
Research Article
Asymmetric Effects of Weather-Integrated Human
Brucellosis Forecasting System Using a New Nonlinear
Autoregressive Distributed Lag Model

Yongbin Wang ,1 Chenlu Xue,1 Bingjie Zhang,1 Yuchun Li,1 and Chunjie Xu 2

1Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University,
No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan Province, China
2Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Correspondence should be addressed to Yongbin Wang; wybwho@163.com and Chunjie Xu; xuchunjie@imb.pumc.edu.cn

Received 27 October 2023; Revised 12 February 2024; Accepted 21 February 2024; Published 5 March 2024

Academic Editor: Daniel Diaz

Copyright© 2024 YongbinWang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human brucellosis (HB) remains a significant public health concern in China. This study aimed to investigate the long- and short-
term asymmetric impacts of meteorological variables on HB and develop an early prediction system. Monthly data on HB
incidence and meteorological variables were collected from 2005 to 2020. The study employed the autoregressive distributed
lag (ARDL) and nonlinear ARDL (NARDL) to analyze the long- and short-term effects of climate variables on HB. Subsequently,
the data were split into training (from January 2005 to December 2019) and testing parts (from January to December 2020) to
develop and validate the forecasting accuracy of both models. During 2005–2020, there were 34,993 HB cases (2.03 per 100,000
persons) and there was an overall rising trend (average annual percentage change= 21.18%, 95%CI 18.36%–26.01%) in HB
incidence, peaked in May and troughed in December per year. A 1m/s increment and decrement in differenced (Δ) average
wind velocity (AWV) contributed to 73.8% and 87.5% increases in ΔHB incidence, respectively (Wald long-run asymmetry test
(WLR)= 1.17, P¼ 0:25). A 1 hr increment and decrement in Δ(average relative humidity) contributed to both 3.1% increases in
ΔHB incidence (Wald short-run asymmetry test= 3.01, P¼ 0:003). Average temperature (AT) (P<0:001) and average air pressure
(P¼ 0:012) played a long-run linear impact on HB. Δ(aggregate precipitation) (WLR= 1.76, P¼ 0:08) and Δ(aggregate sunshine
hours) (WLR= 0.07, P¼ 0:94) did not have a significant long-term asymmetric impact on Δlog(HB). ΔΔAT(+) and ΔΔAWV(−) at
a 1-month lag had a meaningful short-run effect on Δlog(HB). In the forecasting aspect, the NARDL produced significantly smaller
error rates compared to the ARDL. Weather variability played significant long- and short-run asymmetric roles in HB incidence.
The NARDL by integrating climatic variables could accurately capture the dynamic structure of HB epidemic, meaning that
meteorological variables should be integrated into the public health intervention plan for HB.

1. Background

Human brucellosis (HB) is a bacterial zoonosis caused by
Brucella spp., primarily infecting cattle, swine, goats, sheep,
and dogs. It mainly occurs by contact with infected animals
or their products [1, 2]. Although significant progress has
been made in controlling HB in many countries, the global
burden remains substantial, with over 500,000 new cases
reported annually. The disease has serious health implica-
tions and socioeconomic impacts [3, 4]. In China, the num-
ber of HB cases declined from 47,139 in 2016 to 37,947 in

2018, but there was a subsequent rebound in 2019 [5].
According to the latest data released by the Chinese CDC,
the number of HB reached 75,858 cases in 2023 [6]. In
response to the National Brucellosis Prevention and Control
Plan aiming to manage HB in both animals and humans
across China [7], it is critical to accurately identify factors
influencing HB and construct effective forecasting models
for health interventions.

Numerous factors contribute to HB incidence, encom-
passing the geographical environment, consumption of
unpasteurized milk products, and engagement in high-risk
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occupations [4, 8, 9]. Also, in the context of global climate
change, the impact of climatic variables on the transmission
of infectious diseases has garnered significant attention
[10, 11]. Meteorological factors are believed to influence
pathogenic agent growth, host population dynamics, and
human behaviors [10]. Consequently, these variables may
serve as early indicators of infectious disease risk. Previous
research has established correlations between climatic vari-
ables and the risk of HB transmission [4, 8, 9]. For example,
Sun et al. [12] indicated that temperature at the lags of 0, 2,
and 3 months and relative humidity at a 0-month lag were
significantly related to HB transmission in China using a
spatial panel model. Cao et al. [8] found that air pressure
at a 2-month lag, wind speed at a 1-month lag, and temper-
ature at a 2-month lag were significantly associated with HB
incidence using a linear autoregressive integrated moving
average (ARIMA) model. Yang et al. [13] suggested that
the seasonality of HB was significantly associated with air
pressure, rainfall, and temperature using a distribution lag
nonliner model (DLNM). However, there has been limited
evidence about sunshine and wind on HB, and prior studies
typically operated within a linear framework and overlooked
the exploration of long- and short-term asymmetric dynamic
impacts of meteorological variables on HB [4, 8, 9]. This
refers to situations where increases or decreases in meteoro-
logical factors lead to distinct effects, holding greater practi-
cal significance for HB prevention and control. Additionally,
past research failed to consider robust autocorrelations
among dependent variables, leading to potential overestima-
tions in time series analysis. The DLNM and artificial neural
networks (ANNs) are currently the most commonly used
nonlinear models for analyzing the associations between
meteorological factors and diseases or forecasting the epi-
demics of diseases, but these models fail to explore both
long- and short-term effects of the variables on outcomes
simultaneously. Therefore, this study aimed to address these
gaps by introducing a new nonlinear autoregressive distrib-
uted lag (NARDL) model, known for its enumerated advan-
tages [14–16]: (1) facilitating examination of long- and short-
term asymmetries, (2) enabling time series with varying
orders of integration, (3) prioritizing resolution of endoge-
nous issues between variables, and (4) automatically incorpo-
rating autocorrelations in time series analysis.

During the past decade, endemic regions of HB gradually
spread from north of China to some southern provinces,
including Henan [2, 17]. Here, we carried out a population-
based time series study aiming to investigate the long- and
short-run asymmetric dynamic associations between meteo-
rological factors and HB in Henan by use of NARDL and to
determine whether the NARDL can improve the forecasting
accuracy of HB epidemic over the autoregressive distributed
lag (ARDL). Such an analysis that delves into the intrinsic
relationship between climatic factors and HB (i.e., under-
standing the varying effects of increases or decreases in cli-
matic factors, as well as how potential factors respond to
short-term changes and evolve over time) is critical for pro-
viding comprehensive insights into controlling HB epidemic
in Henan.

2. Materials and Methods

2.1. HB Data. Henan is a province in Central China covering
an area of 167,000 km2. It is the largest province with a regis-
tered population in China, with a population of 115million in
2022. Henan is mostly located in the warm temperate zone,
the south trans-subtropical, and belongs to a continental
monsoon climate from the north subtropical to the warm
temperate zone (Figure S1).

The monthly HB incidence in Henan from 2005 to 2020
was extracted from the Data-Center of China Public Health
Science (DCPHS) operated by the Chinese CDC and the
Health Commission of Henan Province. The population
data during the same period was from the Henan Statistical
Yearbook. All HB incidents were confirmed by authorized
institutions and professionals according to the diagnostic cri-
teria for HB (http://www.nhc.gov.cn/wjw/s9491/wsbz.shtml).

2.2. Meteorological Data. The daily meteorological variables,
including average temperature (AT), average air pressure
(AAP), aggregate precipitation (AP), aggregate sunshine
hours (ASH), average relative humidity (ARH), and average
wind velocity (AWV), were provided by the National Mete-
orological Science Data Center (http://data.cma.cn/). To
address missing data, we additionally utilized information
from the Huiju Data website (http://hz.hjhj-e.com/home/
meteorologicalData/dataDetailsThreeYear/) for supplemen-
tation. Subsequently, these variables were compiled into a
monthly time series format.

2.3. Statistical Analysis. During statistical description, all study
variables were represented as meanÆ standard deviation
(x Æ s). Average annual percentage change (AAPC) was com-
puted to describe the epidemiological change trend of HB [18].
Spearman’s correlation was applied to test the correlation
between meteorological factors and HB, and a correlation coef-
ficient greater than 0.9 or variance inflation factor (VIF) greater
than 10 was indicative of a strong collinearity between variables
[19, 20]. If there was multicollinearity between variables, and
then these variables were entered into different NARDL and
ARDL models with other meteorological drivers to investigate
their effects on HB.

ARDL has been used to deal with problems of autocor-
relations and nonstationarity of key variables, and our prior
study has detailed this model [21]. However, the ARDL fre-
quently yields a biased result due to the presence of nonlinear
and/or asymmetric impacts in consideration of meteorologi-
cal factors on diseases [22]. The NARDL was thus introduced
to overcome the weakness. In NARDL, the term “autoregres-
sive” refers to the inclusion of lagged values of HB incidence
itself. The “nonlinear” aspect indicates that the relationship
between HB and weather variables can be nonlinear, and
“distributed lag” signifies that current values of HB incidence
are influenced by both its past values and the past values of
weather factors. This method also allows investigating the
long- and short-term asymmetric dynamic effects [15, 23].
In the presence of asymmetric impacts, the NARDL can
quantify the responses of HB incidence to positive and neg-
ative changes in each of the meteorological factors by taking
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into account the positive and negative partial sums of incre-
ments and decrements in these variables [15, 23]. The
NARDL involves four steps [14, 15, 23]: first, investigation
of the order of integration. Although the NARDL has relaxed
the integration requirement, the order of integration cannot
be greater than one [14]. Besides, a pseudo regression may be
produced by the nonstationary regressors. Thus, the aug-
mented Dickey–Fuller statistic was chosen to test the order
of integration and stationarity in independent and depen-
dent variables [24]. If the results indicated a nonstationary
series, logarithmic transformation and/or differencing (Δ)
were applied to achieve stationarity. Second, investigation
of the long-run asymmetric cointegration. To check whether
there was a long-run asymmetric cointegration between
regressors and dependent variables, the bounds test (F statis-
tic) was applied [25]. If evidence pointed to the presence of
such a relationship, then a Wald test was used to investigate
the short- and long-term asymmetries [14, 15]. Third, effect
estimation. The positive and negative dynamic multiplier
effect of regressors on the dependent variable could be esti-
mated [26]. Finally, forecasting. The data between January
2005 and December 2019 were treated as the training set, and
the remaining as the testing set. To demonstrate the forecast-
ing capacity of the NARDL for the HB epidemics by inte-
grating meteorological factors, the error rate metrics,
including mean absolute deviation (MAD), root mean square
error (RMSE), mean error rate (MER), mean absolute per-
centage error (MAPE), and root mean square percentage
error (RMSPE) were computed to assess the forecasting
accuracy of the NARDL and ARDL by use of the modified
Diebold–Mariano (DM) test [27]:
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In this study, the notation of the NARDL is calculated as
follows:
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where Yt represents HB cases, x signifies the meteorological
factors (e.g., AT, AAP, AP, ASH, ARH, and AWV), xþ and
x− are the positive and negative partial sums of increases and
decreases in each meteorological factor, respectively (which
quantifies the long-term asymmetric impact), p and q denote
the optimal lag orders of HB cases and meteorological vari-
ables, respectively (which quantities the short-term asym-
metric impact), month represents the seasonal variables,
and Δ refers to the first-order difference.

In this study, the maximum lag orders were specified as 3
because there is an about 2−4-week incubation period from
HB infection to onset of symptoms [1] and maximum 2-
month delay from symptom appearance to clinical diagnosis
in China [28], and then the optimal lag orders were deter-
mined by Akaike information criterion (AIC), Schwarz cri-
terion (BIC), Hannan–Quinn (HQ) criterion, log-likelihood,
and adjusted R2. The autocorrelation in the dependent vari-
able was determined by the partial autocorrelation function
(PACF) plot [29], which indicates the correlation between
the current observations and the past observations under the
condition of given cases. The 11 monthly dummy variables
were included in the model to adjust for the seasonal effect.
The long-term trend was also handled in the equation by
differencing all of the variables. Additionally, the stability
of the NARDL was tested using the cumulative sum
(CUSUM) statistics [25]. All statistical analyses were per-
formed by EViews 10 (IHS, Inc., USA) and R 4.2.0 (R Devel-
opment 164 Core Team, Vienna, Austria), and a two-sided
P≤ 0:05 was considered significant.

3. Results

3.1. Statistical Description. In the period 2005–2020, a total of
34,993 HB cases (2.03 per 100,000 persons) were reported in
Henan, on average with the number of monthly and annual-
ized 194 and 2,333 cases, respectively. Overall, the epidemic
trend in HB incidence rose during the study period (AAPC
= 21.18%, 95%CI 18.36%–26.01%), peaking in 2015, with
5,897 case notifications (5.26 per 100,000 persons), and
then a downward trend was going until 2018 when the num-
ber of reported cases was 2,144 (1.87 per 100,000 persons),
and there was a slight rebound in early 2020 with 3,202 case
notifications (2.78 per 100,000 persons). Besides, the HB
incidence represented obvious periodic and seasonal charac-
teristics. There was a peak in May and a trough in the winter
of each year.

Summary statistics for monthly HB cases and meteorologi-
cal factors were described in Table 1. The means of ARH,
AP, AT, AWV, AAP, and ASH were 65.61Æ 9.68%, 60.52Æ
58.15mm, 15.49Æ 9.36°C, 2.01Æ 0.30m/s, 1,000.36Æ 8.47hPa,
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and 149.46Æ 44.20 hr, respectively. As shown in Figure 1,
seemingly the same changing trend was observed between
HB and AP, AT, AWV, and ASH. However, a contrary trend
was found between ARH and AAP. Additionally, strong col-
linearity was revealed between AAP and AT due to Spear-
man’s correlation coefficient greater than 0.9 and VIF greater
than 10 (Table 1 and Figure 2).

3.2. The Asymmetric and Symmetric Effects of Meteorological
Factors on HB. Based on the modeling process of ARDL and
NARDL models, the NARDL (1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1) and
ARDL (1, 0, 0, 0, 2, 1) were determined as the best possible
models (see the details of the development of NARDL and
ARDL models in Figures S2–S5 and Tables S1 and S2). As
shown in Table 2, there was statistical significance in the long-
run coefficients of AWVandARH,whichwere positively related
to HB. When ΔAWV increased by 1m/s, ΔHB increased
approximately by 73.8%, and when it reduced by 1m/s, ΔHB
increased approximately by 87.5%, with the increase in ΔHB
being the cumulative increase. When ΔARH increased and
reduced by 1%, respectively, ΔHB increased approximately by
about 3.1%, with the increase in ΔHB being the cumulative
increase. ΔAT, ΔAP, ΔASH, and ΔAAP were associated with a
nonsignificant long-term coefficient. However, as shown by
results from the ARDL model, ΔAT and ΔAAP were shown to
have a positive significant long-term coefficient (Table 2),
corroborating the long-term linear effect on ΔHB, when ΔAT
and ΔAAP increased by 1°C and 1 hPa, ΔHB increased
approximately by 8.1% and decreased by 8.4%, respectively.
ΔAT(−) had a meaningful short-run positive effect on ΔHB;
ΔAWV(−) at a 1-month lag had a meaningful short-run
negative effect on Δlog(HB). Table 3 details the Wald test
results for asymmetry, suggesting that ΔAAP might have a
long-run asymmetric impact on ΔHB, which was also
confirmed by the dynamic multiplier plot (Figure 3(a)−3(f)),
yet the long-term coefficient was nonsignificant. A long-run
asymmetric relationship was not observed for ΔAT, ΔAP,
ΔASH, ΔARH, and ΔAWV. Besides, ΔAT and ΔARH might
have a short-run asymmetric impact on ΔHB.

3.3. Forecasting HB Epidemic. By developing the best possible
ARDL and NARDL on the training set, and then forecasting the
remaining data. The fitting and predicative results are depicted
in Figure 4, and the performance comparison is summarized in

Table 4. It was found that the NARDL produced lower error
rates than those of the ARDL in both fitting and predictive
aspects, and the DM test was significant in the predictive part,
meaning that the predictive capacity of NARDL significantly
outperformed the ARDL. This demonstrated that the NARDL
was better able to capture dynamic dependency characteristics in
HB incidence.

4. Discussion

This study discovered that, from a long-run perspective,
AWV and ARH might have a significant positive nonlinear
association with HB after adjustment for seasonality, auto-
correlation, and time variable. AT and AAP might have a
linear positive association with HB. From a short-run per-
spective, AT(−) might be positively associated with HB, and
AWV(−) at a 1-month lag might be reversely associated with
HB. To the best of our knowledge, this is the only study to
investigate the long- and short-run asymmetric impacts of
meteorological factors on HB and establish an early forecast-
ing system using the ARDL and NARDL. Our results cor-
roborated the lead time, the asymmetric and symmetric
impacts of meteorological parameters on HB, along with
the usefulness of the NARDL in capturing the dynamic epi-
demic structure in HB incidence. These findings are helpful
in estimating the epidemic trajectory of HB, giving enough
time to develop targeted prevention and control policies and
to implement public health interventions.

Weather-integrated infectious disease prediction models
predominantly include ARDL [21], generalized linear mod-
els [30], Bayesian structural time series [31], and ARIMA
[32]. In comparison to the aforementioned models, the
NARDL offers several advantages in modeling HB incidence
series [14–16, 33]: (1) NARDL can account for cases where
the impact of positive changes in weather factors differs from
the impact of negative changes; (2) by including lagged values
of variables in the model, NARDL enables the examination of
both immediate and persistent effects of weather factors, con-
tributing to a more comprehensive analysis; and (3) NARDL
allows for straightforward interpretation of coefficients, mak-
ing it possible to capture the direction and magnitude of the
effects of weather factors. This enhances understanding and
facilitates informed policy and decision-making; (4) the incor-
poration of nonlinear and asymmetric terms in NARDL

TABLE 1: Statistical descriptions for monthly HB cases and climatic factors in Henan, 2005–2020.

Variable Mean SD Min P25 P50 P75 Max VIF

HB cases 182.26 182.62 0.00 38.00 119.50 254.25 794.00 —

ARH 65.61 9.68 39.40 59.43 65.38 73.53 84.50 3.47
AP 60.52 58.15 0.31 17.33 41.17 87.97 307.40 3.17
AT 15.49 9.36 −1.23 6.91 16.48 24.69 30.90 18.62
AWV 2.01 0.30 1.43 1.80 1.99 2.21 2.70 2.15
AAP 1,000.36 8.47 985.33 992.35 1,001.36 1,007.55 1,016.20 14.82
ASH 149.46 44.20 46.83 118.53 148.13 179.59 250.90 4.30
HB cases, 1-month lag — — — — — — — 1.26

ARH, average relative humidity; AP, aggregate precipitation; AT, average temperature; AWV, average wind velocity; AAP, average air pressure; ASH, aggregate
sunshine hours; HB, human brucellosis; and VIF, variance inflation factor.
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improves model fit by better capturing the underlying dynam-
ics of the data, leading to more accurate and reliable predic-
tions. These qualities equip NARDL to better elucidate the
relationships between HB and weather factors in real-world
scenarios. Moreover, the NARDL has shown successful appli-
cations in studying the relationships between macroeconomic
variables, financial indicators, and other economic factors in
economics and finance research. Therefore, it appears that the
weather-integratedNARDLmodel holds promise for analyzing
and forecasting HB epidemics in other regions and similar
phenomena (e.g., other infectious diseases). Also, future
research should concentrate on the comparison of the forecast-
ing ability between NARDL and ANNs (e.g., long- and short-

term memory neural network, neural network nonlinear auto-
regression, and generalized regression neural network).

Our results revealed that overall a rising trend was
observed in HB incidence, aligned with the overall epidemic
trend worldwide and in China [3, 34]. This might be
explained by the rising demand for meat consumption, the
expansion of animal industries, urbanization, the lack of
hygienic measures and vaccinations in animal husbandry, as
well as the failure to remove infected animals [3]. Besides, we
found an obvious seasonal profile in HB morbidity, with a
peak in May and a trough in December, in alignment with the
seasonality at the national level of China [3]. The strong sea-
sonal profile may be closely associated with the peak period
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for abortions and parturitions among livestock in the spring
and summer [3].

An interesting finding is that AWV might be one of the
most important contributors to HB, which was shown to
have a significant long-term positive effect on HB, seemingly
a reduction in AWV has a stronger effect than an increase,
and this relationship tended to be symmetric, whereas a
significant short-run negative effect was found in AWV at
a 1-month lag. Previous work documented that AWV was
positively related to respiratory infectious disease (e.g., scar-
let fever and mumps) [8, 21], these studies provide additional
support for our finding. The fact that there is more wind in
spring and summer compared to other seasons in Henan also
seems to adequately account for the high-risk seasonality in
HB incidence in May each year. Plausible explanations for
our long- and short-run findings are as follows [8, 35, 36]: (1)
Brucella live shorter in the air with high-speed wind in the
short run; (2) the higher the wind speed, the greater evapo-
ration, which in turn indirectly affected brucellosis by evap-
oration and ultimately had a strong driving effect on HB in
the long run; (3) sheep and goats are the main sources of

infection, and as animal husbandry has developed in windy
and dry climate in northern China, there is a higher danger
of contracting brucellosis in the long run; and (4) higher
wind speeds facilitate the greater spread of pollutants carry-
ing Brucella, increasing transmission between livestock
populations, further increasing the risk to humans in the
long run.

Another important finding is that ARH might have a
significant long-term positive effect on HB, and seemingly
the increase has the same effect as an increase in HB. From
a short-run perspective, this relationship tended to be sym-
metric. Our results share a similarity with several studies that
indicated a positive relationship between ARH and other
respiratory contagious disease (e.g., scarlet fever and mumps)
[21, 29]. However, in contradiction with our conclusions,
several studies also reported a reverse relationship between
ARH and HB [34, 37]. It may be speculated that this discrep-
ancy is explained in part by the different models used to
analyze the data or different regions or by no adjustment
for autoregression in the dependent variable. Nevertheless,
our finding is consistent with a previous study indicating
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that high humidity are as conducive to the long-term survival
of Brucella as many other pathogens in the environment,
which could be explained with that high humidity may
increase the risk of exposure to this pathogen so as to increase
the HB incidence [38].

The third important finding is that AAP played an asym-
metric impact on HB, but the long-run coefficient was not
significant. The significant coefficient in ARDL indicated a
weak increase approximately by 8.4% in ΔHB when ΔAAP
decreased or increased by 1 hPa. It is consistent with the
finding that atmosphere pressure was negatively correlated
with HB [32]. A study suggested that atmospheric pressure

may indirectly affect HB through temperature and rainfall [8].
Warm temperature would force the air near the ground to
move upward, causing low pressure in the local area which is
usually accompanied by rainfall events, leading to increased
indoor contact between humans and livestock. However, our
research does not match with a study observing that an
increase in air pressure aggravates the disease [35]. Perhaps
because different regions have led to different results. Besides,
very few studies have clarified the relationship between atmo-
sphere pressure and HB, thus further investigation is needed
to clarify the mechanism.

The fourth important finding is that AT played a long-run
linear impact on HB, indicating a weak increase approximately
by 8.1% inΔHBwhenΔAT increased or decreased by 1°C. In the
short-run, a significant positive effect was found in AT and this
relationship tended to be symmetric. On one hand, temperature
as an environmental factor affects the condition for the survival
of Brucella, which increases the risk of bacterial transmission
[36, 39]. On the other hand, higher temperature in late spring
and early summer increase husbandry activities for sheep and
goats, including shearing, breeding, processing of meat products,
and commercialization of sheep products, consequently increas-
ing the opportunities for humans to contact susceptible animals
or contaminated animal products [36, 39, 40]. In addition,
researchers also found ASH [32, 34, 37] and AP [37, 39] corre-
lated with the HB incidence, whereas we did not indicate a
significant long- and short-term relationship. Therefore, further
validation work is expected to go on in other areas.

TABLE 2: Long- and short-term estimates of the best NARDL and ARDL methods.

NARDL model ARDL model

Variable Coefficient P Variable Coefficient P

Long-run estimate Long-run estimate
ΔAT(+) 0.018 0.603 ΔAT 0.081 <0.001
ΔAT(−) −0.001 0.973 ΔAP −0.0004 0.677
ΔAP(+) −0.0004 0.696 ΔASH 0.001 0.530
ΔAP(−) −0.0004 0.693 ΔAWV 1.449 0.022
ΔASH(+) 0.002 0.376 ΔARH 0.030 0.004
ΔASH(−) 0.002 0.290 ΔAAP −0.084 0.012
ΔAWV(+) 0.738 0.044 Short-run estimate
ΔAWV(−) 0.875 0.031 ΔΔAWV 0.137 0.691
ΔARH(+) 0.031 0.001 ΔΔAWV, 1-month lag −0.648 0.050
ΔARH(−) 0.031 0.002 ΔΔARH 0.027 0.007
ΔAAP(+) −0.003 0.913
ΔAAP(−) −0.005 0.846

Short-run estimate
ΔΔAT(−) 0.089 0.029
ΔΔASH(+) 0.000 0.889
ΔΔASH(+), 1-month lag 0.002 0.168
ΔΔAWV(+) −0.177 0.671
ΔΔAWV(−) 0.047 0.909
ΔΔAWV(−), 1-month lag −0.809 0.045
ΔΔARH(−) 0.002 0.850

Adjustment for seasonality as a dummy variable. NARDL, nonlinear autoregressive distributed lag model; ARDL, autoregressive distributed lag model; AT,
average temperature; AP, aggregate precipitation; ASH, aggregate sunshine hours; AWV, average wind velocity; ARH, average relative humidity; AAP, average
air pressure; HB, human brucellosis; and VIF, variance inflation factor.

TABLE 3: Long- and short-term asymmetry results using Wald test.

Variable
Long-term
asymmetry

Short-term
asymmetry

WLR P WSR P

ΔAT 0.25 0.78 2.20 0.03
ΔAP 0.04 0.97 — —

ΔASH 0.54 0.59 −0.57 0.57
ΔAWV 1.17 0.25 0.95 0.34
ΔARH −0.04 0.97 3.01 0.003
ΔAAP −2.14 0.03 −0.45 0.66

WLR,Wald long-run asymmetry test; WSR,Wald short-run asymmetry test;
AT, average temperature; AP, aggregate precipitation; ASH, aggregate sun-
shine hours; AWV, average wind velocity; ARH, average relative humidity;
AAP, average air pressure.

Transboundary and Emerging Diseases 7



0.10

0.05

0.00

–0.05

C
oe

ffi
ci

en
t

–0.10

–0.15

–0.20
Multiplier for D(AT)(+)
Multiplier for D(AT)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðaÞ

0.0015

0.0010

0.0005

0.0000

C
oe

ffi
ci

en
t

–0.0005

–0.0010

–0.0015
Multiplier for D(AP)(+)
Multiplier for D(AP)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðbÞ

0.006

0.002

0.004

0.000

–0.002

C
oe

ffi
ci

en
t

–0.004

–0.006

–0.008
Multiplier for D(ASH)(+)
Multiplier for D(ASH)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðcÞ

2.0

1.0

1.5

0.5

0.0

C
oe

ffi
ci

en
t

–0.5

–1.0

–1.5

Multiplier for D(AWV)(+)
Multiplier for D(AWV)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðdÞ

0.06

0.02

0.04

0.00

–0.02C
oe

ffi
ci

en
t

–0.04

–0.06
1 3 5 7

Lag
9 11 13 15

Multiplier for D(ARH)(+)
Multiplier for D(ARH)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðeÞ

1 3 5 7
Lag

9 11 13 15

0.04

0.00

0.02

–0.02

–0.04

–0.06

–0.08

C
oe

ffi
ci

en
t

–0.10

–0.12

Multiplier for D(AAP)(+)
Multiplier for D(AAP)(–)
Asymmetry plot (with Cl)
Confidence interval (CI)

ðfÞ
FIGURE 3: Dynamic multiplier asymmetric effect of climatic variables on HB: (a) multiplier graph for AT; (b) multiplier graph for AP; (c)
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Our research focused on the long- and short-run asym-
metric and/or symmetric impacts of variations in meteoro-
logical factors on HB and integration of this effect into the HB
early prediction system. Prior study has emphasized the sig-
nificance of considering the changes in population immunity,
autocorrelations, a series of possible lags and relationship

patterns, seasonality, and long-term trend when performing
a time series analysis [41]. Except for the changes in popula-
tion immunity that we failed to fully investigate due to a lack
of data, other problems were taken into account. Therefore,
we are confident that we provide valid and trustworthy evi-
dence: variation in meteorological factors plays a crucial
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FIGURE 4: Comparison of the actual observations and predictive values based on both models: (a) results from the ARDLmodel and (b) results
from the NARDL model. ARDL, autoregressive distributed lag model; NARDL, nonlinear autoregressive distributed lag model.
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long- and short-run asymmetric and/or symmetric role in HB
incidence and the NARDL is a useful aid for forecasting HB
epidemic. Also, our work has some limitations. First, under-
reporting or underdiagnosis is inevitable for a passive moni-
toring system. Second, this study is an ecological trend study
that does not allow for an investigation into the individual-
based relationship and infer a causal effect. Third, the findings
relied on data from Henan, it is necessary to verify whether
the model can be generalized to predict HB epidemic in other
regions or other infectious diseases. Fifth, the outbreak of
COVID-19 has already impacted the epidemiological trends
of many infectious diseases. Whether it affects the predictive
accuracy of the NARDLmodel warrants further investigation.
Finally, we do not control for the effect of the unmeasured
confounders (e.g., geographic and socioeconomic factors,
population density, and host susceptibility).

5. Conclusion

We discovered that AWV, ARH, AT, and AAP play an
important long- and short-term asymmetric and/or symmet-
ric role in HB incidence. In the context of global climate
change, meteorological variables should be included in the
public health intervention plan for HB. The long- and short-
term asymmetric effects of weather-integrated NARDL are
better suited to capture the dynamic epidemic structure in
HB compared to the ARDL, which can be regarded as a
useful tool for guiding HB prevention and control.
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