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Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease affecting pigs and causing massive pig
production losses with severe global economic recession. The immunization of live-attenuated vaccines is still one of the key
measures to CSFV management in endemic countries. However, there are also strong controversies about the usage of live-
attenuated vaccines, particularly in pregnant sows and young pigs, such as in Europe, where domestic pigs are routinely not
vaccinated until severe outbreaks occur. Here, we report a CSF outbreak in a pig farm in China, which affected more than 90% of
the delivery sows and led to ∼45% birth loss. Surprisingly, phylogenetic analysis showed that the CSFV isolate (named CSFV/
HeNLY2022, GenBank No. OR195698) was clustered into subgenotype 1.1a, closely together with the live-attenuated vaccine
strains. Further genomic analysis also revealed that the isolate CSFV/HeNLY2022 shared the highest nucleotide identity of 99.7%
with the C/HVRI vaccine strain (C-strain, GenBank No. AY805221). Moreover, compared to the C/HVRI strain, a total of eight
amino acid mutations, distributed in Erns (H436thY and S476thR), E1 (T502thI and P581thT), E2 (M979thK and A1061thS), NS5A
(A2980thT), and NS5B (I3818thM), were characterized in the CSFV/HeNLY2022 isolate. Our results suggested that the CSF
outbreak was most likely caused by the live-attenuated CSFV vaccine or its derivative. It raises concern that the unscientific
application of CSFV vaccines could potentially lead to CSFV spread in pigs. It is needed to perform a more rigorous evaluation of
the safety of the C-strain-derived vaccines in combination with other different live-attenuated vaccines.

1. Introduction

Classical swine fever (CSF) remains one of the most econom-
ically important viral diseases to pigs worldwide and is noti-
fiable to the World Organization for Animal Health [1]. The
causative agent, CSF virus (CSFV), belongs to the genus
Pestivirus (Pestivirus suis species) in the Flaviviridae family
and is an enveloped, single-stranded, positive-sense RNA
virus [2, 3]. Similar with the other members of the Pestivirus
genus, the genome size is about 12.3 kb with 5′ untranslated

region (5′ UTR), one open reading frame encoding a single
polyprotein, and 3′ UTR. The polyprotein is further cleaved
by host or viral proteases into four structural proteins (Core,
Erns, E1, E2) and eight nonstructural proteins (Npro, P7,
NS2, NS3, NS4A/B, NS5A/B) [4]. Based on the sequence of
5′ UTR, E2, and NS5B, CSFVs are genetically divided into
three genotypes (1, 2, and 3) and at least 11 subgenotypes
(1.1–1.4, 2.1−2.3, and 3.1–3.4) [1, 2]. Genotype 2 is predom-
inantly circulating in Asia and Europe [4–6].
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FIGURE 1: The clinical information of the pig farm and phylogenetic analysis of the CSFV isolates. (a) Mummies, rotten, and white fetuses were
observed when the sows began to deliver. (b) The immune procedure in the pig farm. PPV: WH-1 strain, inactivated vaccine; JEV: SA14-14-2
strain, live-attenuated vaccine; PRV: Batha-K61 strain, live-attenuated vaccine; CSFV: cell culture adapted C-strain, live-attenuated vaccine;
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Currently, there are approximately 38 CSFV-free coun-
tries, including all of North America, Oceania, as well as a
large part of the European Union [2]. However, CSF is still a
problematic issue for most countries of Asia, South and Cen-
tral America, and the Caribbean [4]. Several live-attenuated
vaccines, such as the lapinized Chinese vaccine (also known
as C-strain), the Japanese guinea-pig exaltation-negative
(GPE−) strain, and the French cell culture adapted Thiverval
strain, have been widely applied in mandatory control pro-
grams in CSFV endemic countries [7, 8]. Although these
vaccines are generally safe and effective, a strong controversy
also exists, particularly in pregnant sows and young pigs,
such as in Europe, where domestic pigs are not routinely
vaccinated until severe outbreaks occur [4].

2. Materials and Methods

From July 20, 2022, a severe reproductive disorder broke out
in a pig farm in Henan province, China. To explore the
causative agents, clinical specimens, including seven tissues
from aborted and mummified fetuses, three serums from
aborted sows, and two semen from boars, were delivered to
the laboratory for pathogen detection. The test methods for
CSFV, porcine reproductive and respiratory syndrome virus
(PRRSV), porcine pseudorabies virus (PRV), porcine parvo-
virus (PPV), Japanese encephalitis virus (JEV), porcine cir-
covirus 2 (PCV2), and porcine circovirus 3 (PCV3) were
according to a previously described methods [9–11].

Viral nucleic acid was extracted from samples usingMiniB-
EST Viral RNA/DNA Extraction Kit Ver.5.0 (TaKaRa, Code
No.9766). Viral RNA was further reverse transcribed to cDNA
using PrimeScript™ RT reagent Kit (TaKaRa, Code No.
RR037Q). The harvested viral DNA and cDNA were stored
at −80°C for further studies. To determine the genetic evolu-
tion of the CSFV strain in the pig farm, 13 pairs of primers were
designed (reference strain Genbank no. AF091507) to amplify
the genomic sequence (Table S1).

The evolutionary relationship was analyzed byMEGA 11.0
software using the neighbor-joining method with the Kimura
2-parameter model [12]. The genomic homology analysis and
amino acid sequence alignment were performed using the
MegAlign program of DNASTAR package (DNASTAR, Inc.,
Madison, WI, USA) to determine sequence homology and
genetic variations. And genomic similarity was further evalu-
ated using SimPlot 3.5.1 software [13]. The reference CSFV
strain information is listed in Table S2.

3. Results and Discussion

During July 20–August 28, 2022, severe porcine reproductive
disorders occurred at a pig farm in Henan province, China
(Figure 1(a)). Clinical specimens, including seven tissues
(spleen, inguinal lymph nodes, tonsil, and kidney) from

stillbirths, newborn piglets, three serums from aborted
sows, and two semen samples obtained from boars, were
sent to a laboratory for pathogen detection on July 27,
2022. All samples were tested negative for PRRSV, PRV,
PPV, and JEV by virus-specific nucleic acids tests. Serum
from only one sow tested positive for PCV2 and PCV3.
However, 10 of the 12 specimens were CSFV positive, and
one semen sample was suspected for CSFV. Then, a survey
was conducted by consulting with veterinarians on the pig
farm. OnMarch 14, the farm introduced 123 gilts (about 125
kg) from a professional breeding farm, where the pigs are
free of several diseases, including CSFV, PRRSV, PRV, JEV,
and PPV. The insemination was completed from April 1 to
May 7. Meanwhile, live-attenuated vaccines were applied
following the immune procedure, including JEV (SA14-14-
2 strain) immunized on May 11 and 23, CSFV (cell culture
adapted C-strain derivatives) and PRV (Batha-K61 strain)
simultaneously immunized during May 28–30 (Figure 1(b)).
Interestingly, the sows did not present any abnormal clinical
symptoms until delivery. When the sows began to deliver, a
large number of mummies, rotten, and white fetuses were
observed, accounting for ∼33.0% of the newborn piglets, and
the mortality rate of living piglets reached about 10% within
7 days. Overall, approximately 90% of the delivery sows
showed different degrees of reproductive disorders, and the
birth loss was about 45%.

High genetic variability is a common feature of the CSFV
genome [1]. To determine the genetic evolution of the CSFV
strain in the pig farm, 13 pairs of primers were used to
amplify the genomic sequence (Table S1). A near complete
genome of the strain (named CSFV/HeNLY2022, GenBank
No. OR195698) was acquired except the sequence of 478 bp
at the 3′UTR. Based on the encoding sequence of the poly-
protein, a phylogenetic tree was constructed by the neighbor-
joining method using MEGA11.0. As shown in Figure 1(c),
different with traditional CSFV classification, the CSFVs
could be divided into two evolutionary groups-GI (includes
genotypes 1 and 3) and GII (mainly genotype 2), consistent
with the classification of a previous study [4]. Surprisingly,
CSFV/HeNLY2022 was clustered into subgenotype 1.1a,
closely together with the live-attenuated vaccine strains. Fur-
ther genomic similarity analysis also revealed that the CSFV/
HeNLY2022 strain shared the highest nucleotide identity of
99.7% with the C/HVRI vaccine strain (C-strain/Harbin Vet-
erinary Research Institute, GenBank No. AY805221), but
lower identities 94.5%−95.3% with the reference genotype
1.1b and 1.1c strains, and 84.2%−87.9% with the reference
genotype 2.1 and 3.2 strains (Figures 2(a) and 2(b)). More-
over, compared to the C/HVRI strain, a total of eight amino
acid mutations were found in the CSFV/HeNLY2022 isolate.
As shown in Figure 2(c), the substitutions are distributed
in Erns (H436thY and S476thR), E1 (T502thI and P581thT),

PCV2: recombinant vaccine. (c) Phylogenetic analysis based on polyprotein nucleotide sequences of CSFVs. The phylogenetic tree was
inferred using MEGA 11.0 with the neighbor-joining method. The CSFV isolate CSFV/HeNLY2022 was marked by a black solid circle (●).
The live-attenuated prototype strain C/HVRI (GenBank no. AY805221) was indicated by a triangle symbol (▲).
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FIGURE 2: Homological analysis of the CSFV isolates. (a) The genomic homology analysis between the isolate CSFV/HeNLY2022 and
reference strains. The red rectangular box showed the percent indentity of CSFV/HeNLY2022 with live-attenuated strains. (b) Sequence
similarity was compared between CSFV/HeNLY2022 and representative CSFV strains. Sequence similarity was performed using the live-
attenuated vaccine C/HVRI strain as the query. (c) Amino acid mutation analysis between C/HVRI strain and CSFV/HeNLY2022 isolate.
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E2 (M979thK and A1061thS), NS5A (A2980thT), and NS5B
(I3818thM). Taken together, these data suggest that CSFV/
HeNLY2022 is a vaccine-derivative strain.

C-strain, also known as C/HVRI, HCLV (hog cholera
virus lapinized Chinese vaccine strain, HCLV) (GenBank
No. AF091507 and AF531433), was jointly developed by
China Institute of Veterinary Drugs Control and Harbin Vet-
erinary Research Institute (HVRI) in China in 1950s and is by
far the most frequently used CSF vaccine strain [8]. Based on
the C-strain, several modified live vaccines, such as C-strain
Riems, C-strain cell line origin, and Ingelvac®CSFMLV, were
further developed to improve the safety and efficacy of pro-
tection. These live vaccines played a critical role in the control
and eradiation of global CSF. Generally, C-strain is genetically
stable and safe for pigs of all ages [14], and extensive use data
exist mainly for the C-strain vaccines. However, the applica-
tion data (for example, the genetic variation after cell-adapted
culture) of modified live vaccines, particularly the cell line
origin, is relatively few.

Here, we observed a severe porcine reproductive disorder
in a pig farm in China. Laboratory diagnosis (10 of the 12
clinical samples were CSFV positive) and genetic analysis
showed that the pathogenic agent might be CSFV, and the
strain sequence has high genomic homology (99.7%) with
swine fever attenuated vaccine strain (C/HVRI, GenBank
No. AY805221). To the best of our knowledge, this is the first
report indicating that CSFV live vaccines (cell culture-
adapted C-strain derivatives) may have the potential to
induce pathogenicity in immunized pigs under specific con-
ditions. Meanwhile, it is not possible to exclude the conclu-
sion that other unidentified agents or factors could have
resulted in the reproductive issues observed (the possibility
of this scenario is considered low, since most of the clinical
samples were CSFV positive), until the virus has been isolated
and clinical disease reproduced by experimental infection.

One possible reason for the reproductive failures could be
the intensive nature and timings of the immunization. The
pregnant sows had been administered two doses of the JEV
live-attenuated vaccine (17 and 5 days ago) before immunized
simultaneously with PRV and CSFV live-attenuated vaccines.
The attenuated JEV and PRV vaccine strain could change the
immune status of pregnant sows, which might make them
more susceptible to CSFV. On the other hand, the amino
acid substitutions in the polyprotein region also perhaps led
to the virulence change. In the future, it is necessary to further
explore whether these mutations are associated with the
altered pathogenicity of the C-strain vaccine by virus isola-
tion, reverse genetics systems and pig challenge studies.
Another disadvantage of the traditional CSFV live vaccines
is incompatible with a serological differentiation of infected
from vaccinated animals (DIVA), which limits the CSF eradi-
cation in many countries [5]. Thus, many efforts have been
put into develop novel effective DIVA vaccines. Recently, E2
subunit vaccines have been developed and authorized in Eur-
ope and China, which would be very useful to promote the
prevention and eradication of CSFV [5, 15, 16].

In conclusion, our study suggests that the live-attenuated
CSFV vaccine will most likely cause clinical diseases in sows

and raises concern that the unscientific application of CSFV
live vaccines in pig immunization procedures could poten-
tially spread CSFV in pig farms. It is needed to perform a
more rigorous evaluation of the safety of the C-strain-derived
vaccines in combination with different live-attenuated vac-
cines. Further monitoring of combined vaccination applica-
tion in pigs is also urgently needed.
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