
concentrations of AZT. (f ) Relative expression of ATP synthesis-related genes, determined using RT-qPCR. (g) Swimming motility assay
after exposure to increasing concentrations of AZT. The plates were prepared using 0.3% agar and inoculated with 2 μL bacteria suspensions.
Scar bar, 1 cm. (h) Fold changes of conjugative transfer frequency with AZT when appended with monovalent and divalent ions (10mM).
Significant differences were evaluated by one-way ANOVA or two-way ANOVA analysis and shown with ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001,
and ∗∗∗∗P<0:0001. n.s. not significant.
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transfer experiments. Consequently, we found that the inhibitory
effect of AZT was drastically weakened in gene deletion bacteria,
indicating the importance of the interaction of AZT-thymidine
kinase in the decreased transmission of AZT (Figure 5(c)). Due
to the importance of tdk gene in DNA synthesis, we also deter-
mined the expression of related genes. As expected, AZT inhib-
ited the Rec system and the expression of seqA, smtA, and fur-
related genes in donor bacteria (Figure 5(d)). These results sug-
gested that AZT inhibited conjugation by acting on bacterial
thymidine kinase.

3.5. AZT Blocks Conjugative Transfer of ARGs In Vivo. The
results mentioned above confirmed that AZT suppressed the
conjugation frequency of multiple ARGs within and across gen-
era in vitro. The prevalent clinical application of AZT, however,
highlights the necessity to identify its effect in vivo [39]. In this
work, three types of clinical strains were selected as donor bac-
teria, with the E. coli EC600 as recipient bacteria. After adaptive
culture for one week, the mice were intra-abdominal infected
with the donor and recipient bacteria mixture (1 : 1). Next, a
single dose of AZT (10mg/kg) was intraperitoneally injected at
15min post-infection, and the equivalent PBS was set as a vehi-
cle. The number of colonies in the livers was determined using
specific antibiotics-containing plates, and the corresponding
conjugative transfer frequency was calculated (Figure 6(a)). As
shown in Figure 6(b), AZT treatment (10mg/kg) remarkably
reduced the conjugative transfer frequency of tet(X4) carrying
plasmid bymore than five-fold.With regard tomcr-1 or blaNDM
−5-harboring plasmids, only a two-fold reduction of conjugal
frequency exposure to AZT was observed (Figures 6(c) and
6(d)). Taken together, these results verified the capacity of
AZT to inhibit the conjugation process of clinical strains in vivo.

4. Discussion

Accumulating evidence suggests that the overuse and misuse of
antibiotics have been deteriorating the situation by contributing

to the dissemination of ARGs, which pose a constant threat to
global public health [40, 41]. In addition to antibiotics, nonanti-
biotic compounds have the potential to expedite the prevalence
of ARGs. For example, preservatives, including sodium nitrite,
sodium benzoate, and triclocarbon, were found to enhance the
spread of extracellular ARGs through conjugation via different
mechanisms [42]. Acetaminophen, an antipyretic agent available
in numerous prescriptions, promoted the horizontal transfer of
plasmid-borne multiple ARGs [43]. Despite the fact that the
promotive effect of several substrates on conjugation has been
confirmed, only a few compounds have been identified as HGT
inhibitors. As a nucleoside reverse transcriptase inhibitor, AZT is
involved in HIV-1 therapy and is combined with fosfomycin
against MDR Enterobacterales [44, 45], whereas its potential in
preventing plasmid transmission remains poorly understood.

In this study, we revealed the capability of AZT to block
the horizontal transfer of ARGs between intra- and interspe-
cies. Notably, the suppression effect of AZT could be found in
various clinically relevant plasmids, including mcr-1-bearing
IncX4 and IncI2 plasmids, blaNDM−5-bearing IncX plasmids,
and tet(X4)-positive plasmids. Also, AZT inhibited the trans-
mission across genera from E. coli to K. pneumoniae and
Proteus to E. coli. In agreement with previous studies, the
conjugation frequency across genera was inferior to the
within genera [12, 41], possibly due to reproductive isolation
and species barriers. In addition to conjugation, we also dem-
onstrated that AZT could prevent the spread of resistance
plasmids through chemical transformation, in which bacteria
take up free DNA from the environment and recombine it
into their genome [46]. However, the effect of AZT on natural
transformation remains to be evaluated in the future study.
Considering that HGT could take place in various conditions
due to the ubiquitous resistance, we also confirmed that the
inhibitory effect of AZT could be detected in diverse environ-
mental conditions, thereby providing an alternative approach
to effectively limit and control the prevalence of ARGs.
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RF2-1 after treatment with AZT.
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Specifically, the action of AZT was more obvious when the
conjugation temperature was at 37°C, which was more suit-
able for bacterial growth in mammals and environments. In a
murine model, we demonstrated that a single dose of AZT at
10mg/kg, which was comparable to the clinical dosage of
AZT to treat HIV infection, effectively prevented the transfer
of three resistance plasmids.

Mechanistic studies revealed that AZT disrupted bacterial
TCA, decreased the NADH required for respiratory chain
activities, and dissipated PMF through collapsing ΔΨ. These
findings also indicated the importance of energy metabolism
for bacterial conjugation. Consistently, our previous study
also revealed that accelerated bacterial energetic metabolism
contributes to the horizontal transfer of ARGs [47]. Most

importantly, the dissipation of bacterial PMF, a proton elec-
trochemical gradient across the cell membrane, was responsi-
ble for the inhibitory effect of AZT on conjugation. Consistent
with our findings, a previous study screened and identified
potent inhibitors of S. pneumoniae competence, which regu-
lated the transformation machinery and prevented gene
transfer by inhibiting bacterial PMF [48]. These evidences
revealed that PMF could serve as a critical target for the iden-
tification of HGT inhibitors [49].

Besides, the bacterial conjugative transfer system is amember
of the secretion system, which plays a critical role in the spread of
antibiotic resistance and virulence [50, 51]. One distinctive fea-
ture of the secretion system is that it is a multifunctional trans-
membrane channel consisting of numerous components, which

TABLE 1: SNP analysis between the original and AZT-passaged bacteria.

Strains/genes Products Nucleotide change POS Description

E. coli RS3-1
vgrG VgrG protein A⟶G 118/642 Type VI secretion system tip protein
Tdk Thymidine kinase A⟶C 205,578 DNA synthesis

E. coli RF2-1
vgrG VgrG protein C⟶T 859 Type VI secretion system tip protein
tolA TolA protein C⟶T 1,033 Inner membrane protein
yjjG Pyrimidine 5′-nucleotidase YjjG CT⟶C 38,711 DNA double helix structure
yqiJ Inner membrane protein YqiJ T⟶C 1,081 Inner membrane protein
tdk Thymidine kinase C⟶T 201,788 DNA synthesis
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FIGURE 6: AZT prevents the conjugative transfer of resistance plasmids in vivo. (a) Protocols of AZT-treated administration in mice (n= 9
biologically independent animals per group). Prior to AZT treatment, mice were supplied with a single intraperitoneal (i.p.) administration of
donor: recipient (1 : 1). (b–d) Conjugative transfer frequency of resistance plasmids from three donor bacteria, including E. coli RF2-1 (b),
E. coli LD67-1 (c), and E. coli L65 (d), to the recipient bacteria E. coli EC600, respectively, in mice livers. P values were determined using the
Mann–Whitney U-test.
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enables it to translocate DNA, proteins, and other macromole-
cules [52, 53]. Considerable attention has been drawn to the
conjugation system of the secretion system for its ability to dis-
seminate mobile genetic materials, many of which accelerate
resistance transmission [52]. For example, triclosan enhanced
the spread of extracellular ARGs through upregulating the
expression of secretion system-related genes [54]. Our research
verified that the inhibitory effect of AZT on conjugation was
associated with the downregulation of the bacterial secretion
system, which functions through an envelope-spanning multi-
protein channel like a pilus structure to contact with the recipient
cell surface [55].

Most importantly, our results revealed that the mutation
and deletion of the thymidine kinase gene conferred bacterial
resistance to AZT and substantially declined its inhibition on
conjugation, suggesting that thymidine kinase may be the
potential target of AZT. It is plausible that the small molecule
AZT could bind to the thymidine kinase and disrupt the
synthesis of bacterial DNA, thereby inhibiting the horizontal
transfer of resistance plasmids. Additionally, it is noteworthy
that the rapid development of AZT resistance under contin-
uous drug stimulation may limit the long-term usage of AZT
in clinical practice. Therefore, more animal model experi-
ments and in vivo evaluation of AZT are required to provide
comprehensive clinical guidance for its future applications.

In conclusion, our study demonstrates that the anti-HIV
drug AZT can serve as a broad HGT inhibitor, which effec-
tively inhibits the transmission of ARGs both in intrageneric
and intergeneric by disrupting bacterial PMF, restraining the
secretion system, and targeting thymidine kinase, thus pro-
viding a promising strategy to tackle AMR.
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