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Understanding pathogen emergence in new host species is fundamental for developing prevention and response plans for human
and animal health. We leveraged a large-scale surveillance dataset coordinated by United States Department of Agriculture, Animal
and Plant Health Inspection Service and State Natural Resources Agencies to quantify the outbreak dynamics of SARS-CoV-2 in
North American white-tailed deer (Odocoileus virginianus; WTD) throughout its range in the United States. Local epidemics in
WTD were well approximated by a single-outbreak peak followed by fade out. Outbreaks peaked early in the northeast and mid-
Atlantic. Local effective reproduction ratios of SARS-CoV-2 were between 1 and 2.5. Ten percent of variability in peak prevalence
was explained by human infection pressure. This, together with the similar peak infection prevalence times across many counties
and single-peak outbreak dynamics followed by fade out, suggest that widespread transmission via human-to-deer spillover may
have been an important driver of the patterns and persistence. We provide a framework for inferring population-level epidemio-
logical processes through joint analysis of many sparsely observed local outbreaks (landscape-scale surveillance data) and linking
epidemiological parameters to ecological risk factors. The framework combines mechanistic and statistical models that can identify
and track local outbreaks in long-term infection surveillance monitoring data.

1. Introduction

Starting in 2020, SARS-CoV-2 was found in white-tailed deer
(WTD) [1, 2]. By 2021, there was evidence of regional transmis-
sion in WTD through a combination of ongoing deer-to-deer
and human-to-deer transmission [2–5]. Early reports of SARS-
CoV-2 in WTD were from surveillance in local areas—a single
state, province, or region—during a 3- to 4-month window
[1, 2, 4, 6]. Experimental infection studies corroborated that
WTD are susceptible to SARS-CoV-2 infection, capable of

shedding and deer-to-deer transmission, and able to form
persisting neutralizing antibodies [7–9]. Endemic transmis-
sion of SARS-CoV-2 in WTD could position these popula-
tions as reservoir hosts, posing risk for variant persistence
[4, 10], evolution of new variants [6, 11], and spillback into
human populations [6, 11, 12]. Phylogenetic studies provide
evidence that animal–human transmission and viral evolution
routinely occurs in pandemics [13–15]. The potential for ongo-
ing zoonotic outbreaks highlights the need to understand dri-
vers of zoonotic pathogens establishing and persisting in new
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species to inform science-basedOneHealth decisions, improve
risk assessment, and plan effective surveillance, early response,
and mitigation strategies.

The United States Department of Agriculture (USDA) has
been working with state wildlife agencies to investigate the
occurrence of SARS-CoV-2 across the range ofWTD [16] and
examine its evolutionary patterns [5]. National-scale sur-
veillance data were collected by opportunistically sampling
hunter-harvested deer and through targeted agency man-
agement. However, the epidemiological dynamics of SARS-
CoV-2 emergence in WTD and ecological drivers of this
emergence have not been studied closely. Estimates for epi-
demiological dynamics can guide risk assessments for infec-
tion emergence events and risk-based surveillance plans to
study infection transmission rates, spread, and duration.

National surveillance data can reveal landscape-scale spa-
tial variation in infection that may be linked to regional and
environmental factors [17, 18]. Although individual outbreaks
occur at local scales, variation between outbreaks can arise
from complex interactions between environmental conditions
and infection transmission rates [19]. Landscape-scale analy-
ses routinely incorporate spatial statistical models to evaluate
the consistency (i.e., predictability) of potential risk factors
while accounting for the impact that geographic proximity
(i.e., spatial correlation) can have on empirical patterns [20].
For example, spatial correlation can quantify the probability
that neighboring local outbreaks may naturally co-occur, even
in the absence of predictive environmental risk factors.

We embed spatially and temporally correlated epidemi-
ological compartment models within a hierarchical statistical
model to estimate the dynamics of concurrent outbreaks
of SARS-CoV-2 in WTD across the conterminous United
States (CONUS). The epidemiological models quantify spa-
tially varying infection parameters, such as transmission rates.
The statistical framework partitions uncertainty to account
for the unbalanced spatial, temporal, geographic, and demo-
graphic distribution of samples that arises from opportunistic
sampling (e.g., more male vs. female WTD sampled). Hier-
archical modeling frameworks can identify epidemiological
parameters that best explain empirical infection patterns
[21–24]. Epidemiological compartment models are known
to provide informative predictions for SARS-CoV-2 deaths
in humans [25].

We use the hierarchical statistical model to study landscape-
scale factors that influence the epidemiological dynamics of
SARS-CoV-2 in WTD from national surveillance data that
captures multiple outbreaks. We estimate demographic differ-
ences in infection, spatially varying epidemiological character-
istics such as the effective reproductive ratio, and spatially
varying estimates for the dates of peak infection. We also
estimate potential spillover risk of infection from humans to
WTD. The hierarchical model estimates ecological factors
that can potentially explain the spatially varying differences.
The model’s spatial component makes it possible to predict
emergence dynamics in areas where surveillance data have
not been collected, to guide risk assessment and surveillance
plans critical for One Health initiatives.

2. Methods

2.1. Data

2.1.1. Surveillance of SARS-CoV-2 in White-Tailed Deer. We
present a detailed epidemiological analysis of data collected
from surveillance studies [16, 26]. Sampling for this surveil-
lance program was opportunistic and did not follow a preset
sampling design. Postmortem WTD samples were collected
voluntarily from multiple sources, including hunter-harvest
samples collected by state departments of natural resources,
management events conducted by USDA Animal and Plant
Health Inspection Service (USDA-APHIS), Wildlife Services,
and sampling of miscellaneous mortalities such as roadkill
collected by all agencies. Sample source and individual deer-
specific metrics including sex and age class were recorded.
Removal location data were collected at the county level.
When available, hunters were asked to disclose the county
of removal, but in lieu of removal county, the check station
county from where the sample collected was used. Nasal or
oral swabs were collected and tested for the presence of
SARS-CoV-2 viral RNA via rRT-PCR [5, 16, 26].

2.1.2. County-Level Covariates. We use the 2020 Census
Bureau population data [27] to estimate the human density
for each county (residents per sq. km.). We use the United
States Geological Survey’s Gap Analysis Project (GAP) WTD
species distribution model [28] to calculate the proportion
of each county’s land that can support WTD populations
(i.e., WTD habitat). The GAP model uses empirical analyses
of occupancy by habitat to predict the species occurrence
across landcover classes. GAP landcover class pixels are con-
verted to a binary based on if that pixel represents suitable
year-round WTD habitat. We used the total area covered by
WTD habitat pixels within a county divided by the total
county area to calculate the proportion of WTD habitat in
each county.

2.1.3. County-Level Time-Varying Mortality Rates for SARS-
CoV-2 in Humans. We compare SARS-CoV-2 surveillance
data for humans to the SARS-CoV-2 surveillance data for
WTD to evaluate the potential frequency of spillover from
humans to deer at landscape scales. The SARS-CoV-2 pan-
demic in humans is difficult to track precisely. Public health
departments use case counts, hospital admissions, mortality
data, and derived metrics such as the proportion of all weekly
deaths attributable to SARS-CoV-2 to monitor the state of
the SARS-CoV-2 pandemic in humans [29, 30]. Each metric
is susceptible to over- and under-reporting biases, which
motivates recommendations for using excess mortality to
monitor the pandemic instead [31]. Excess mortality is typi-
cally defined as the difference between the number of pre-
dicted all-cause deaths and the number of observed all-cause
deaths, with the difference being attributed to SARS-CoV-2
[32]. However, excess mortality can be challenging to use at
local scales since it can be negative and sensitive to the risk
that pandemic-related behavioral changes (i.e., driving less)
biases all-cause death predictions to be high [32, 33].
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We use the weekly death rate of SARS-CoV-2 in humans
as a lagged proxy to quantify the relative amount of human
SARS-CoV-2 infection. Human SARS-CoV-2 mortality can
be predicted reasonably well, which suggests reporting biases
for mortality rates may be consistent across time and space,
especially as compared to case counts that strongly depend
on testing rates [25]. We calculated the weekly death rate
of SARS-CoV-2 in humans per county using data from The
New York Times repository of SARS-CoV-2 cases (deaths per
100,000 people between Sunday and Saturday). The New York
Times data aggregates daily case and death counts published
by state and local health departments.

2.2. Statistical Analyses

2.2.1. Spatially Varying SIR Model. We specify a hierarchical
Bayesian model that uses sample-level test results to estimate
epidemiological parameters, associations with potential risk
factors, and prevalence over time. We estimate separate epide-
miological parameters for each county, within which we assume
there is a local, well-mixed population ofWTD. Landscape-scale
variation in infection arises from differences in parameters
across counties.

Spatially and temporally correlated, county-level susceptible–
infected recovered (SIR) compartmental models account for
trends across time and space. The model uses both sample-
and county-level covariates to influence SIR model parame-
ters, identifying potential risk factors for infection transmis-
sion. We apply the model to 2,893 counties across CONUS
estimated to support WTD populations and focus on the
weeks over which samples were collected.

The model’s response variable, Yk encodes the binary
rRT-PCR test results for the kth sample such that Yk ¼ 1 for
positive results and Yk ¼ 0 for negative results. The model
treats Yk as a Bernoulli random variable with probability pk
of being positive. We interpret pk as the individual test posi-
tivity or prevalence of SARS-CoV-2 for the kth animal’s
group, time, and location. The model uses the regression
function specified via

logit pkð Þ ¼ ∑
j
ajzkj þ logit iℓk

tkð Þ� �
; ð1Þ

to link rRT-PCR test results to county-level SIR curves and
sample-level covariates and external conditions (e.g., age,
sex, and human death rate). The aj and zkj terms specify
sample-level coefficients and covariates that adjust the base-
line infected compartment iℓk

ð⋅Þ : of the SIR curve for county
ℓk at time tk based on group-level characteristics and exter-
nal conditions for sample k, respectively. Covariates include
main effects and select pairwise interactions for animal age
class and sex, harvest source, and swab type (see Table S1 for
detailed covariate listing). We assume counties are small
enough for local WTD populations to be well-mixed, so that
sampled deer are representative of their respective, within-
county demographic groups.

We use the SIR curve to model the proportion of suscep-
tible sℓðtÞ :, infected iℓðtÞ :, and recovered rℓðtÞ : individuals in
county ℓ at time t via spatially and temporally correlated

systems of differential equations. The SIR system of differ-
ential equations for each county specified via

dsℓ tð Þ
dt

¼ βℓiℓ tð Þsℓ tð Þ;
diℓ tð Þ
dt

¼ βℓiℓ tð Þsℓ tð Þ − γiℓ tð Þ;
drℓ tð Þ
dt

¼ γiℓ tð Þ;

ð2Þ

uses a population-level recovery parameter γ and spatially
varying deer-to-deer contact rate βℓ. Each county’s SIR curve
is modeled with a local outbreak time t0;ℓ and common initial
conditions sℓðt0;ℓÞ : ¼ s∗0, iℓðt0;ℓÞ : ¼ i∗0, and rℓðt0;ℓÞ : ¼ r∗0 . The
SIR model’s infectious period assumptions induce exponen-
tial growth in population-level infection before fade out.
Modeling SIR parameters and initial conditions with respect
to spatial random effects and covariates accounts for spatial
and temporal similarities in SIR curves between counties.

We model the county-level contact rate βℓ relative to the
recovery rate γ scaled by a SARS-CoV-2 local effective repro-
duction ratio Rℓ for each county, such that βℓ ¼ γRℓ. The
local effective reproduction ratio quantifies the number of
WTD to which a single infected WTD can be expected to
transmit SARS-CoV-2 to naïve contacts. Covariates and spa-
tially correlated random effects influence Rℓ via

g Rℓð Þ ¼ ∑
j
bjxℓj þ ηℓ; ð3Þ

to link Rℓ to county-level covariates that can influence deer-
to-deer contact rates (e.g., habitable area and human popu-
lation density). The link function gð⋅Þ : is an exponentially
smoothed ramp that is linear for 0:1<Rℓ<10 and decays
to a low of Rℓ ¼ 0 and a high of Rℓ ¼ 15 (additional details
in Supplementary Materials). The bj and xℓj terms specify
county-level effects and covariates, and ηℓ specifies a spa-
tially correlated random effect for each county (see Table S1
for detailed covariate listing). A conditional autoregressive
(CAR) process model uses county adjacency reference infor-
mation to model spatial connection and correlation for ηℓ
[34]. The CAR model requires a spatial precision parameter
τℓ and a spatial range parameter γℓ, both of which are esti-
mated from data. We also use a CAR process to model the
local outbreak time t0;ℓ. Like ηℓ, the CAR model for t0;ℓ
requires a spatial precision parameter τt0 and spatial range
parameter γt0 . In conjunction with the other SIR curve
parameters, the local outbreak time t0;ℓ influences the time
at which peak prevalence occurs.

We use Markov chain Monte Carlo (MCMC) methods to
fit the model. MCMC procedures and prior distributions are
described in the Supplementary Materials (Table S2).

2.2.2. Spatio-Temporal Risk Evaluation and Mapping. The
SIR model Equation (2) can estimate spatially and tempo-
rally complete maps of SARS-CoV-2 prevalence for WTD
after model fitting, filling in data collection gaps. Model fit-
ting estimates SIR parameters for all counties ℓ and times t;
so, it is possible to estimate baseline prevalence iℓðtÞ : and
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other compartments at any point in time and space. Model
fitting also estimates sample-level coefficients aj; so, it is also
possible to replace the variables zkj, ℓk, and tk in Equation (1)
with appropriate substitutions zGj, ℓ, and t to estimate prev-
alence pGℓt for an arbitrary demographic group and sample
type G in county ℓ and time t. Within the Bayesian frame-
work, composition sampling is the technical method that
propagates uncertainty and dependance from estimates of
parameters to estimates of prevalence, maps, and other fea-
tures [34]. The prevalence pGℓt can be aggregated across both
time and space, independently or together.

The time-averaged prevalence pGℓ for demographic
group and sample type G in county ℓ is the average of the
weekly prevalences pGℓ1; pGℓ2; pGℓ3;…. Maps of pGℓ can
illustrate where infection tended to be more widespread
across the study period. Time-averaged prevalence also pro-
vides a metric that can be compared to empirical studies that
present summary statistics of raw surveillance data. Compo-
sition sampling, again, propagates uncertainty and depen-
dance from estimates of parameters to estimates of pGℓ.

The space-averaged prevalence pGAt for demographic
group and sample type G in area A summarizes all preva-
lence estimates pGℓt for G at time t in area A. The summary
pGAt is a flexible weighted average specified via

pGAt ¼ ∑
ℓ

wAℓpGℓt; ð4Þ

where wAℓ is the relative weight (or contribution) of county
ℓ to area A at time t. For example, we can use Equation (4) to
estimate overall prevalence in state A at time t by setting
wAℓ ¼ 0 for all counties outside state A. Within state A, we
can set wAℓ proportional to the total area of state A’s WTD
habitat that falls within county ℓ. So, if 20% of state A’s WTD
habitat falls within county ℓ, then we set wAℓ ¼ :2. As with
pGℓ, composition sampling propagates uncertainty and depen-
dance from estimates of parameters to estimates of pGAt .

2.2.3. Spillover Risk. We compare prevalence estimates that
are both space and time-averaged to evaluate spillover. We
use conditional probabilities to quantify spillover as the risk
that, on average, an infected deer was infected due to human
infection pressure. Using aggregation methods described
previously, the sample-level model Equation (1) can estimate
pDH , the time-averaged proportion of deer that were infected
with SARS-CoV-2 across CONUS. The sample-level model
can also estimate pD, the time-averaged proportion of deer
that were infected with SARS-CoV-2 across CONUS in the
absence of human infection pressure (i.e., through deer-to-
deer transmission and other zoonoses). The estimate for pD
uses the fitted model to predict prevalence with all human
SARS-CoV-2 dataset to 0. The sample-level model is not
designed to directly estimate the time-averaged proportion
of deer infected due to human infection pressure pH , but
we assume the causes of infection are mutually exclusive,
implying pDH ¼ pD þ pH . The conditional probability pHjDH ¼
1− pD=pDH exactly quantifies spillover as we defined it earlier.

Composition sampling propagates uncertainty and dependance
from estimates of parameters to estimates of pHjDH .

3. Results

3.1. Sample Composition andDescriptive Statistics. FromOctober
2021 throughMarch 2022 there were 10,217 nasal or oral swab
samples from WTD tested from 27 states and Washington,
DC. SARS-CoV-2 viral RNA was detected in 13% (1,307) of
the 10,217 samples [16, 26]. The raw, apparent prevalence
summaries are descriptive statistics that do not account for
the opportunistic sample collection. There were similar num-
bers of samples collected from both sexes (males= 5,076 and
females= 5,141), but SARS-CoV-2 viral RNA was detected
more often in males (15%) relative to females (11%). Adults
(8,000 samples) were more heavily sampled than juveniles
(2,217 samples), but detection rates were similar in both
groups (13% vs. 12%). Nasal swabs (9,343 samples) were col-
lected more often than oral swabs (364 samples), and 510
samples had missing data describing swab type. Infection
rates (i.e., proportion positive) appeared higher in oral and
unknown swabs (16% and 17%, respectively) relative to nasal
swabs (12%). For sample source, hunter-harvest samples were
the most common (4,577 samples with 17% positive), fol-
lowed by samples collected from USDA removal and man-
agement purposes (agency management; 3,866 samples with
11% positive), or other mortalities (e.g., roadkill; 1,774 sam-
ples with 6% positive). Hunter-harvest samples were collected
during a shorter time window (i.e., hunting seasons), while
agency management and other mortalities were collected
more consistently throughout the full period of surveillance.
Samples were collected from 589 of the 2,893 counties thatWTD
can inhabit in the conterminous United States (CONUS) [28],
and samples were not necessarily collected at regular time
intervals. Deer habitat is estimated via the Gap Analysis Project
(GAP) species distributionmodel [28]. Here, we quantify deer
habitat as the GAP-estimated proportion of a county’s land
area that is inhabitable to WTD.

3.2. Risk Factors

3.2.1. The Model Can Estimate Population-Level Epidemic
Characteristics of SARS-CoV-2 Outbreaks inWTD.We inferred
the effects of ecological risk factors using a hierarchical model
of the surveillance data that included a sample-level compo-
nent for inferring test positivity probability pk for each indi-
vidual k¼ 1;…; 10;217. The SIR component of the model
simultaneously estimates a local effective reproduction ratio
Rℓ for each county ℓ¼ 1;…; 2;893 that WTD can inhabit in
CONUS. A calibration curve assesses model fit, validating that
pk predicted positive and negative test outcomes well (Figure S1),
and that estimates of pk are close to apparent prevalence
(observed data) with underprediction in regions with high
predicted prevalence. The model fit indicates the method
can use landscape characteristics and spatial correlation
between observed outbreaks to estimate plausible ranges for
prevalence in more than the 589 counties fromwhich samples
were collected. The model fit indicates the method can also
estimate epidemiological characteristics of SARS-CoV-2 in
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WTD, such as the timing of outbreaks and peak prevalence
across counties.

3.2.2. Sex and Sample Source Are Significant Sample-Level
Variables. We estimate that sample-level test positivity for
agency harvested male WTD significantly increases relative
to agency-harvested female WTD (Figures 1 and S2, addi-
tional details in Table S1; 14% positive males and 10% posi-
tive females from October 2021 through March 2022). The
effect is moderated for hunter-harvested male WTD (10%
positive males and 8% positive females from October 2021
through March 2022). We also estimate that test positivity is
almost significantly decreased for juvenile male WTD. The
surveillance data do not provide evidence that oral vs. nasal
swab type or the main effect for age class (vs. the sex inter-
action) significantly impacts test positivity.

3.2.3. Inhabitable Deer Area Effect Is Weaker than Human
Population Density across Landscapes. For county-level effects,
there are positive, but insignificant trends between the local
effective reproduction ratio Rℓ and covariates. The effects of
deer habitat (a proxy for deer abundance) and human popula-
tion indicate an insignificant, noisy positive trend (Figure S3,
Rows b2 and b3 in Table S1). Predicted prevalence across
counties in WTD increased from a posterior average of 10%
when human population density was 10 people per sq. km. to
15% when human population density was 100 people per
sq. km. from October 2021 through March 2022 (Figure S3).
Predicted prevalence in WTD also increased from an average
of 10% when the proportion of WTD habitat is low (i.e., near
0) to 15% when WTD habitat is high (i.e., near 1; Figure S3).
Both potential trends are of biological interest, but are

statistically insignificant due to substantial variation across
counties.

3.2.4. Human SARS-CoV-2 Infection Tends to Increase WTD
SARS-CoV-2 Prevalence. The model estimates that SARS-
CoV-2 prevalence in WTD tends to increase with SARS-
CoV-2 infection in humans. The model estimates the odds
of WTD prevalence increases by 13% for every additional
11 human deaths per 100,000 county residents (logistic
regression parameter interpretation for row a8 in Table S1;
95% highest posterior density interval (HPDI) spans from
1% decrease to 31% increase). The model also estimates that,
on average, 10% of positive deer detected were due to human
infection pressure from October 2021 through March 2022
(95% HPDI: 0%–18%).

3.2.5. Local Effective Reproduction Ratios Greater than 1 Are
Widespread. Estimates of the local effective reproduction ratio
Rℓ were greater than 1 in nearly all counties in states where
samples were collected and ranged up to 2.5 in some counties
(Figure 2(a)). However, there is also large uncertainty in Rℓ

estimates in states where few samples were collected such that
Rℓ could have been less than one for many mid- and south-
western counties (Figure 2).

3.2.6. Estimates of Time-Averaged Prevalence Were At Least
3% in Most Sampled Counties. Estimates of average preva-
lence from October 2021 through March 2022 tended to be
higher on the east coast than in the mid- and south–west (i.e.,
time-averaged prevalence; Figure 3(a)). The model-based esti-
mates adjust for uneven sample collection rates over time. The
average county-level apparent prevalence (Figure 3(b); the pro-
portion of positive test results per county) was more extreme

Unknown swab from WTD

Unknown swab, hunter-harvested WTD

Male WTD

Oral swab from WTD

Juvenile WTD

Local human death rate increases by 1 std. dev.

Oral swab, hunter-harvested WTD

Oral swab, WTD collected from other sources

WTD collected from other sources

Hunter-harvested WTD

Juvenile male WTD

Male WTD, collected from other sources

Male WTD, hunter harvested

−99 −90 −50 0 100 1,000
Percent change in odds of infection relative to reference group

Ri
sk

 fa
ct

or

FIGURE 1: Estimated effects of logistic regression covariates on odds of infection relative to reference group (i.e., risk factors, aj terms in
Equation (1)). The reference group is oral swab samples from adult female WTD harvested by agency management.
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(i.e., higher or lower) than time-averaged estimates in counties
with low sample sizes (Figure 3(d)). Importantly, uncertainty
in time-averaged prevalence estimates (Figure 3(c)) was also
higher in counties with low sample sizes. Predicted peak prev-
alence varied spatially across the range of WTD studied.

3.2.7. Peak Prevalence Occurred Earliest in Counties in the
Northeast and Mid-Atlantic. Peak prevalence occurred later
in counties in the midwest and southeast (Figure 4(a)). How-
ever, there was local variation across counties within a state.
In New York, peak prevalence is predicted to have occurred
1–3 months earlier in the western counties compared to the
eastern counties (Figure 4(a)). However, uncertainty in pre-
dicted timing is higher in the eastern counties of New York
compared to the western counties (Figure 4(b)). Examination
of SARS-CoV-2 prevalence in WTD over time predicted out-
break start, peak prevalence, and prevalence decline occurred
earlier in Onondaga County, New York than in Cuyahoga
County, Ohio; the two most intensively sampled counties in
our study (Figure 5). Comparison to human death rate data
illustrates how SARS-CoV-2 in humans is not necessarily a
primary driver for SARS-CoV-2 prevalence in WTD, but can
prolong the duration of an outbreak in WTD.

4. Discussion

We identify ecological drivers of spatially varying outbreak
dynamics and infer outbreak sizes, timing, and epidemiological
parameters across the full range of WTD. Outbreaks were well
characterized by assuming a single epidemic peak followed by

fade out. We estimated that the Rℓ (i.e., locally varying R0)
ranged between 1 and 2.5, and that infection trends in humans
may have contributed to 10% of infections in WTD. Evaluation
of ongoing monitoring data will help evaluate persistence and
whether multiple-peak epidemic models would better describe
the infection process over longer time scales. Our methods pro-
vide landscape-scale surveillance programs a framework to infer
population-level epidemiological processes from nonrandom
sampling designs.

We provide an approach for estimating population-level
outbreak parameters from multiple, sparsely observed out-
breaks. Model-based analyses of surveillance data estimate
infection prevalence at all points in space and time to fill in
data collection gaps. Prevalence estimates can be interpreted
as reconstructions of infection trajectories. Spatially analyz-
ing reconstructed infection trajectories can identify regions
that have been heavily impacted by infection and are poten-
tially at increased risk for future outbreaks.

Ourmodel estimates that SARS-CoV-2 in humans explained
a substantial proportion of prevalence in WTD (10%) in the
initial outbreaks. The result suggests human-to-deer spillover
rates were high, are potentially important for persistence, and
may be useful for informing targeted, risk-based surveillance.
Phylogenetic studies corroborate our finding through the
identification of many cases of human-to-deer transmission.
However, the sampling design of these studies has prevented
them from estimating population-level spillover rates [2, 3, 5, 26].
While SIR models do not identify individual spillover events,
the human infection proxy within the sample-level model
Equation (1) estimates the relative frequency of deer-to-deer

Rl
1.0 1.5 2.0 2.5

ðaÞ

P (Rl < 1)
0.0 0.2 0.4 0.6 0.8

ðbÞ
FIGURE 2: (a) Estimates for local effective reproduction ratio Rℓ and (b) uncertainty (posterior probability that Rℓ<1). States that did not
participate in the study are grayed out. Counties estimated through the GAP WTD species distribution model to not support WTD
populations are also grayed out.
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vs. human-to-deer transmission events. In general, spillover can
occur through direct contact between animals, or indirectly
through excretions, blood, or intermediate hosts [35, 36]. Tar-
geted surveillance programs that closely monitor small groups
of wild animals are important for identifying likely pathways
for spillover of SARS-CoV-2 from humans to WTD. Future
studies with finer-scale data may also attempt to use a two-
host system to closely model and quantify the impact of spill-
back from deer to humans on disease transmission and per-
sistence [37].

Interpretation of epidemiological parameters, such as Rℓ,
inherently depends on the specified disease model and its
assumptions. Our model fits apparent prevalence well, with
some underprediction in areas of high apparent prevalence.
Improved sampling might improve model fit by reducing the
effect of potential sampling bias on model fit diagnostics, or
by better resolving potential risk factors and temporal trends.
Disease models with more flexible assumptions about infectious

periods, such as those that more closely model latent infec-
tious periods [38], will inherently yield different reproductive
ratios that could potentially better describe epidemiological
dynamics if model fit is improved. However, waning immu-
nity and changing demographics may be more appropriate
extensions to the basic SIR modeling presented. But, such
models require more precise demographic data and longer
surveillance than are available.

An understanding of risk factors that drive epidemiologi-
cal dynamics can be leveraged to predict potential patterns in
future outbreaks. Evidence for substantial population-level
spillover risk suggests that focusing surveillance of WTD in
regions near human SARS-CoV-2 outbreaks would lead to
finding the most samples that are positive for SARS-CoV-2.
However, it is currently unclear if humans are infecting
WTD close or far from their place of residence. Additional
surveillance data could help obtain the best information for
risk assessment for variants of concern in active circulation.

0−0.03
Estimated prevalence

0.03−0.09 0.09−0.15 0.15−0.3 0.3−0.6 0.6−1

ðaÞ
0−0.03

Apparent prevalence
0.03−0.09 0.09−0.15 0.15−0.3 0.3−0.6 0.6−1

ðbÞ

0−0.01Prevalence estimated within 0.01−0.05 0.05−0.1 0.1−0.3 0.3−0.6 0.6−1

ðcÞ
1−9

Samples
10−19 20−49 50−99 100+

ðdÞ
FIGURE 3: (a) Estimates for time-averaged prevalence from October 2021 through March 2022, (b) apparent prevalence from October 2021
through March 2022, (c) uncertainty for estimated prevalence (maximum half-width of 95% highest posterior density interval), and
(d) number of samples collected from each county. Gray shading is as described for Figure 2.
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Pathways for spillover can also be better assessed by collect-
ing more data on deer-to-human interactions through cam-
era studies and surveys that ask participants to describe their
interactions with wildlife.

Posterior summaries for the risk factors identified in
Figure 1 suggest potential strategies to optimize SARS-CoV-2
monitoring in future surveillance, with additional details in
Table S1. Surveillance plans must balance resources between
studying transmission and persistence to improve risk, assess-
ment, and managing infection through control [39]. Descrip-
tive summaries of the raw data suggested that prevalence
differed for sample source (i.e., hunter vs. agency) and swab
type (i.e., oral vs. nasal). However, the model did not find
strong evidence for this pattern once the imbalanced sampling
design factors were accounted for together. So, surveillance
data collected from different sources and methods can likely
be analyzed together without concern, similar to some rabies
surveillance data [40]. Themodel also suggests male deer were
infected at higher rates than female deer, implying that sam-
plingmale deer can increase chances of detecting SARS-CoV-2
in WTD populations when surveillance resources are limited.
Sex-linked differences have also been identified through other
surveillance programs [2, 4, 16, 26].

Local effective reproductive ratio of SARS-CoV-2 in
WTD appeared to weakly increase with human population
density. This might suggest that areas with higher human
density have greater opportunity for zoonotic transmission,
contributing to the force of infection in deer. Regional stud-
ies have also identified different infection rates with respect
to broader, urban vs. rural land designations [26]. The effect
of human density was relatively small with ample variation.

Our model did not consider changes to human density across
time, which likely does not accurately reflect human move-
ment and contact patterns with deer because we did not have
such data. For instance, the effect of areas such as camp-
grounds that see pulses of human density at irregular time
intervals (i.e., around holidays) would not be captured by
static landscape covariates [40]. Furthermore, natural areas
such as parks and campgrounds that have pulses of human
activity are also places where humans are likely to encounter a
deer. Finer scale data on human mobility and human–deer
contact frequencies in different settings would improve our
understanding of this relationship and enable identification of
additional landscape variables that could help identify how
spillover is occurring and be included in risk mapping.

The model also suggested the local effective reproductive
ratio increased with the proportion of a county’s land that
supports WTD populations, albeit weakly. Surveillance pro-
grams may choose to prioritize sampling counties with ample
WTD habitat, which are also assumed to be counties with
larger WTD populations. In lieu of using WTD density esti-
mates, we used the proportion of a county’s land that WTD
can inhabit (i.e., WTD habitat) to approximate where WTD
might be more densely populated. We chose this approach
because WTD density information is limited to small-scale
studies due to the difficulty of collecting this data [41], and
methods for state-level abundance estimation vary across
states, which introduces additional variation. Increased habi-
tat suitability is tied to increased incidences of CWD inWTD
[42], with the supporting hypothesis that suitable habitat sup-
ports higher density of WTD. The effect seen here might sug-
gest infection reproduction is facilitated through deer-to-deer

Nov '21
Peak prevalence

Dec '21 Jan '22 Feb '22 Mar '22

ðaÞ
0

Peak prevalence known within (weeks)
1 2−3 4−7 8+

ðbÞ
FIGURE 4: (a) Estimates for peak prevalence time with (b) uncertainty (maximum half-width of 95% highest posterior density interval). Gray
shading is as described for Figure 2.
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contact. However, finer scale WTD density information or
habitat data that more closely informs WTD density would
provide further insight to this relationship.

Infection transmission pressure from humans to deer is
difficult to quantify because reporting rates in humans can
vary widely, making infection surveillance in humans chal-
lenging, but our method suggests proxies (i.e., human death
rate) can be effective tools for surveillance of SARS-CoV-2 in
WTD. However, the proxy has likely become increasingly
uninformative (after the time frame of this study) as effective
treatments and vaccination have become available and sur-
vival has increased, even when infection rates are high.
Future evaluation of SARS-CoV-2 in WTD may require dif-
ferent proxies for human infection. Surveillance of SARS-
CoV-2 in humans requires extensive funding and consistent
community participation, and is further challenging because
positive at-home tests are generally not included in official
reporting. Public health priorities also impact the availability
of human SARS-CoV-2 surveillance data [30]. One Health
approaches toward disease surveillance can potentially help
provide structure to improve sampling efforts across species.

Long-term monitoring can also provide data to evaluate pre-
dictive models.

Quantifying infection dynamics requires intensive data
distributed throughout time and space. In this study, we used
an opportunistic sampling design, which incurred temporal
and spatial data gaps. Model-based analyses accounted for
uneven sampling and estimate infection dynamics between
data collection gaps. The model propagates uncertainty in
our estimates of SARS-CoV-2 prevalence inWTD (Figure 3(c)),
and uncertainty in these estimates could be reduced through
continued sampling in counties where long-term sampling
has already taken place. Furthermore, new sampling in coun-
ties that do not currently have data and are distant from well-
sampled counties (e.g., represent different values in of covari-
ates such as proportion of land inhabitable to WTD, human
density, human case rates, or other potential risk factors that
have yet to be explored) would bolster the confidence of these
estimates. However, requirements for reducing estimate uncer-
tainty can change over time, and would be best addressed using
an adaptive sampling design. Future surveillance programs may
also reduce uncertainty in county-level estimates by intensively

Onondaga

10
/2

5

11
/2

1

12
/1

9

01
/1

6

02
/1

3

03
/1

4

04
/1

1

05
/0

9

06
/0

6

07
/0

4

08
/0

1

08
/2

9

09
/2

6

0.00

0.25

0.50

0.75

1.00

4

8

12

Pr
ev

al
en

ce

14
-D

ay
 h

um
an

 d
ea

th
 ra

te
(n

ew
 d

ea
th

s p
er

 1
00

 k
)

ðaÞ

Cuyahoga

10
/2

5

11
/2

1

12
/1

9

01
/1

6

02
/1

3

03
/1

4

04
/1

1

05
/0

9

06
/0

6

07
/0

4

08
/0

1

08
/2

9

09
/2

6

0.00

0.25

0.50

0.75

1.00

0
20

2021−2022 Season

Pr
ev

al
en

ce

14
-D

ay
 h

um
an

 d
ea

th
 ra

te
(n

ew
 d

ea
th

s p
er

 1
00

 k
)

ðbÞ
FIGURE 5: Estimated prevalence (solid black line) with uncertainty (95% HPD interval as gray shading) in the two most intensively sampled
counties, (a) Onondaga county, New York (252 samples) and (b) Cuyahoga county, Ohio (609 samples). Blue time series shows the human
death rate for both counties during the same time period. Black dots depict apparent prevalence (i.e., sample proportion of positive tests),
with error bars from 95% frequentist intervals for proportions.
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sampling individual WTD populations within a subset of coun-
ties where samples are collected. Sampling individual WTD
populations within counties can augment landscape-scale data
through expanded hierarchical models, improving estimates
of transmission dynamics and their risk factors. Similarly,
uncertainty can also be reduced via repeated, long-term
sampling at specific locations spread across different eco-
systems, focusing both on humans and WTD. Such sampling
can help to disentangle the drivers of infection dynamics and
persistence both within and across populations—the subject
of our ongoing work.

5. Conclusions

Estimates of outbreak parameters and their corresponding
risk factors can help optimize strategies for risk-based sur-
veillance, prevention, early response, and control of zoonotic
diseases. Optimization is important because surveillance
programs can only partially observe disease trajectories due
to limited resources. Our work demonstrates how prevalence
estimates can be interpreted as reconstructions of disease
trajectories. Combining estimates of prevalence across points
in space and time helps to fill data collection gaps for
population-scale inference of epidemiological parameters
that can be used to understand drivers of transmission risk
and disease hotspots in a newly emerging disease at the
human–animal interface.

Data Availability

The complete dataset analyzed in this study is not publicly
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ing author on reasonable request. Key information about
sample sizes and model output, such as fitted surfaces, are pro-
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