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Ticks are obligate ectoparasites and vectors of a variety of pathogens in humans and animals. Certain tick-borne pathogens (TBPs)
have been identified as the cause of zoonoses, posing potentially significant threats to the human health and livestock industries.
Fungi are one of the major TBPs that can affect ticks and cause disease in humans. At present, there are few studies on the diversity
of fungal microbial communities carried by Ixodes. Therefore, profiling tick-borne fungi will contribute to understanding the tick-
fungal interaction. This study evaluated the community profile and differences in the fungal microbiome in Ixodidae collected on
parasitic ticks or nonparasitic ticks in Wuwei, Gansu Province, China. The Shannon index, Simpson index, and Richness index
were used to evaluate the diversity of mycobiome. Principle coordinates analysis (PCoA) was conducted to determine patterns of
diversity in mycobiome. Using correlation analysis to determine the correlation of mycobiome. The results show that the high-
throughput sequencing of the internal transcribed spacer gene generated 3,634,943 raw reads and 7,482 amplicon sequence
variants. The dominant tick species in this region was Dermacentor nuttalli (Ixodidae). The mycobiome belonged to four
classes—Dothideomycetes, Sordariomycetes, Ustilaginomycetes, and Tremellomycetes—and more than 261 genera, the most abun-
dant genera were Cladosporium, Purpureocillium, Aureobasidium, Tranzscheliella, and Sporormiella. Alpha diversity indicated that
the abundance and evenness of mycobiome were marginally higher in nonparasitic ticks than in parasitic ticks. PCoA showed that
the community structures of parasitic ticks vary from nonparasitic ticks, samples from nonparasitic ticks tended to cluster more
closely than those from the parasitic ticks. Correlation analysis indicated that there was a significant positive correlation or negative
correlation between the mycobiome. Our results indicate that the mycobiome carried by Dermacentor nuttalli had rich diversity,
and there was a significant difference in mycobiome between parasitic ticks and nonparasitic ticks. These findings may conducive
to understand the complex interaction between ticks and commensal fungi and provide help for the further exploration of the
behavioral characteristics of ticks and formulation of effective biological control measures.

1. Introduction

Ticks are hematophagous ectoparasites, with approximately
900 known species worldwide [1]. As the second largest
pathogen vector in the world after mosquitoes, ticks harbor,
and transmit several pathogens during hematophagy [2, 3],
such as tick-borne encephalitis; the spotted fever group rick-
ettsiae; and Anaplasma, Coxiella, Ehrlichia, and Babesia spp.
Environmental degradation and climate change have favored

the emergence of tick-borne diseases [4, 5]. According to
reports, in many countries around the world, tick-borne diseases
cause incalculable economic losses and have a great negative
impact on animal husbandry every year [6–8]. Ticks belong to
three families: Argasidae, Ixodidae, and Nuttalliellidae [9, 10].
Approximately 177 species from the genera Argas, Carios,
Ornithodoros, Amblyomma, Anomalohimalaya, Dermacen-
tor, Haemaphysalis, Hyalomma, Ixodes, and Rhipicephalus
have been identified in China [11, 12]. Dermacentor nuttalli
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is commonly found in grasslands in northern China [13] and
transmits zoonotic diseases, posing a significant threat to
humans and animals [2, 14].

In recent years, an increasing number of studies have
demonstrated that the microbiota of ticks plays an indispens-
able role in the vector capacity and pathogen transmission
kinetics of many tick-transmitted diseases [15–17]. For
example, a previous study showed that the endosymbiotic
bacteria of ticks not only plays a key role in reproductive
health and nutrient provision but also influence pathogen
acquisition, virulence, and transmission [17–19]. However,
little is known about the diversity of the mycobiome in ticks,
fungus/insect interactions are well-characterized [20]. Ento-
mopathogenic fungi are represented in five fungal taxa, and
insect hosts are represented in 20 insect orders [21]. This
makes entomopathogenic fungi form a large biodiversity
and determines the chemical diversity of metabolites. There
is a complex interaction between ticks and fungi. Ticks pro-
vide the necessary conditions for fungi to survive, while fun-
gal metabolites serve as nutrients to ticks, nonetheless, some
pathogenic fungi can also cause their death [22–25]. In this
study, the community composition and diversity of the fun-
gal microbiome in ticks were analyzed by high-throughput
sequencing. The results provide a basis for understanding the
interactions between ticks and fungi, thus helping to prevent
and control tick-borne diseases.

2. Materials and Methods

2.1. Sample Collection and Preparation.We started collecting
ticks from March to April 2022. Nonparasitic ticks were
collected by flag-drag approach on the vegetation layer dur-
ing the daytime, in addition, parasitic ticks were collected
from sheep. All samples were shipped to the laboratory under
dry ice conditions and then stored at −80°C. In the laboratory
phase, wash ticks with absolute alcohol for 1min to remove all
pollutants, then rinse with ultrapure water for 3min to remove
absolute alcohol, and finally store it in the refrigerator (− 80°C)
until morphological identification or nucleic acid extraction.
We observed the appearance of Ixodes using a digital video
microscope model HiROX MXB-2016Z and classified differ-
ent ticks according to the different morphological character-
istics [26]. Then mitochondrial genes 12S rRNA [27] and 16S
rRNA [28] were used to further identify the species of ticks.

2.2. Nucleic Acid Extraction. After morphological identification,
the collected ticks were separated into 50 groups based on their
location, with each group consisting of pooled samples of 5 ticks

per sample. Rinse nucleic acids with anhydrous ethanol before
extracting them to remove surface stains and pathogens. Then
put the tick into the centrifuge tube of 1.5ml, add steel ball, RLT,
and protease K, and centrifuge at 65-Hz 12,000g for 500 s at 4°C.
After 200µl of supernatant, according to the manufacturer’s
instructions, use a DNA extraction kit (Tianlong, Xi’an, China)
to extract nucleic acid. DNA concentration and integrity were
measured by NanoDrop 2000c spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and agarose gel elec-
trophoresis, respectively.

2.3. Molecular Identification of Tick by Polymerase Chain
Reaction (PCR). We selected representative samples for
molecular characterization to further verify the results of
the morphological classification of Dermacentor nuttalli,
sequence typing was carried out by using DNA markers of
the tick genome, including two mitochondrial genes 12S
rRNA and 16S rRNA. The PCR primers for the genes are
listed in Table 1, and the system and procedure of PCR
are presented in Tables 2 and 3. The obtained nucleotide
sequence was compared with those available in GenBank,
and multiple sequence alignment was performed using the

TABLE 1: Primers sequence information used in this study.

Target Gene Primer name Sequence (5′-3′) Reference

Tick 12S rDNA
T1B AAACTAGGATTAGATACCCTATTATTTTAG

[29]
T2A CTATGTAACGACTTATCTTAATAAAGAGTG

Tick 16S rDNA
16S-F CTGCTCAATGATTTTTTAAATTGCTG

[30]
16S- R CCGGTCTGAACTCAGATCAAGT

Microbiome ITS 2-1
ITS-F GCATCGATGAAGAACGCAGC
ITS-R TCCTCCGCTTATTGATATGC

TABLE 2: System of PCR in this study.

DreamTaq PCR master mix (2x) 25 μl

Forward primer 2 μl
Reverse primer 2 μl
Template DNA 2 μl
Water, nuclease-free 19 μl
Total volume 50 μl

TABLE 3: The procedure of PCR in this study.

Gene Step
Temperature

(°C) Time Cycles

16S rDNA

Initial denaturation 95 3min 1
Denaturation 95 30 s

35Annealing 50 30 s
Extension 72 1min

Final extension 72 10min 1

12S rDNA

Initial denaturation 95 3min 1
Denaturation 95 30 s

35Annealing 50 30 s
Extension 72 1min

Final extension 72 10min 1
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default parameters in MEGA11. Phylogenetic analysis was
performed using MEGA11 using the maximum-likelihood
(ML) method based on MEGA11 with an estimated Boot-
strap value of 1,000 replicates.

2.4. Library Construction and DNA Sequencing. Internal
transcribed spacer (ITS) regions 1 and 2 were amplified using
two primers (forward, GCATCGATGAAGAACGCAGC;
reverse, TCCTCCGCTTATTGATATGC). The primers were
synthesized by Invitrogen (Invitrogen, Carlsbad, CA, USA).
The reaction mixture contained 25μl of 2×Premix Taq
(TaKaRa Biotechnology, Dalian, China), 1μl of each primer
(10 μM), and 3 μl of the DNA template (20 ng/μl) in a total
volume of 50µl. Amplification conditions consisted of a
denaturation step at 94°C for 5min, followed by 30 cycles at
94°C for 30 s, 52°C for 30 s, and 72°C for 30 s, and an
elongation cycle at 72°C for 10min. PCR was performed on
an S1000 thermal cycler (Bio-Rad Laboratories, CA, USA).
PCR products were analyzed by 1% agarose gel electrophoresis
and quantified by a densitometry using GeneTools software
version 4.03.05.0 (Syngene, Frederick, MD, USA). PCR
products were purified using an EZNA Gel Extraction Kit
(Omega Bio-Tek, GA, USA) andmixed into equimolar ratios.

DNA (2 μl samples) was randomly fragmented and sub-
jected to end-repair, A-tailing, and adaptor ligation. DNA
concentration was quantified by fluorometry (Qubit 4.0).
The integrity and size of DNA fragments were assessed using
a high-throughput nucleic acid and protein analysis system
(Qsep400; Houze Biological Technology Co., Hangzhou,
China). Index codes were added to each sample, and coded
samples were clustered on the CBOT cluster generation sys-
tem according to the manufacturer’s instructions. Sequencing
was performed by the Guangdong Magigene Biotechnology
(Guangzhou, China) on an Illumina NovaSeq 6000 high-
throughput sequencing platform in PE250 mode [31, 32].

2.5. Bioinformatics Analysis. After obtaining the raw data, we
preprocess the sequencing data: carry on the quality control
statistics to the raw data according to the barcode sequence
and the primer sequence, remove the barcode sequence and
retain the front and back primer sequence [33].

Raw sequences were processed and assigned to amplicon
sequence variants (ASVs) using the Divisive Amplicon
Denoising Algorithm 2 (DADA-2) [34] (i.e., 100% opera-
tional taxonomic units (OTUs)) through the Quantitative
Insights into Microbial Ecology 2 (QIIME2) [35] pipeline.
OTUs were clustered at 97% sequence identity. Contig
sequences were assembled using DNAMAN software version
6 (Lynnon Biosoft, Quebec, Canada). One ITS (internal tran-
scribed spacer) sequence representative of each OTU was
queried against GenBank using BLASTn. Mitochondrial
and chloroplast sequences were removed. BLAST output files
were extracted, entered into contingency tables, and con-
verted into BIOM format.

2.6. Fungi Diversity and Taxonomic Analysis. Species accu-
mulation curves were plotted using R version 4.2.2. Species
richness (Chao1), Shannon index, and Simpson index were
calculated using the vegan package in R. Principle

coordinates analysis (PCoA) was performed using the ade4
package in R. Heatmaps were generated using the pheatmap
package in R. Fungal taxa differentially abundant between
the two tick groups were identified using the linear discrimi-
nant analysis (LDA) effect size (LEfSe) method (http://hutte
nhower.sph.harvard.edu/lefse/). Significant differences in the
number of OTUs between the groups were analyzed using
Statistical Analyses of Metagenomic Profiles (STAMP)
software (http://kiwi.cs.dal.ca/Software/STAMP). According
to the relative abundance of fungi in the samples, the top 42
fungal genera were analyzed to clarify the correlation among
different fungal genera. The phylogenetic diversity of fungal
genera was analyzed using the picante package in R with a
correlation coefficient of >0.3. The phylogenetic networks
were visualized using Gephi version 0.9.2.

2.7. Statistical Analysis. PCoA analysis based on Bray–Curtis
dissimilarities was performed using permutational multivar-
iate analysis of variance (PERMANOVA). Welch’s t-test was
used for group comparison analysis in STAMP. Co-occurrence
network analysis was employed with spearman correlation
value >0.3. The level of significance used in these analyses
was 0.05.

3. Results

3.1. Tick Identification and Sequencing Data Statistics. The
tick species collected in the study area was Dermacentor nut-
talli (Ixodidae) based on morphological analysis (Figure 1),
species-specific PCR, sequence alignment, and phylogenetic
analysis (Figure 2). A total of 7,482 ASVs were obtained. The
sequencing coverage was close to 1, and the rank-abundance
curve showed high and uniform species composition, indicat-
ing that the sequencing depth was sufficient to study the
fungal microbiota. Secondary leveling was performed at the
minimum sequencing depth to standardize the number of
sequences in each sample.

3.2. Fungi Composition of Dermacentor Nuttalli. Taxonomic
classifications were performed using the UNITE database
(https://unite.ut.ee/) [36]. The 7,482 ASVs were classified
into four phyla, 18 classes, 46 orders, 116 families, 261
genera, and 385 species. The most abundant fungal classes
were Dothideomycetes, Sordariomycetes, Tremellomycetes,
Leotiomycetes, Agaricomycetes, and Eurotiomycetes (Figure 3).
The most abundant genera in both tick groups were
Cladosporium, Aureobasidium, Purpureocillium, and
Tranzscheliellla (Figure 4).

3.3. Microbial Diversity. The dilution curve of each tick group
was obtained to determine whether the sequencing depth was
sufficient to meet the requirements of each sample. Although
the rarefaction curves for Chao1 ASVs were close to satura-
tion (Supplementary 1), the Shannon index and Simpson
reached a stable value (Supplementary 1). Sequencing cover-
age in each group of samples varied between 95% and 100%,
indicating that sequencing depth was sufficient to study the
fungal microbiota. Secondary leveling was performed at the
minimum sequencing depth to standardize the number of
sequences in each sample.
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ON241267 Haemaphysalis longicornis isolate Zibo27 cytochrome c oxidase subunit I (COX1) gene

OQ699195 Haemaphysalis longicornis isolate HBSJZPS10 cytochrome c oxidase subunit I (COX1) gene

ON241292 Haemaphysalis longicornis isolate Linyi29 cytochrome c oxidase subunit I (COX1) gene

OP614863 Haemaphysalis longicornis strain Jiangxi-1 large subunit ribosomal RNA gene

OM169339 Haemaphysalis longicornis isolate tick28 cytochrome c oxidase subunit I (COX1) gene

Haemaphysalis longicornis

Rhipicephalus linnaei

Hyalomma truncatum

Ixodes holocyclus

Dermacentor sinicus

Dermacentor silvarum

Dermacentor nuttalli

OM169343 Haemaphysalis longicornis isolate tick32 cytochrome c oxidase subunit I (COX1) gene

OM984969 Rhipicephalus linnaei voucher P1/22 3-1 cytochrome c oxidase subunit I (COX1) gene
OM984984 Rhipicephalus linnaei voucher P1/22 18-5 cytochrome c oxidase subunit I (COX1) gene

KT999693 Hyalomma truncatum voucher SX8 histone 3 (H3) gene
KT999686 Hyalomma truncatum voucher GH15 histone 3 (H3) gene

KT999684 Hyalomma truncatum voucher GH13 histone 3 (H3) gene
KT999717 Hyalomma truncatum voucher SD7 histone 3 (H3) gene

KT999716 Hyalomma truncatum voucher SS15 histone 3 (H3) gene

OM840113 Ixodes holocyclus isolate B57 cytochrome c oxidase subunit I (COX1) gene

MW665133 Ixodes holocyclus isolate Zotu1 small subunit ribosomal RNA gene

OM830398 Ixodes holocyclus voucher IH1F large subunit ribosomal RNA gene
AB051845 Ixodes holocyclus mitochondrial gene
HM581931 Ixodes holocyclus haplotype Hap 6 internal transcribed spacer 2 partial gene

OM368311 Dermacentor sinicus isolate Z7 mitochondrion partial gene

OM368306 Dermacentor sinicus isolate E38 mitochondrion partial gene
NC 062165 Dermacentor sinicus isolate A40 mitochondrion partial gene

KJ958909 Dermacentor sinicus 18S ribosomal RNA gene

KP994722 Dermacentor silvarum isolate Dsilv2 23S ribosomal RNA gene
OK432545 Dermacentor silvarum isolate gansu cytochrome c oxidase subunit I (COX1) gene

KP985491 Dermacentor silvarum isolate Dsilv2 chaperonin (groEL) gene

KY678110 Dermacentor silvarum isolate DsF GltA gene
KY678109 Dermacentor silvarum isolate DsM GltA gene

MG811836 Dermacentor nuttalli isolate Xinjiang-Q-W-JG-XC 12S ribosomal RNA gene

OM333170 Dermacentor nuttalli isolate 2Ar002S 16S ribosomal RNA gene

OM333182 Dermacentor nuttalli isolate 3Su068E 16S ribosomal RNA gene

OM333168 Dermacentor nuttalli isolate 1B170E 16S ribosomal RNA gene

OM333169 Dermacentor nuttalli isolate 1Uv060G 16S ribosomal RNA gene

MG669105 Dermacentor nuttalli isolate 2017-QH-WQ 16S ribosomal RNA gene
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FIGURE 2: Phylogenetic tree based on 12S rRNA (a) and 16S rRNA (b) gene sequencing.
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FIGURE 1: Dorsal and ventral views of adults of Dermacentor nuttalli. (1–5: parasitic ticks, 6–10: nonparasitic ticks).
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There were no significant differences in Shannon, Simp-
son, and Chao1 indexes between the tick groups (p<0:05)
(Figure 5(a)–5(c)). The richness and evenness of fungal com-
munities were similar between the groups. While cluster
analysis did not show that ticks were significantly isolated
from all samples, PCoA based on weighted UniFrac distances
indicated significant clustering of fungal communities in the
two groups at the ASV level, as determined by PERMANOVA
(F= 2.202; p¼ 0:013). In addition, PCoA1 and PCoA2
explained 22.18% and 11.16% of data variation, respectively
(Figure 5(d)). To further explore the differential species car-
rying fungi between the two groups, they were analyzed for
fungal abundance differences, and the results showed that
there were moreAureobasidium and Filobasidium in parasitic

ticks, and more Sporormiella and Tranzscheliella in nonpar-
asitic ticks (Figure 5(e), p<0:05). We also used LEfSe to iden-
tify differential microbial abundances between parasitic ticks
and nonparasitic ticks (Figure 6). This analysis revealed sig-
nificant differences (LDA≥ 2, p<0:05 determined by theWil-
coxon signed-rank test) in fungi clades from phylum to genus
levels between the two groups.

3.4. Co-Occurrence Network Analysis. To further explore the
correlation between fungal microbial communities, co-
occurrence network analysis with Spearman correlation was
performed on fungal abundance (Figure 7(a); Supplementary
2). Co-occurrence network analysis showed the co-occurrence
of several fungal genera, including Xylaria andNeoscolecobasidium
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FIGURE 3: Relative abundance of fungal classes in Dermacentor nuttalli ticks collected from parasitic ticks (1–25) or nonparasitic ticks (26–50)
in Wuwei, Gansu Province, China.

Transboundary and Emerging Diseases 5



(Spearman r= 0.714, p<0:05), Aureobasidium and Debar-
yomyces (Spearman r= 0.700, p<0:05), Paraphaeosphaeria
and Phoma (Spearman r= 0.697, p<0:05), Tranzscheliella
and Phoma (Spearman r= 0.687, p<0:05), Sporormiella and
Dothidea (Spearman r=−0.456, p<0:05), Alternaria and
Canariomyces (Spearman r=−0.435, p<0:05), andThelebolus
and Dothidea (Spearman r=−0.421, p<0:05).

3.5. Interaction of Endosymbiont Fungi. Spearman’s correla-
tion coefficients (r) indicated that many bacterial genera
were significantly correlated with each other (Figure 7(b);
Supplementary 1). For instance, Filobasidium was positively
correlated with Aureobasidium (Spearman r= 0.638, p<0:05);
Paraphaeosphaeria was positively correlated with Tranzsche-
liella (Spearman r= 0.614, p<0:05); Thelebolus was positively

correlated with Beauveria (Spearman r= 0.560, p<0:05), and
Ascochyta (Spearman r= 0.583, p<0:05); Phoma was posi-
tively correlated with Tranzscheliella (Spearman r= 0.677,
p<0:05), and Paraphaeosphaeria (Spearman r= 0.702,
p<0:05); Sporormiella was negatively correlated with Filoba-
sidium (Spearman r=−0.411, p<0:05); Thelebolus was nega-
tively correlated with Filobasidium (Spearman r=−0.394,
p<0:05). However, there was no significant relationship
between reaction variables and explanatory variables.

4. Discussion

Ticks can transmit a wide range of pathogens, including
bacteria, viruses, and fungi [37, 38]. In addition, the multi-
host life cycle facilitates pathogen transmission between
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FIGURE 4: Relative abundance of the fungal genus in Dermacentor nuttalli ticks collected from parasitic ticks (1–25) or nonparasitic ticks
(26–50) in Wuwei, Gansu Province, China.
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cofeeding ticks [39, 40], when humans enter their life circle,
they often become unexpected hosts, thus gaining the risk of
infection [41]. At present, with the change in ecological con-
ditions and human invasion of wildlife areas, the loss of
biodiversity is intertwined with global climate change, which
contributes to the current trend of the high incidence of tick-
borne diseases in the world [42]. Tick-borne pathogenic
(TBPs) diseases will continue to be prevalent among humans
and animals in the foreseeable future, seriously endangering
human and animal health [43].

The community composition and diversity of the fungal
microbiota in Dermacentor nuttalli were assessed by high-
throughput sequencing of the ITS gene. The most abundant
fungal classes were Dothideomycetes, Sordariomycetes, Tre-
mellomycetes, and Leotiomycetes. Renowned as one of the
fungi closely related to plants, members of Dothideomycetes
cause disease in crops [44]. The most abundant genera were
Cladosporium, Aureobasidium, and Purpureocillium, and
some species in these genera are opportunistic pathogens.

For instance, Cladophialophora bantiana (formerly known
as Xylohypha bantiana, Cladosporium trichoides, and Clado-
phialophora bantianum) is generally considered a neuro-
tropic species, it can be isolated from living mammalian
tissue, most commonly in patients with encephalitis [45].
These infections probably occur through inhalation and
are fatal if untreated; overall survival is 28%–35%, and the
most common clinical manifestations are lethargy, quadri-
plegia, and epilepsy [46, 47]. Additionally, studies on Nishi-
mura and Miyaji [48] have suggested that the use of
glucocorticoid can not only inhibit cellular immunity of
the body but also promote the infection of Cladophialophora
bantianum. Although the mechanism of infection is cur-
rently unclear, it is speculated from the clinical symptoms
and indicators that blood-derived transmission may be the
main mechanism [49]. Among all the fungal species of gen-
era Aureobasidium, A. pullulans is a well-known species of
pathogens that can cause human diseases [50]. A. pullulans
is a saprophytic dematiaceous fungus that causes skin
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FIGURE 5: (a–c) Fungal diversity in Dermacentor nuttalli collected from parasitic ticks or nonparasitic ticks in Wuwei, Gansu Province, China,
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index. (b) Boxplot showed fungi alpha diversity between two groups based on the Simpson index. (c) Boxplot showed fungi alpha diversity
between two groups based on the richness index. (d) Beta diversity based on principal coordinate analysis of weighted UniFrac distances. (e)
The extended error barplot shows the abundances of different fungi abundances in the two groups of samples. The middle shows the
abundances of different species within the 95% confidence intervals. The value on the far right is the p-value. A (blue) and B (red) represent
ticks collected from parasitic ticks and nonparasitic ticks, respectively.
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infections, meningitis, eye infections, and peritonitis, espe-
cially in immunosuppressed patients [51]. This species pro-
duces a pigment similar to melanin but is less pathogenic
than other fungi. However, the pathogenesis of these infec-
tions is unclear [52–54]. Purpureocillium lilacinum (formerly
known as Paecilomyces lilacinus), from the family Ophiocor-
dycipitaceae, infects nematodes and causes eye infections in
patients with chronic keratopathy, corneal injury, and a his-
tory of eye surgery [55–57]. Purpureocillium lilacinum causes
mycotic keratitis and hyalohyphomycosis and has a poor
prognosis, normally, it leads to endophthalmitis, and even
the eyeball is removed in severe cases [58]. Although there
are few reports on the pathogenic causes, one of the main
causes of keratitis caused by P. lilacinum is its resistance to
antifungal drugs [59].

There were marginal differences in fungal community
richness and diversity between the tick groups. Nonetheless,
PCoA of Bray–Curtis distances showed that fungal abun-
dance differed significantly between the two groups (p¼
0:013). Similarly, the composition and diversity of fungal

families differed across the groups, which might be attributed
to the environmental factors, tick developmental stage, sex,
and geographical area [27, 60, 61].

There were intergroup differences in the abundance of
Aureobasidium, Filobasidium, Sporormiella, Thelebolus, and
Tranzscheliella. Aureobasidium and Filobasidium were more
prevalent in ticks infecting hosts, while Sporormiella, Thele-
bolus, and Tranzscheliella were more prevalent in ticks col-
lected in the environment. Although Purpureocillium and
Aureobasidium are opportunistic pathogens, their abun-
dance was higher in parasitic ticks. This phenomenon may
be due to changes in fungal abundance after hematophagy.

In the correlation analysis, we found that there were signifi-
cant correlations between Stagonosporopsis and Phoma, Clados-
porium, Periconia, and Aureobasidium, and between them and
other genera. Just as some opportunistic pathogens mentioned
above, although people are well aware of the conditions and
mechanisms that lead to human diseases, little is known about
the relationship between Cladophialophora bantiana, Aureoba-
sidium pullulans, and ticks. It seems that many different fungal
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FIGURE 6: (a) Significantly enriched taxa (linear discriminant analysis score >2 and p<0:05) in Dermacentor nuttalli collected from parasitic
ticks or non-parasitic ticks in Wuwei, Gansu Province, China. (b) Cladogram showing the relationship between fungal taxa (phylum, class,
order, family, and genus from inner to outer rings) in the tick groups.
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genera coexist with TBPs, and the symbiotic form can increase
the colonization potential of pathogen forms. The pathogenicity
ofmany fungi and the interaction between fungi andothermicro-
organisms are not completely clear [20], which is also an impor-
tant research direction of our work in the future. However, fungi
and their hosts coexist at different stages and may play an
active or negative role in the spread of pathogens [15, 62].

This study has limitations. First, the development and
survival of microorganisms carried by ticks vary depending
on tick sex and species and environmental factors [63, 64].
Second, the effects of fungal metabolites on the tick micro-
biome were not assessed. Thus, in future research, it should
be important to control these factors in the analysis of myco-
biome in Dermacentor nuttalli. In summary, the present
study provides sufficient evidence that the mycobiome car-
ried by ticks is rich and diverse, and that the differences
between parasitic and nonparasitic ticks carrying pathogens

are significant, it improved our knowledge about the myco-
biome in ticks. Therefore, these findings can be used as the
basis for future research to provide information and data for
the development of prevention and control of TBPs.

5. Conclusion

In conclusion, this study demonstrated the mycobiome car-
ried by Dermacentor nuttalli had rich diversity. There was a
significant difference in mycobiome between parasitic ticks
and nonparasitic ticks, and the parasitic ticks carried more
opportunistic pathogens. Nonetheless, given the lack of
research in the field of tick-borne fungi, this result provides
help for the epidemiology of pathogens in a veterinary and
public health sense. It also provides a new idea for further
understanding the behavioral characteristics of ticks and
establishing effective biological control measures.
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FIGURE 7: Co-occurrence network analysis and correlation heatmap of fungal genera. (a) Co-occurrence network analysis of fungal genera.
Each node represents a genus, and red and blue lines represent positive and negative correlations, respectively (p<0:05). (b) Heatmap of
Spearman’s correlations between the 30 most abundant genera ∗p<0:05.
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