
Research Article
Predicting Potential PRRSV-2 Variant Emergence through
Phylogenetic Inference

Nakarin Pamornchainavakul , Mariana Kikuti , Igor A. D. Paploski ,
Cesar A. Corzo , and Kimberly VanderWaal

College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA

Correspondence should be addressed to Nakarin Pamornchainavakul; pamor001@umn.edu

Received 30 October 2023; Revised 4 January 2024; Accepted 23 January 2024; Published 5 February 2024

Academic Editor: Nan-Hua Chen

Copyright © 2024 Nakarin Pamornchainavakul et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Porcine reproductive and respiratory syndrome (PRRS) is a significant pig disease causing substantial annual losses exceeding half a
billion dollars to the United States pork industry. The cocirculation and emergence of genetically distinct PRRSV-2 viruses hinder PRRS
control, especially vaccine development. Similar to other viral infections like seasonal flu and SARS-CoV-2, predictive tools for
identifying potential emerging viral variants may prospectively aid in preemptive disease mitigation. However, such predictions
have not been made for PRRSV-2, despite the abundance of relevant data. In this study, we analyzed a decade’s worth of virus
ORF5 sequences (n= 20,700) and corresponding metadata to identify phylogenetic-based early indicators for short-term (12 months)
and long-term (24 months) variant emergence. Our analysis focuses on PRRSV-2 Lineage 1, which was the predominant lineage within
the U.S. during this period. We evaluated population expansion, spatial distribution, and genetic diversity as key success metrics for
variant emergence. Our findings indicate that successful variants were best characterized as those that underwent population expansion
alongside widespread geographical spread but had limited genetic diversification. Conditional logistic regression revealed the local
branching index as the sole informative indicator for predicting population expansion (balanced accuracy (BA)= 0.75), while ancestral
branch length was strongly linked to future genetic diversity (BA= 0.79). Predicting spatial dispersion relied on the branch length and
putative antigenic difference (BA= 0.67), but their causal relationships remain unclear. Although the predictive models effectively
captured most emerging variants (sensitivity= 0.58–0.81), they exhibited relatively low positive predictive value (PPV= 0.09–0.16).
This initial step in PRRSV-2 prediction is a crucial step for more precise prevention strategies against PRRS in the future.

1. Introduction

Infectious disease emergence and reemergence have posed sig-
nificant challenges to human well-being over the centuries.
Despite advancements in technology, the ability to preemp-
tively prepare for such unexpected events remains limited
unless there is a high degree of emergence predictability. These
threats extend beyond human and zoonotic diseases that
directly impact human health; they also include livestock dis-
eases that undermine food security. Over 30 years ago, the
United States witnessed the emergence of a viral disease known
as porcine reproductive and respiratory syndrome virus
(PRRSV) [1], which causes substantial productivity losses in
commercial pig farming. Today, PRRSV is endemic in swine
herds worldwide [2] and remains a significant concern due to

its enormous economic consequences [3–6]. Genetic variants
involved in contemporary outbreaks are distinct from the early
virus [7], reflecting the rapid mutation rate of the virus [8].
Some of these variants have been associated with distinct viru-
lence or epidemic characteristics, presenting atypical clinical
manifestations [9] or increased disease spreadability [10].

In the United States, Betaarterivirus suid 2, also known as
PRRSV-2 [11], is the predominant viral species responsible
for most PRRS outbreaks [12]. The PRRSV-2 viral popula-
tion is characterized by cocirculation and turnover of distinct
genetic variants, and the routine emergence and epidemic-
like spread of novel variants across space and time [7, 13]. To
date, classification of PRRSV-2 genetic variants has primarily
relied on analyzing the variation in the open reading frame
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5 (ORF5) gene [7, 12, 14–16], which encodes the viral glyco-
protein 5 (GP5). GP5 possesses major antigenic determi-
nants [17] that may have evolved under immune selection
pressure [8, 12]. The genetic relationship between viral
clades, as demonstrated through ORF5 phylogenies, gener-
ally reflects overall genome-level relationships, particularly
in cases where recombination is absent within a given set of
samples [18, 19]. Over time, the operational taxonomic unit
(OTU) of ORF5 has undergone revisions in its classification
methodology, transitioning from restriction fragment length
polymorphism patterns [16] to lineage and sublineage clas-
sification based on phylogenetic analysis [7, 12, 15]. Subli-
neages constitute the smallest phylogeny-based OTU, with
typically less than 8.5% nucleotide dissimilarity within the
group [7, 12], and are made up of finer scale genetic clades,
here referred to as “variants,” that potentially exhibit hetero-
geneous virulence or epidemiological impacts [10, 19].

In addition to implementing biosecurity measures, vac-
cination plays a crucial role in mitigating clinical PRRS out-
breaks on farms that have tested positive for the virus
[20, 21]. While the precise mechanisms of immunity against
PRRSV, particularly regarding neutralizing antibodies, have
yet to be fully understood [22, 23], the genetic diversity
within epitopes found on GP5 is recognized as a factor influ-
encing immunological cross-protection. Various immune
evasion mechanisms have been proposed, including epitope
masking through N-glycosylation, the presence of immuno-
dominant non-neutralizing (decoy) epitopes, and the exis-
tence of additional epitopes conferring homologous but not
heterologous neutralization on GP5 [17, 24, 25]. These
mechanisms are presumably associated with the variable effi-
cacy of vaccines. Consequently, in the past decade, there has
been a growing trend for selecting virus strains for immuni-
zation that are either homologous or genetically more similar
to field strains. Examples include the use of field viruses as
autogenous inoculums to homogenize immunity within a
herd (so-called live virus inoculation), the development of
new commercial vaccines that are based on the currently
most prevalent phylogenetic lineages [26, 27], and the use
of killed vaccines matched to the amino acid sequence of
particular epitopes [28]. However, the effectiveness of using
a “homologous” vaccine to confer optimal protection remains
a topic of debate [22, 23, 29–32], but one key challenge for
such approaches is the continual emergence of new genetic
variants [33, 34].

Efforts to predict viral strain emergence have been success-
fully developed for certain human contagious diseases, with the
aim of minimizing future outbreaks through informed vaccine
strain selection. One pioneering example is the prediction of
human seasonal influenza, where the fitness of different genetic
variants is inferred from the branching patterns of each node
on a phylogenetic tree—a metric known as the local branching
index (LBI) [35]. Subsequent advancements have enhanced
short-term prediction accuracy by incorporating LBI with
tree shape and epitope features [36]. More recently, it has
become possible to predict the emergence of SARS-CoV-2
lineages by evaluating key amino acid substitutions and spatio-
temporal prevalence data from millions of genomes, without

the need for complete phylogenetic tree reconstruction [37].
Surprisingly, such informative prediction techniques have not
been explored for PRRSV-2, despite the continuous generation
of large amounts of genetic data and corresponding metadata
through ongoing monitoring and surveillance. In this study,
we leveraged a decade’s worth of PRRSV-2 ORF5 sequences
from one of the largest swine disease monitoring databases
in the U.S. Our objective was to systematically classify
PRRSV-2 variants, assess their epidemiologic success over
time with respect to population growth, geographic expan-
sion, and genetic diversification, and develop predictive
models that can be used to estimate a variant’s future emer-
gence potential. By identifying variants of interest at a given
point of time, our proposed model offers a proactive
approach and provides an additional tool for achieving
more precise PRRS control.

2. Materials and Methods

2.1. Data Collection. PRRSV-2ORF5 sequences collected from
January 1, 2010 to June 30, 2021 were obtained from the Mor-
rison Swine Health Monitoring Project (MSHMP), which is an
ongoing monitoring program that archives, analyzes, and
reports data related to major swine diseases. MSHMP
monitors over 50% of the U.S. sow population and curates all
PRRSV ORF5 sequences generated by MSHMP participants.
Sequences are obtained directly from participants or from the
main veterinary diagnostic laboratories where participants
typically submit their diagnostic samples (University of
Minnesota, Iowa State University, South Dakota State
University, and Kansas State University). In U.S. swine
production systems, ORF5 sequences are usually generated
for almost all outbreaks on breeding farms within the system.
The lineage or sublineage of each sequence is determined based
on its nucleotide distance from reference sequences [7, 12].
Lineage 1 (L1) has been a predominant group (>60% of
identified sequences) of PRRSV-2 circulating in the U.S.
during the recent decade [7, 12, 13]. The second and third
most common groups (<40%), namely L5 and L8, are almost
entirely vaccine-associated [12, 38–40] and do not represent
the natural evolutionary dynamics of PRRSV-2. Hence, we
used only L1 ORF5 sequences for the analysis of PRRSV-2
genetic variants. For this study, 20,700 complete length (603
nucleotides) L1 ORF5 sequences were compiled and then
aligned using the local alignment method in MAFFT v.7.310
[41]. All sequences had sampling date information and most
sequences had corresponding spatial metadata including the U.
S. state (74.8% of all sequences) and county (66.2% of all
sequences) (Figure S1).

2.2. Phylogenetic Reconstruction and Variant Assignment.
Our goal was to identify early phylogenetic indicators that
were predictive of a genetic variant’s future epidemiological
success. Therefore, we approached this analysis by defining a
series of sliding windows (Figure 1(a)) over which to quantify
early indicators, and then correlate these indicators to the
variant’s future success in a follow-up period of time. The
ORF5 alignment was used to reconstruct retrospective phylog-
enies across different windows of time. For each observation
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FIGURE 1: Conceptual framework of data generation for systematic predictive modeling. (a) Temporal distribution of PRRSV-2 L1 ORF5
sequences used in this study. As an example, observation time (t) is shown in July 2011 (vertical arrow) with its corresponding pretree (purple
bars) and posttree (purple and gray bars) periods. The pretree and posttree were built for each t set as every six months (red bar) from 2011 to
2020. (b) Example pre- and post-timed phylogenetic trees inferred from sequencing data. Tips in purple show sequences from the pretree that
are present in both posttrees. (c) Information computed in an example pretree, including designated variants (colored rectangle frames) and
early indicators (red circle shows the ancestral node of the blue variant). (d) Success measures (colored oblong shape) are calculated from
variants’ new descendants in the posttree.
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time (t), set as every 6 months starting from 1 January 2011 to
1 July 2020, we built two sets of “pretrees” (time-scaled phy-
logenetic trees of sequences collected within the previous 12 or
24 months before time t) and four sets of “posttrees” (time-
scaled trees created from the same sets of sequences in the
pretrees plus sequences collected within the following 12 or
24 months after time t) (Figures 1(a) and 1(b)). Some trees at
the beginning and the end of the study period could not be
built due to truncation of sequences 24 months before or after
time t. We chose a 6-month sliding window and a 12- or
24-month observation period by considering the frequency
of data sharing with the database, the yearly seasonal pattern
of PRRS incidence [42, 43], and the number of sequences
utilized to reconstruct a tree.

From resampled alignments generated by PHYLIP’s Seq-
boot v.3.69, each tree was initially built by FastTree v.2.1.10
[44] using the maximum likelihood (ML) method, the GTR
+CAT substitution model (generalized time-reversible with
each site’s rate approximation), and 100 bootstrap replicates.
The ML tree bootstrap clade supports were then converted
into the transfer bootstrap expectation using BOOSTER
v.0.1.1 [45], as transfer bootstraps typically yield better
results for phylogenetic analyses with large datasets and rap-
idly evolving viruses [45]. We defined PRRSV-2 variants
based on the patristic distance, i.e., the sum of the shortest
branch length connecting two taxa on the tree. The “Avg
Clade” method of TreeCluster v.1.0.3 [46] was applied to
each ML tree, which classified sequences into variants where
a variant was defined as a monophyletic clade with an aver-
age pairwise patristic distance of <2% regardless of the clade
support (Figure 1(c)). Using TreeTime v.0.9.2 [47], branch
lengths in each ML tree were reestimated to generate two
time-scaled phylogenetic trees, one tree using the default
strict molecular clock model with highly diverging tips
pruned and the other tree using the uncorrelated relaxed
clock model without tree pruning. Highly diverging tips
were tips for which residuals exceed four interquartile dis-
tances of the residual distribution in the least-square root-to-
tip distance versus sampling date regression [47].

2.3. Early Indicators. Early indicators, which were considered
as potential parameters in the predictive model, were either
retrieved or calculated from the set of pretrees (Figure 1(c)).
First, we located the most recent common ancestor of each
variant on the tree (i.e., variant’s ancestral node and branch)
using Biopython v.1.81′s Bio.Phylo toolkit [48] in Python
[49]. Thereafter, we calculated four key categories of param-
eters related to the variant’s ancestor, including ancestral
branch length, LBI, nucleotide substitution rate, and putative
antigenic distinctiveness from contemporary most-prevalent
variants.

The ancestral branch length is a length of branch from
the ancestral node to the closest deeper node in the original
ML tree and thus provides a metric of genetic divergence
from other sequences in the tree. LBI is the sum of the tree
length in each node’s neighborhood, exponentially weighted
by distance from the focal node [35]. Using Nextstrain’s
“augur lbi” command [35, 50], the LBI of each variants’

ancestral node (ancestral LBI) was computed from the strict
clock time-scaled tree with the tau (τ) parameter, which
controls the size of neighborhood measured in units of the
average pairwise distance in the samples [35], equal to 0.0625
times the average pairwise patristic distance of each particu-
lar tree, as recommended by Neher et al. [35]. Average pair-
wise patristic distance was calculated by “cophenetic.phylo”
function in R’s ape v.5.6.2 [51, 52]. Nucleotide substitution
rates for each variants’ ancestral branch (ancestral rate) were
extracted from the relaxed clock time-scaled trees. We also
averaged the substitution rates across all branches within a
variant’s clade (average clade rate).

Lastly, putative antigenic distinctiveness of each variant
was measured in two ways based on the variant’s ancestral
GP5 sequence (translated ORF5 amino acid sequence), with
the hypothesis that variant’s whose sequences differ in anti-
genically relevant ways from the most prevalent variants at
the time may be better able to escape population immunity
present against those more prevalent variants. A variant’s
ancestral sequence was inferred as part of the relaxed clock
time-scaled tree building using the “ancestral” function in
TreeTime v.0.9.2 [47]. Putative antigenic distinctiveness was
measured as (1) ancestral amino acid distance—a pairwise
amino acid distance (“dist.aa” function in R’s ape v.5.6.2)
[51, 52] between the ancestral GP5 to the consensus GP5
from all samples collected in the same calendar year and (2)
ancestral N-glycosylation pattern similarity—Jaccard similar-
ity between potential N-glycosylation sites (positions having
N-X-S/T sequons) [53] on the ancestral GP5 and the most
frequent N-glycosylation pattern found in all samples of the
recent calendar year. The Jaccard index ranges between 0 and
1, with lower values indicating fewer N-glycosylation sites in
common and putatively greater antigenic dissimilarity. In
total, these six parameters were considered as candidate early
indicators.

2.4. Measures of Success. For any given timepoint, the pre-
and post-trees constituted separate phylogenetic reconstruc-
tions, so the first step of measuring success in the posttree
was to identify the clade that corresponded to variants iden-
tified on the pretree. Because phylogenetic construction is an
imperfect best-estimate of true underlying evolutionary rela-
tionships, topological differences between the pre- and post-
tree meant that not all variant’s present in the pretree were
readily identifiable as monophyletic clades in the posttree.
We considered a pre- and post-tree variant to be matched if
their members (i.e., the sequences present in both the pre-
and post-tree analyses) were highly overlapping (>75%
Jaccard similarity, indicating that 75% of sequence pairs
belonged to the same variant in both the pre- and post-tree
analyses).

Success of a variant was estimated from the new descen-
dants of a variant in the posttree and was characterized
across three aspects—population expansion, spatial distribu-
tion, and genetic diversity (Figure 1(d)). We quantified pop-
ulation expansion of each variant by computing the absolute
and relative increases in number of taxa from the pre- to
post-tree.

4 Transboundary and Emerging Diseases



Spatial distribution of the variant was also estimated as
the absolute and relative increases in number of states, and
number of counties, in which the variant was detected. Addi-
tionally, pairwise geographical distance between county cen-
troids were calculated between sequences belonging to the
same variant. The maximum pairwise distance (as well as the
95th percentile to mitigate the effect of outliers) was extracted
to approximate the geographic range of a variant in each pre-
and post-tree. To measure changes in geographic extent, the
absolute and relative increases of pairwise county distance
(based on either the maximum or 95th percentile) were cal-
culated for each posttree variant compared to its geographic
extent based on the original members from the pretree.

Genetic diversity was measured as pairwise nucleotide
distance (“dist.dna” function with K80 evolutionary model
in R’s ape v.5.6.2) [51, 52] among all members of a variant,
and the 95th percentile was used as the representative nucle-
otide distance of the variant (e.g., 95% of sequences belong-
ing to a variant have a nucleotide distance of less that x
distance). Then, the absolute and relative increases in nucle-
otide distance were calculated between the pre- and post-
tree. In total, 12 features were considered as potential
measures of variant success.

2.5. Predictive Modeling. For each of four scenarios (12 or 24
months before and after t), a matrix of Spearman’s correla-
tion coefficients (ρ) was computed and visualized between all
six early indicator candidates, using “ggpairs” function from
the R’s GGally v.2.2.0 and ggplot2 v.3.4.3 packages [54, 55],
to assess collinearity; multivariable models can be severely
impacted at collinearity of |ρ|> 0.7 [56]. All possible sets of
noncollinear candidates were used as predictor variables.
Given that successful variants appeared to be rare (early
data exploration showed that the distribution of success
metrics was highly right skewed), and because the numerical
range of success metrics likely varied depending on the size
of phylogenetic tree at different periods of time, a matched
case-control study was applied using the observation time (t)
of each scenario as a matched set (stratum). For each of 12
measures of success, variants whose success measure fell in
the top 95th percentile were classified as a successful variants
or “cases,” whereas variants in the lower 75th percentile were
classified as nonsuccessful variants or “controls.” Three con-
trols were randomly selected from the same pretree for
every case.

Using “clogit” function in the survival package v.3.5.0 in
R [52, 57, 58], we fitted conditional logistic regression models
on the training dataset using the first 8 years (2011–2018) or
approximately 80% of the data. Cases and controls from the
last 2 years (2019–2020) of the data were used as a test set to
validate the predictive model performance. To perform pre-
diction on the test set, as described elsewhere, we first derived
the average threshold value for each predictor that mini-
mized the misclassification rate in the training dataset, and
these values were used to generate predictions for the test
dataset [59].

Amongst choices of models that differ by set of predic-
tors (early indicators), response variables (measure of

success), and scenario (length of time periods considered),
only the models from the training set that had p-values<
0.05 for likelihood ratio tests were kept for further assessment,
indicating that these models performed significantly better
than a null model. For each aspect (population growth, geo-
graphic extent, and genetic diversification) and each follow-
up period (short- versus long-term success (12 vs. 24
months)), we selected the measure of success that has the
highest performance, as measured by mean concordance
(i.e., analogous to area under the ROC curve (AUC) for binary
responses [60]), based on the model fitted on the training set
and the highest mean balanced accuracy based on the predic-
tion on the test set. Then, we selected the n-month pretree
model that maximized concordance and balanced accuracy
for each n-month posttree and selected measure of success.

Coefficients, odds ratio, and p-values of each predictor in
the final models, and the model performance metrics, com-
prising sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), F1-score, and balanced accu-
racy, were calculated from a confusion matrix derived from
the test set predictions were reported. Furthermore, we
applied these final models to predict the success of all
observed variants (the full dataset) at each timepoint, aiming
to evaluate the predictive performance of the data beyond the
scope of the matched case-control design.

3. Results

A total of 74 unique sets of time-scaled phylogenetic trees
with a median size of 4,247.5 (IQR= 2,688–6,712.75) taxa
were reconstructed to obtain the pretrees and the posttrees
at each 6-month window observation time (t) throughout
2011–2020 for all four scenarios (12 or 24 months before
and after t). Classified by 2% average pairwise patristic dis-
tance, the median number of variants per tree was 151 (IQR
= 96–204), the median size of a variant was 12 (IQR= 5–30)
taxa per variant, and the median bootstrap clade support of
variant in all trees was 84% (IQR= 63–97) (Figures S2 and
S3). Only 58% of all the pretree variants could be matched
(>75% Jaccard similarity between variants’ members) with a
posttree variant. The number of matched variants varied
from 53% to 63% of the total pretree variants for each sce-
nario (Figure S4). According to Welch two-sample t-test, the
bootstrap clade support of pretree variants with posttree
matches (mean= 85 (IQR=80–100)%] was significantly higher
(p<0:001) than that of the unmatched variants (mean= 68
(IQR=51–89)%) (Figure S5). An average of 11.7%, 24.8%,
5.3%, and 13.9% of the total posttree variants were new variants
(no tips derived from the pretree period) for the 12-t−12, 12-t
−24, 24-t−12, and 24-t−24 scenarios, respectively (Figure S6).

The candidate early indicators of variant success were
obtained from the pretree variants’ ancestral nodes (branch
length, LBI, substitution rate, amino acid distance, and
N-glycosylation similarity) and the whole variant clade
(average clade rate). LBI was the only parameter that could
not be computed for all ancestral nodes due to excessive
branch length (higher than four interquartile distances
from the clock model regression) in several time-scaled trees.
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We thus computed LBI only from the time-scaled trees for
which the problematic branches were pruned. This resulted
in a small proportion of variants (1.1% of all 4,323 matched
variants; Figure S7) sharing the same ancestral LBI because
their ancestral nodes were collapsed together during the tree
pruning step. Amongst all six candidate indicators, severe
collinearity (|ρ|> 0.7) was only detected between ancestral
rate and average clade rate in the overall data and in every

scenario (Figure 2 and Figures S8–S11). Therefore, twomodels
were separately fitted for each measure of success (response)
from the remaining four candidate predictors plus either
ancestral rate or average clade rate.

Three aspects of variant success, comprising population
expansion, spatial distribution, and genetic diversification,
were calculated as absolute or relative increases when com-
paring between the matched post- and pre-tree variants.
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Althoughwe did control for impact of tree size or timespan on
measures of success (e.g., time periods with greater sequenc-
ing effort could influence how many additional taxa a variant
could increase in the posttree) by using a matched case-
control design, the numerical distributions of success metrics
were relatively consistent through time and across different
scenarios. For population expansion, the successful posttree
variants were typically at least twice the size of the original
pretree variant (median relative increase in number of taxa=
400% (IQR= 283.3–804.7)) or had at least 20 more taxa than
the pretree variant (median absolute increase in number of
taxa= 70 (IQR= 44.5–112.5)) (Figure 3(a) and Figure S12). For
genetic diversification, successful variants increased in their
genetic diversity from the pre- to post-tree by the median dis-
tance of 0.01 (IQR= 0.008–0.018) or one site per 100 nucleo-
tides, while the diversity of nonsuccessful variants decreased by
the median of 0.004 (IQR= 0.002–0.009) or 0.4 site per 100
nucleotides (Figure 3(a) and Figure S13). Geographic expansion
metrics (except for number of states) were also well stratified
between successful and nonsuccessful variants, particularly when
considering measures based on estimated geographical distance;
successful variants often doubled their geographic extent, with
distances increasing by up to 1,000 km or more, whereas non-
successful variants frequently displayed no increase whatsoever
(Figure 3(b) and Figures S14–S17). Such a high increase in geo-
graphic extent likely implies that successful variants are ones that
have jumped between major swine-producing regions [13].

A Venn diagram visualized by the R’s Vennerable v.3.0
package [61] was used to tabulate the number of variants that
achieved success in one or more of the population, geo-
graphic, or genetic diversification aspects (Figure 3(c)). Inter-
estingly, across scenarios, more than half (53%–67%) of the
successful variants in the population aspect (based on any of
the population measures) were also successful based on their
geographic dispersion. In contrast, 48%–60% of the successful
variants based on genetic diversification did not successfully
expand geographically or population-wise. Only 3%–5% of
successful variants achieved “success” across all three aspects.
With that being said, most variants were not successful in
any aspect (68%–74%) or in only one aspect (17%–23%)
(Figure 3(c) and Figure S18).

Across the different combinations of candidate early indi-
cators, measures of success, and temporal scenarios, 96 condi-
tional logistic regression models were fitted on the training
datasets. Only 41 models were considered significantly better
than a null model (p<0:05) based on the likelihood ratio test.
From these models, we focused subsequent predictive model-
ing on the success measures that yielded the highest mean
concordance (model fitting on the training set) and balanced
accuracy (prediction on the test set, i.e., 2019–2020 data) for
population expansion, spatial distribution, and genetic diversi-
fication. For population expansion, spatial distribution, and
genetic diversification, the selected success measures were
absolute increase in number of taxa, relative increase in maxi-
mum between-county geodesic distance, and absolute increase
in 95th percentile pairwise nucleotide distance, respectively.
According to the concordance and balanced accuracy metrics,
utilizing data from the previous 12months provided the overall

most accurate predictions for all the selected successes in the
subsequent 12 months. Similarly, using the data from the pre-
vious 24 months generally yielded the highest predictive per-
formance formost successes in the following 24months, except
for the model predicting the maximum between-county geo-
desic distance which had better performance when trained and
tested on the previous 12months of data to predict outcomes in
the subsequent 24 months (Table 1). Thus, of all models fitted
as part of this analysis, six models are presented in Table 1,
focusing on the three selected success metrics and primarily the
12-t-12 short-term and 24-t-24 long-term scenarios. Across
these models, concordance for the training data was >0.7 in
all cases and balanced accuracy for predictions on new data
ranged from 0.58 to 0.79. Predictive performance of other
models was not as high (outputs of all models shown in
Table S1).

The multivariate conditional logistic regression analysis
showed that only one or two predictors out of the five exam-
ined were significantly associated (p<0:05) with success in
each model. Raw odds ratios are based on a 1 unit change in
the predictor variable, whereas the entire range of many of
our variables was far less than one. To make odds ratios more
interpretable based on the observed range of each predictor,
we calculated an adjusted odds ratio based on upper and
lower quartiles of each predictor in the training data, while
keeping other predictors constant. This can be interpreted as
how many more times a variant is to be successful when
moving from the first to the third quartile values of an early
indicator variable. For population expansion, variants in the
upper quartile for ancestral LBI had approximately 12–13
times higher odds of being successful in the next 12 or
24 months compared to variants in the lower quartile.

Regarding spatial distribution, variants with slower ances-
tral substitution rate (first quartile: 1× 10−3 substitutions/
nucleotide site/year (s/n/y)) had a greater chance of successfully
extending their geographic distribution (maximum between-
county geodesic distance) in the next 12 months compared to
variants with higher estimated substitution rates (third quartile:
7× 10−3 s/n/y). When focusing on a 24-month rather than
12-month follow-up period, there was a significant association
between a variant’s branch length and amino acid distance and
the odds of increasing its geographic extent. Moving from the
lower quartile (ancestral branch length of 0.003 or approxi-
mately 1.8 nucleotides diverged from its next phylogenetic
common ancestor) to the upper quartile (0.017 or approxi-
mately 10.3 nucleotides diverged) quartiles of observed ances-
tral branch length, the odds of being the successful variant
decreased by a factor of 10. Conversely, transitioning from
the lower (0.025 or approximately 5 amino acids different
from the most prevalent PRRSV-2 GP5 sequence) to the upper
(0.075 or approximately 15 amino acids different) quartiles of
observed ancestral amino acid distance resulted in 14.5 times
greater odds of being a successful variant.

Genetic diversification (absolute increase in 95th percentile
pairwise nucleotide distance) showed a significant association
with branch length in the short-term period and with amino
acid distance in the long-term period. Specifically, variants
with an ancestral branch length of 0.018 (upper quartile
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approximately 10.9 nucleotides diverged from its inferred
phylogenetic ancestor) had 4.9 times higher odds of
experiencing high levels of genetic diversification in the next
12 months compared to variants with a length of 0.003 (lower
quartile approximately 1.8 nucleotides diverged). Moreover,
variants with an ancestral amino acid distance of 0.075 (upper
quartile approximately 15 amino acids different from the
most prevalent PRRSV-2 GP5 sequences) were 6.8 times
more likely to undergo diversify in the following 24 months
than variants with a distance of 0.03 (lower quartile approxi-
mately six amino acids different) (Table 1 and Figures S12,
S16, and S17).

The best fit models displayed fair to good predictive per-
formance on the test set, depending on the success aspect and
scenario. Notably, the prediction of genetic diversity variant
success in the next 12 months achieved the highest balanced
accuracy and F1 score (BA= 0.79, F1= 0.62), followed closely
by the prediction of success in population expansion over the
next 24 months (BA= 0.75, F1= 0.57). Moreover, the predic-
tion of variant success in population expansion within the
next 12 months, as well as success in spatial dispersion and
genetic diversity within the next 24 months, exhibited similar
performance (BA= 0.67, F1= 0.5). Predictions of spatial suc-
cess over a 12-month timeframe were notably poorer in com-
parison (BA= 0.58, F1= 0.43) (Table 1). When comparing
model performance on predictions made on all the matched
variants observed throughout the study period to model per-
formance on the test set, it was found that the balanced accu-
racy of all the models was slightly lower (BA= 0.56–0.74).
However, the F1 score decreased by more than half (F1=
0.15–0.27) due to a high proportion of false positives (Figure
S19 and Table S2). For unmatched variants for which the
future success could not be assessed, the models predicted
that 21%–28% of these would be successful in terms of genetic
diversity, while 59%–68% of the variants were predicted to
be successful in either population or geographic expansion
(Figure S20).

4. Discussion

In this study, we utilized over 10 years (2010–2021) of
PRRSV-2 ORF5 sequencing data representing PRRS circula-
tion across the U.S. to retrospectively evaluate the predictabil-
ity of emerging variants across time. Each phylogenetic-based
variant was systematically traced through time over both
short-term (12 months) and long-term (24 months) periods
in order to first calculate putative early indicators from retro-
spective phylogenetic inference and then quantify various
aspects of epidemiologic success during the follow-up period.
Primarily, we found that variants that were classified as suc-
cessful through population growth were also likely to be suc-
cessful through geographic expansion, but typically did not
show notable genetic diversification. Across all models pre-
sented in Table 1, early indicators that were significantly asso-
ciated with variant success at least once included LBI, branch
length, mutation rate of the ancestral branch, and amino
acid distance from the most prevalent contemporary GP5

sequences. The best predictive performance was achieved in
the models that predicted long-term population growth using
LBI and short-term genetic diversification using ancestral
branch length. When applied to new data, these models suc-
cessfully captured a significant number of successful variants
with good sensitivity though relatively low specificity. PPVs of
the models were poor, as many predicted successful variants
turned out to be false positives.

In general, virus emergences can be assessed using diverse
criteria, including abundance, adaptability, host range, and
diversity [62]. For example, reproductive success, gauged by
an effective reproduction number (Re) above 1, indicates a
virus’s ability to emerge and spread in a population [63, 64].
Thus, measures of emergence success commonly employ
prevalence and growth rate for predictions [35–37]. For
PRRSV-2, measuring the impact of the emergence of novel
variants goes beyond case numbers and should encompass
spatial spread and variant genetic diversity, which play a cru-
cial role in determining disease control efficacy. Our study
showed emerging variants, as indicated by higher detection
rates (population increases), also displayed extensive geo-
graphic expansion but lacked substantial genetic diversifica-
tion within the given timeframe. These findings align with the
idea that highly abundant variants have a greater likelihood of
geographic dissemination compared to others, especially
through routes such as animal transport [65, 66].

Various parameters such as LBI [35], epitope features
[36], phenotypic data [67], and consensus sequence of the
current viral population [68] have been shown to be impor-
tant in forecasting seasonal influenza A virus (IAV). However,
it remains unclear whether these early indicators are useful
when applied to PRRSV-2 data, as these two viral species
differ significantly in their evolutionary dynamics. For
instance, IAV branching patterns, which affect LBI values,
are shaped by short-lived viral variants that quickly go extinct,
and selective sweeps caused by frequent antigenic drift in
IAV, resulting in a comb-like or ladder-like genealogy tree
[69, 70]. In contrast, the persistent cocirculation and sequen-
tial dominance of various PRRSV-2 subpopulations [7, 13]
give rise to phylogenetic clades with a bush- or star-like struc-
ture (short internal branches and long external branches).
Nevertheless, our analysis demonstrates that LBI was the
only indicator with significant predictive power in forecasting
both short-term and long-term population expansion of
PRRSV-2 in the best fit models. This suggests that the under-
lying assumption of LBI, which is that rapid branching pat-
terns are associated with high fitness of the inferred ancestor
[35], may also apply to PRRSV-2 phylodynamics.

Understanding of immune epitopes, antigenic properties,
and genotype–phenotype relationships of PRRSV-2 remains
incomplete and cannot be directly inferred from sequencing
data [71–73]. This lack of knowledge makes it challenging to
incorporate such features into prediction models. To address
this issue, we developed two indicators to capture the puta-
tive distinctiveness of a variant compared to the current most
prevalent GP5 protein at a given point in time: GP5 amino
acid distance and N-glycosylation pattern similarity. The
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GP5 amino acid distance parameter is relatively similar to
the best predictor used to forecast IAV reported by Barrat-
Charlaix et al. [68]. Variants with more divergent GP5 pro-
teins were >6 times more likely to become more genetically
diverse, and >14 times more likely to undergo spatial expan-
sion than less divergent variants. We hypothesize that this
metric captures, in part, the extent to which epitopes found
on GP5 may differ from those recognized by the prevailing
immunity in the population, hence more divergent variants
may be able to better evade preexisting immunity at the
population level. That being said, the nature of our data
did not allow us to know whether the emerging variants
infected the same animals or farms that were previously
exposed to the prevailing GP5 protein.

N-glycosylation pattern similarity parameter focuses on spe-
cific amino acid sites involved in potential glycan shielding,
which is one immune evasion mechanism utilized by PRRSV-2
[74, 75]. These sites have evolved under positive selection
pressure [12, 76–78] and are believed to be associated
with emergence at the sublineage level [7, 79]. However,
N-glycosylation pattern similaritywas not significantly associated
with a variant’s success in any of our predictivemodels. Although
previous work suggested that N-glycosylation pattern changes
sometimes coincided with PRRS epidemic events, the patterns
were not stable within a sublineage (only 40%–60% of sequences
in sublineage shared a N-glycosylation pattern) [79]. Thus,
N-glycosylation patterns may change too frequently to attribute
a single pattern to a particular variant, as we did here.

Branch length of the ancestral node was the sole signifi-
cant predictor in the best fit model predicting success in
genetic diversity in the short-term. Specifically, variants
whose inferred ancestors had undergone greater evolution-
ary changes (longer branch lengths) were more likely to
genetically diversify shortly after. We hypothesize that these
rapidly evolving variants had not yet reached a state of fitness
stability and hence continued diversifying during the early
stage of emergence. Ultimately, the disparity in significant
predictors between the short-term and long-term models,
along with the notably superior performance of the short-
term model, led us to conclude that branch length stands out
as the most robust predictor for success in genetic diversity.
Branch length was also a significant predictor alongside GP5
amino acid distance in the model predicting spatial success
in long-term. The association of branch length to the spatial
success (OR< 1) was opposite to its association to the genetic
success (OR> 1) which was consistent with the observation
that variants that expand geographically did not tend to
undergo substantial diversification (Figure 3).

An essential task for this research was defining a PRRSV-2
variant. Given the large dataset and the need to build numerous
trees with different subsets of data, the primary phylogenetic
tree-building method we utilized (FastTree ML) was the most
plausible approach, offering an adequately reliable overview of
the genetic relationships among the viruses, albeit not the most
accurate tree-building approach [44, 80]. Accordingly, variant
classifications based on the tree’s patristic distance (TreeCluster’s
AvgClade [46])may differ if an alternative tree-buildingmethod
had been used. In our analysis, we used an average patristic

distance cut-off of 2% to define variants, which proved suitable
because the variant size and clade support remained consistent
across various trees and scenarios and are in-line with thresholds
conventionally used to define PRRSV sequences as homologous
or heterologous [81]. However, this approach has limitations as
it can lead to abrupt appearance of new variants in the follow-up
period that appear to be>2% from any of the original sequences.
New variants accounting for approximately 5%–25% of total
variants per time period. These occurrences could potentially
signify the rapid emergence of new variants (<6 months), the
introduction of exotic variants, or the reemergence of under-the-
radar variants absent from the current sequencing data.

The estimation and prediction of PRRSV-2 variant emer-
gence was based on phylogenies constructed with the ORF5
gene sequence, which constitutes only about 4% (603 nucleo-
tides) of the entire genome spanning approximately 15,000
nucleotides. Several studies have underscored that genome-
based epidemiological investigations offer a clearer understand-
ing of PRRSV-2 evolution, particularly concerning emergence
events facilitated by genomic recombination [19, 82–84]. How-
ever, whole-genome sequencing of PRRSV-2 is sporadic and
usually reserved for atypical PRRSV-2 cases or experimental
studies. In contrast, the generation of the ORF5 sequence occurs
routinely. Additionally, phylogenetic tree topologies derived
from both the ORF5 sequence and the whole genome exhibit
relative similarity [18], particularly for clades that have a very
recent common ancestor (i.e., <2% genetic distance, which was
the threshold used here). Consequently, ORF5 sequences cur-
rently represent the best opportunity for predictive modeling; if
the availability of whole genome sequences in surveillance data-
sets improves, incorporation of whole genome data could
enhance the performance of our models.

Another limitation of this research relates to the interpreta-
tion of geographic expansion. Numerous external factors
(i.e., animal movement) contribute to the spatial dissemination
of a virus that is not measurable from viral phylogenies nor
related to a virus’s phenotype. In addition, sampling locations
were not known for all sequences, and not all pig-producing
regions of the U.S. were equally well represented in the dataset
(Figure S1). On the other hand, spatial and/or temporal stratified
downsampling of sequences prior to predictive modeling may
have resulted in missing some actual rapid population or geo-
graphical expansions. More comprehensive spatial data could
improve model predictions, as could incorporating regional var-
iability in the prevailingORF5 sequences and emergence success.

We identified certain early indicators that are associated with
predicting various aspects of success.However, when implement-
ing these models to all matched variants beyond the selected
variants in the case-control design, one key issue undermining
model performance was the low PPV. This was unsurprising,
given that the training case-control dataset had a significantly
higher proportion of successes than the overall data. Because of
the low PPV, predictions of variant success could be better inter-
preted as identifying those variants with high emergence poten-
tial (with not all variants realizing their potential) as opposed to a
projection of what will happen with certainty. In addition, popu-
lation and spatial emergence success was commonly predicted
for mismatched variants, whose actual success could not be
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measured. If predictions are generated prospectively, we sug-
gested filtering out such variants by removing variants with
low clade support (<75%) before making predictions. This
strategy could enhance both PPV and overall accuracy.

Despite the low PPV, our models successfully identified a
variant with nine taxa in the initial tree (based on 12 months
of data from 2019–2020), which ultimately led to the impact-
ful emergence of the novel L1C-1-4-4 outbreak in the Mid-
western U.S. This prediction was made as early as January
2020, more than 6 months prior to the first official notice of
the outbreak in fall 2020 [10]. The models correctly antici-
pated that this variant would exhibit both population growth
and geographic expansion but would not undergo significant
genetic diversification, aligning with our hypothesis of a
high-fitness variant.

Nevertheless, we acknowledge that our work represents
just the initial stage of developing methods for prediction of
the emergence of PRRSV-2 variants, highlighting informa-
tive phylogenetic-based early indicators for a variant’s emer-
gence. While this predictive modeling benefited from long-
term nationwide data, the best fit models and the highlighted
key early indicators discussed herein may not necessarily
generalize to future instances of PRRSV-2 emergence. This
limitation arises due to the rapid dynamics observed in the
PRRSV-2 population and its spatial distribution [7, 13].
Hence, it is crucial to continue improving our approach by
incorporating better spatial-related metadata, expanding the
training and the test sets with more data in the future, and
exploring additional potential predictors. Our ability to pre-
dict PRRSV-2 variant emergence holds significant promise in
advancing future PRRS control and prevention strategies.
This predictive capacity serves as a valuable tool for early
detection of variants of interest or concern, enabling targeted
interventions like prompt biocontainment at affected pre-
mises or the development of updated vaccines tailored to
potential emerging variants in subsequent seasons.

5. Conclusions

This is the first study to systematically analyze and evaluate
predictive modeling for PRRSV-2 variant emergence. Our
findings revealed that variants which had successful popula-
tion growth also tended to expand geographically, often with-
out significant genetic diversification. LBI was consistently
found as the only early indicator in models predicting both
short-term and long-term population expansion. Meanwhile,
ancestral branch length was strongly associated with short-
term genetic diversification, and the GP5 amino acid distance
was linked to long-term success in both geographic distribu-
tion and genetic diversity. Low PPVs were found when the
predictive models were applied to variants not included in the
case-control design. However, false positives are not necessar-
ily meaningless in this context. Indeed, such false positives
may represent variants that share many features of successful
variants and could be considered as variants at-risk of emer-
gence. Thus, model predictions could be interpreted as provid-
ing insights into which variants have high emergence potential,

as opposed to strictly those that will emerge. However, further
improvements are necessary, accompanied by filling knowl-
edge gaps in PRRSV-2 immuno-epidemiology, to determine
how best to implement these predictions for enhanced preven-
tion and control of PRRS.
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