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The Korean Demilitarized Zone (DMZ) is one of the world’s most preserved habitats for wild animals and migratory birds. The
area also plays a major role in the spread of infectious animal diseases, in particular, African swine fever (ASF) and highly
pathogenic avian influenza (HPAI). These outbreaks threaten the livelihood of local livestock farms, not infrequently. In this
paper, we explore these relatively under-researched diseases by modeling and mapping ASF and HPAI risks in tandem using
MaxEnt, a machine-learning algorithm. The results show robust predictive power with high area under the curve values, of 0.92
and 0.99, respectively. We found that precipitation from spring to early summer and solar radiation in winter were essential in
explaining the potential distribution of ASF, but land use contributed little. Thus, understanding only wild boars’ habitat
preferences may not be sufficient in preventing ASF epidemics. HPAI risks were shaped by precipitation and mean tempera-
ture from winter to spring and land use. Areas with high ASF and HPAI risks were primarily found in forest and agricultural
lands, respectively. The DMZ included many high-risk areas, indicating that the DMZ could lead to a broader regional spread
of ASF and HPAI in the peninsula. Thus, our results highlight the essential role of cross-border collaboration and the
combination of environmental and epidemiological insights in strategies to control ASF and HPAI risks within and surround-
ing the DMZ.

1. Introduction

The accurate prediction of disease spread is vital in under-
standing potential risk and where to target intervention strat-
egies [1]. Modeling is always dependent on accurate and
timely data release; a sophisticated disease surveillance system
can be used to develop near real-time geographic insights in
terms of where a disease is emerging and where and how
quickly it is spreading [2, 3, 4]. Low-data quality results in
poor model accuracy, reducing their effective use in opera-
tional planning [5]. While the reasons for poor data quality
aremany, for example, not having the resources to collect data
in a timely and accurate manner, political boundaries provide

one of the more challenging obstacles [6, 7]. In areas where
diseases spread across borders of traditionally conflicting
powers, often the only way to predict how they will spread
is to use computermodels that can extrapolate outcomes from
limited input data [8, 9]. In this paper, we use one such
modeling strategy to predict where disease spread might hap-
pen in one of the world’s most vulnerable areas, the border
transition areas between South and North Korea. The inner
border area contains the Demilitarized Zone (hereafter DMZ)
established by the Armistice Agreement in 1953 [10].

Somewhat ironically, the strong military presence and
the restriction of activities have also resulted in one of the
world’s most undisturbed habitats for flora and fauna; a total
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of 5,929 species of animals and plants have been found here,
of which 101 are considered endangered [11]. This natural
preserve, which provides an excellent habitat for a diverse
array of animals and migratory birds, also plays a role in
the spread of infectious animal diseases, especially African
swine fever (hereafter ASF) and highly pathogenic avian influ-
enza (hereafter HPAI) [12, 13, 14] which are of global concern
due to their potential for severe economic and ecological
impacts [15, 16, 17].

In recent years, both diseases have occurred annually
throughout the peninsula [18, 19]. Thanks to surveillance
systems, we can detect and respond to diseases early enough
to limit impacts. In September 2019, the government reported
for the first time an ASF outbreak to the World Organisation
for Animal Health (WOAH); the case resulted in the culling
of approximately 0.4 million pigs [20]. The initial ASF out-
break in Korea began near the DMZ and has steadily
advanced southward. The implementation of the wide-area
fence in the DMZ serves as a distinct sign of ASF’s southward
trajectory, emphasizing the gravity of the situation. HPAI has
frequently occurred since 2003, especially in the winter of
2016–2017 when there was a cull of approximately 40 million
poultry due to the outbreak [21], leading to substantial losses
on poultry farms [22]. As a result of these previous outbreaks,
there is a need for detailed spatial outbreak prediction model-
ing, though the lack of North Korean data has been a limita-
tion [13, 23]. As a result, though there have been different
spatial epidemiological studies that have analyzed ASF and
HPAI outbreaks in South Korea [22, 24, 25, 26], a few have
included areas of North Korea. In the past, risk maps of ASF
and HPAI have identified possible infectious disease trans-
mission risks based on statistical probability [27, 28, 29, 30].
MaxEnt provides an alternative approach that overcomes
some of these data deficiencies as it employs a machine-
learning algorithm and has strength in modeling ecological
niche and disease risk with presence-only data based on

underlying environmental characteristics, such as land use
and local climate [31, 32, 33, 34].

In this paper, we will use MaxEnt and the latest govern-
ment data along the greater DMZ region to produce risk
maps for ASF and HPAI with the aim of identifying potential
transmission routes between South Korea and North Korea.

More specifically, we aim to answer the following
questions:

(1) Which environmental variables are more important
in explaining ASF and HPAI risks?

(2) What are the characteristics of areas with high risk of
ASF and HPAI?

(3) In terms of epidemiology, what are the implications
of having the DMZ in the peninsula?

It is important to note that the present study is about wild
animals and does not consider farm animals. ASF is consid-
ered endemic in this case study as it has only to do with wild
animals; ASF is not endemic regarding farm animals in
South Korea. HPAI is not endemic either in the wild or on
farms at the national level, even though it occurs regularly
(i.e., sporadic outbreaks).

2. Materials and Methods

The overall framework of this study includes (1) data collec-
tion and processing; (2) model fitting and evaluation; and (3)
generation of the ASF and HPAI risk maps and their overlay,
as illustrated in Figure 1. Each step’s specific details are pre-
sented in the subsequent sections.

2.1. Study Area. The study area is the 30 km buffer zone from
the military demarcation line, covering both parts of South
Korea and North Korea. The 30 km buffer distance allows for
including all ASF and HPAI data points (Figure 2). There-
fore, our study area includes the DMZ, the zone that since
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FIGURE 1: Schematic diagram of methodology.
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the Korean War has been inaccessible due to the ongoing
military tension between the South and the North. As a
result, the DMZ is largely underdeveloped, resulting in
many abandoned agricultural lands (some of which have
been recovered as artificial wetlands) and unmanaged forests
(where some have become old-growth if not burned by wild-
fire) [10, 35, 36, 37]. Municipalities adjacent to the DMZ are
also underdeveloped because the South Korean government
has legally limited any large-scale regional development in
the neighborhood [36]. As a result, the nonmilitary human
involvement in the study area is largely agriculture (mostly
rice paddies) and livestock farming facilities. This political
(and military) rationale for land use has also produced ideal
ecological niches for some viruses.

The South Korean side of the study area includes two
administrative provinces, namely Gyeonggi (west) and
Gangwon (east). Gyeonggi is the most populous province
(13.4 million people) in South Korea [38]; Gangwon is mainly
characterized by forests and then agricultural lands [39]. The
North Korean side covers three provinces: South Hwanghae
(west), North Hwanghae (center), and Kangwon (east).
The large plains in the former two provinces have resulted
in agricultural land use [40]. South Hwanghae is the largest
producer of rice, maize, and soybean in North Korea [41].
Kangwon province is mostly mountainous similar to the adja-
cent Gangwon province of South Korea.

2.2. Input Data

2.2.1. ASF and HPAI Cases. Geocoded data of ASF and HPAI
carcasses were obtained from the central and local govern-
ments, respectively [42, 43], and only the positive cases were

used in this study. The data are only available for limited
time periods: there were 669 ASF cases from October 2019 to
July 2020 (approximately 10 months), while 144 HPAI cases
were reported between January 2021 and March 2021
(approximately 2 months). Their spatial distribution is illus-
trated in Figure 2.

As for ASF, soldiers (who have access to the DMZ and
other restricted military areas) and local residents/hunters
(who have considerable local knowledge and were hired by
local governments and the Ministry of Environment) patrolled
the area to locate carcasses. Once identified, locations were
documented as coordinates and cadastral-level addresses using
GPS, followed by biosecurity measures to prevent further
spreading. Dates are twofold: one for the identification of the
carcass at the site and the other for the test result. Additional
information, such as sex, terrain, age, etc., was also documented
when available. Finally, these were directly reported to the
government.

As for HPAI, local farmers usually reported to the local
government when dead birds were found in their or their
neighbors’ rice paddy fields. Then, government officials vis-
ited the site to photograph the carcasses and document the
coordinates and cadastral-level addresses, before sending the
specimens to the National Wildlife Disease Control Center
for HPAI positive/negative testing and species identification.

ASF has continued to spread since October 2019, and it is
uncertain when this diffusion will stop [44]. This ongoing
spread is another reason why analyzing the geographic pat-
tern of ASF is vital. ASF being endemic in South Korea inher-
ently means it is also endemic in our study area, i.e., the inner-
border region. This justifies our MaxEnt application because
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it meets the equilibrium requirement. Our input ASF data
(October 2019–August 2020) have obvious limitations
because the ongoing epidemic by definition means these
data are not complete.

HPAI data (January–March 2021), on the other hand, are
not fully endemic and thus violating the equilibrium assump-
tion of MaxEnt. HPAI epidemics are seasonal because they are
mainly driven by migratory birds, namely Asner albifrons
(greater white-fronted goose), Cygnus cygnus (Whooper
swan), Grus japonensis (red-crowned crane), and Antigone
vipio (white-naped crane). The first HPAI case was reported
on 30December 2020 near the western inner border (Gyeonggi
Daily 2020), and the spread ended on 30 March 2021 (Asia
Business Daily 2021). HPAI spread can be portrayed as a series
of localized outbreaks, i.e., “semi-endemic.” Although limited,
our data offer the best spatial resolution for HPAI in the study
area. Thus, we argue that MaxEnt is applicable to this case
study due to its strength in dealing with spatially biased data
and showing considerable resilience in maintaining predictive
accuracy. However, the results must be interpreted cautiously.

2.2.2. Environmental Variables. We employed climatic, eleva-
tion, and land use data when modeling MaxEnt for ASF and
HPAI (Table 1). Climatic data (1 by 1 km) were obtained from
the World Climate Database (WorldClim) [45]. Elevation and
land-use maps (30 by 30m) were provided by the Ministry of
Environment of South Korea. The land use included four cate-
gories: urban, agriculture, forest, and others. The WorldClim
data were resampled to 30m spatial resolution to match the
resolution of elevation and land-use maps. The 30m spatial
resolution is the most appropriate for modeling because the
ASF and HPAI data points were closely located to each other.
Further, to remove multicollinearity, we conducted a principal
components analysis (PCA) on all the variables, except for land
use due to it being categorical. We conducted PCA on the envi-
ronmental layers for the study area and then extracted principal
component (PC) values for each occurrence location. Meaning-
ful PCs were selected as input data based on eigenvalue-one
criterion, scree test and cumulative variance [46, 47].

Climatic data were selected and combined differently for
each disease. In South Korea, four seasons are typically
defined by average temperature thresholds: (a) spring, above
5°C; (b) summer, above 20°C; (c) fall, below 20°C; and (d)
winter, below 5°C [48]. As ASF spreads throughout all sea-
sons in South Korea, we have used the entire monthly
WorldClim data for the ASF to run PCA. As for HPAI, we
have used the WorldClim data of December–April to cover
our HPAI data (January–March 2021) to portray winter and

spring. The additional months, December andApril, were added
to test a possible lag effect between climate and the disease.
Studies suggested that the climatic conditions before and after
the main disease period can have a preparatory or consequential
impact on disease transmission [49, 50, 51]. Only the mean
temperature was used in the research and did not include maxi-
mumorminimum temperature based on the existing study [52].
The final PCs are used as input data for MaxEnt modeling to
explain the spread of ASF and HPAI, respectively.

2.3. Modeling ASF and HPAI using MaxEnt. MaxEnt identi-
fies the distribution with the maximum entropy to predict
where a virus is likely to be present [30, 53, 54]. To calculate this
distribution, a maximum likelihood approach was applied fol-
lowed by the sequential-update algorithm which began with a
uniform distribution. One or more weights of predictor vari-
ables were sequentially modified to maximize the average log
probability of the presence samples [55]. Its predictive accuracy
had previously been proven to be high in similar research [56].

To evaluate MaxEnt application’s performance (not
goodness-of-fit), we used 75% of the ASF and HPAI cases
to train the model, while the rest was independently used for
testing the predictive outcome; all case points were combined
with 10,000 randomly selected background points. A receiver
operating characteristic (ROC) and the associated area under
the ROC curve (AUC) indicate an overall goodness-of-fit of
the MaxEnt model. AUC values often used in assessing the
accuracy of infectious disease predictions range from 0 to 1
where 0.5 indicates random prediction and higher values
mean more accurate results [55, 57, 58].

We also assessed the contribution each input data had on
explaining ASF and HPAI. MaxEnt assesses variables’ contribu-
tions in two ways: permutation importance and percent contri-
bution. The former ismore suitable for assessing the contribution
because it is determined based on the final model by permuting
values of each variable among all training points, whereas the
latter only considers a single iteration [59]; therefore, we assessed
the contribution of PCs and land use based on permutation
importance only. In other words, final PCs of each disease might
be fewer than PCs inputted forMaxEntmodeling because a PC is
likely to have little permutation importance in MaxEnt even
though it meets the eigenvalue-one, scree test, and cumulative
variance criteria in PCA.

MaxEnt provides two thresholds to determine the pres-
ence of viruses [60]. The first threshold is designed to maxi-
mize the accuracy of the model based on the given presence
data [61]. The second threshold, on the other hand, takes
into account both the given presence data and omitted

TABLE 1: Environmental variables.

Environmental variable Resolution Unit Source

Mean temperature (monthly) 1 km °C

WorldClim, https://www.worldclim.orgPrecipitation (monthly) 1 km mm

Solar radiation (monthly) 1 km kJ
m2⋅day

Elevation 30m m
Ministry of Environment, https://egis.me.go.kr

Land use (categorical) 30m —
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observations in the study area [32, 62]. As a result, the latter
leads to a more balanced and moderate outcome compared
to the former approach. Thus, we used the former to delin-
eate “high” risk areas, while the latter to delineate “moderate”
and “low” risk areas. When there is an overlap between high
and moderate areas, it is classified as high. Finally, we over-
laid the high-risk maps of ASF and HPAI to identify areas
exposed to both viruses.

3. Results

3.1. Model Performance. All AUCs were greater than 0.91,
suggesting that the MaxEnt results were reliable in being able
to predict potential ASF and HPAI risks in the greater DMZ
region. The HPAI model showed higher AUCs than the ASF
model, though this does not necessarily mean that the former
is better than the latter. AUCs of training and those of testing
showed little difference for both ASF and HPAI (Table 2).

3.2. Variable Contributions. The relative contributions (i.e.,
permutation importance) of the input data to the MaxEnt
modeling of ASF and HPAI are summarized in Table 2,
where PCs and land cover were used as the input data. After
PCA, the first four PCs (from the first PC to the fourth PC,
hereafter PC1–4) and the first three PCs (from the first PC to
the third PC, hereafter PC1–3) were selected for ASF and
HPAI, respectively (Figures S1 and S2; Tables S1 and S2). To
fully understand the impact of the environmental variables, it
is necessary to refer to the PCA results, including factor
loadings (Tables S1, S2, S3, and S4).

(1) ASF.

All PC1–4 contributed to explaining the ASF spread, but
land use was not included in the final model due to its minor
contribution during the initial run. PC3 (31.97%) contrib-
uted the most, followed by PC4 (26.90%), PC1 (22.87%), and
PC2 (18.26%) (Table 2). PC3 meant precipitation from
spring to early summer and solar radiation in winter. PC4
indicated mean temperature from late spring to early sum-
mer and solar radiation in winter. PC1 indicated mean tem-
perature and solar radiation from early spring through late
autumn, strongly related to elevation. Lastly, PC2 showed
precipitation from summer to winter and mean temperature
in winter (Table S3). In short, in explaining the ASF risks in

the study area, the most important environmental variables
are precipitation, mean temperature, and solar radiation.

(2) HPAI.

PC2 (48.09%) contributed the most in explaining the
HPAI spread, followed by PC1 (37.88%) and land use
(14.02%); PC3 was not included in the final model due to
its minor contribution (Table 2). Noting that the research
only considers winter and spring seasons for HPAI, PC2
indicated precipitation; PC1 represented mean temperature
associated with elevation (Table S4). In summary, the most
important environmental variables in explaining HPAI risks
were precipitation, temperature, and land use. Lastly, we
identified the lag effect in December but not April.

3.3. Geographical Distribution of ASF and HPAI. The two
empirically driven thresholds (15.52% and 17.97%) catego-
rized the ASF risks into high, moderate, and low areas. High-
risk areas in the South were concentrated in the western and
central regions (Figure 3(a)), and most of them (75.05%)
belong to forestlands (Table 3). Despite employing climatic
and land-use data of North Korea, ASF risks were found to
be much lower in the North than in the South, while those
risk areas in the North were primarily concentrated in the
western region along the inner border (Figure 3(a); Table 4).

Similarly, the other set of two thresholds (4.73% and
6.19%) classified HPAI risks into high, moderate, and low.
High-risk areas in the South were concentrated in the central
region (Figure 3(b)), and most of them (56.64%) belong to
agriculture (Table 3). In terms of area, HPAI had fewer high-
risk areas than ASF (Figure 3(b); Table 4). HPAI’s high-risk
areas in North Korea were worth 33.1% of South Korea,
whereas ASF’s high-risk areas in North Korea were worth
14.8% of South Korea. The DMZ included twice as many
high-risk areas as North Korea (Table 4).

4. Discussion

The highly inaccessible DMZ and its underdeveloped neigh-
boring areas pose unusual health challenges when an epi-
demic originates from this region. While normally in South
Korea, the spread of diseases such as ASF and HPAI will be
monitored, modeled, predicted, and controlled [13, 63], there
is a general dearth of data in the DMZ. As a result in this area,

TABLE 2: MaxEnt results.

ASF HPAI

Initial Final Initial Final

Permutation importance (%)

PC1 23.05 22.87 45.83 37.88
PC2 17.88 18.26 43.02 48.09
PC3 30.84 31.97 2.44 —

PC4 26.36 26.90 — —

Land use 1.88 — 8.72 14.02

AUC
Training 0.918 0.915 0.988 0.989
Testing 0.920 0.917 0.989 0.987
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it is impossible to monitor and gather pertinent information
on wild animals’ movement and the spread of viruses inside.
Furthermore, due to national security reasons, large-scale
development in the neighboring areas is prohibited; as a
result, livestock farming has become a major industry in the
region.

Wild boars are primary hosts of ASF, and these are typi-
cally found in forests where the risk of ASF outbreaks is the
highest [64, 65, 66]. Forests provide an ideal environment for
wild boars to survive, implying that forests, especially in the
northern region, facilitate ASF spreads in South Korea
[22, 67]. Furthermore, the peninsula’s dry and cold winter
encouraged wild boars to mobilize even more so that they

could maintain their body temperature and secure food [63].
However, our results showed that land use did not signifi-
cantly contribute to explaining the ASF spreads; instead,
precipitation, mean temperature, and solar radiation played
significant roles (Tables 2 and S3), although the majority of
ASF-positive cases were found in forest areas (Figures 4 and
S3; Table 3). In other words, drivers of ASF spread and
known habitat preferences of wild boars might not necessar-
ily agree; hence, understanding only their habitat preferences
may not be sufficient in preventing ASF epidemics.

Previous research has shown a positive relationship
between HPAI with agricultural land that provides seasonal
habitat and food availability [29, 68, 69]. The habitats and

TABLE 3: Area and ratio of land uses regarding high- and low-risk areas of ASF and HPAI.

Land type

ASF HPAI

High-risk Low-risk High-risk Low-risk

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Urban 45.23 2.20 286.96 3.25 35.93 5.75 333.34 2.83
Agriculture 388.28 18.92 2,058.79 23.33 354.11 56.64 2,258.80 19.21
Forest 1,539.94 75.05 6,081.57 68.93 179.24 28.67 8,717.49 74.14
Others 78.54 3.83 396.06 4.46 55.92 8.94 448.73 3.82
Total 2,051.98 100.00 8,823.38 100.00 625.20 100.00 11,758.36 100.00

TABLE 4: Area and ratio of risks for ASF and HPAI.

South Korea North Korea DMZ

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

ASF
High 1,657.36 26.88 244.33 3.98 151.15 16.84

Moderate 1,518.04 24.62 500.39 8.15 305.75 34.07
Low 2,990.59 48.50 5,391.44 87.86 440.52 16.84

HPAI
High 432.37 7.01 142.25 2.32 51.01 5.68

Moderate 459.13 7.45 268.85 4.38 88.58 9.87
Low 5,274.48 85.54 5,725.06 93.30 757.83 84.45
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Military demarcation line

Moderate
Low
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0 25 50 km
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FIGURE 3: MaxEnt maps of (a) ASF and (b) HPAI.
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migratory patterns of birds are significantly affected by temper-
ature sensitivity [70]. Particularly during winter, migratory
birds flock to agricultural areas with abundant food sources,
which further increases the risk of HPAI outbreaks. Our Max-
Ent results also support the relationship between HPAI with
agricultural land (Table 2; Figure S4). We observed an impor-
tant lag effect as December precipitation significantly influ-
enced the timing of HPAI outbreaks some 1–3 months later.
In our PCA, December’s precipitation of PC2 showed a higher
loading, similar to the loadings of January, February, and
March (Table S4). April did not show any similar influence.
This is consistent with other research identifying a time lag
between rainfall and wild bird-mediated avian influenza
virus [71, 72].

Both ASF and HPAI high-risk areas were closely located
to the livestock industry (pork and poultry farms) of South
and North Korea. Most of the ASF high-risk areas in the
South were distributed in Paju, Yeoncheon, and Hwacheon
(Figure S5). These regions were characterized by the concen-
tration of pork farms in each province. Cheolwon, where
HPAI high-risk areas of South Korea were concentrated
(Figure S5), produced the highest number of chickens in
Gangwon province [73]. On the other hand, ASF and
HPAI high-risk areas in the North included the largest live-
stock farm in the Sepho district (Figure S6). Based on our
risk maps (Figures 3 and 4), large areas of the DMZ are
susceptible to ASF and HPAI transmission. This finding is
consistent with previous findings highlighting the DMZ as a
wildland habitat that also contained reservoirs for ASF and
HPAI [12]. Moreover, HPAI consistently cross species

barriers, posing a threat to both birds and mammals [74].
The diverse ecosystem within DMZ creates conditions con-
ducive to the emergence of novel strains of HPAI.

ASF being endemic in South Korea inherently means that
it is also endemic in our study area, i.e., the inner-border
region. In contrast, HPAI is not endemic in South Korea, so
it is difficult to uphold the equilibrium assumption when
MaxEnt was to be applied to the entire South Korea. HPAI
may not be fully endemic in our study area, but it still may be
portrayed as a series of localized outbreaks, i.e., “semi-
endemic.” However, our situation might be even more lim-
ited because of data inaccessibility; it is probable that some
might regard our HPAI data as not being large enough to
fully depict this semi-endemic situation. Yet, we have applied
MaxEnt to our limited HPAI data because it is the best
spatially explicit data available. Similarly, a recent Chinese
case study employed only 200 data points to cover the entire
mainland China (9,597,000 km2 in area), which means that
each data point covers 47,985 km2 to analyze HPAI risks
between 2014 and 2021 [75]. This provides a precedent
that MaxEnt is capable of yielding reliable and robust results
even with limited data. In our case study, each data point
covers a far finer resolution of 103.61 km2 (144 data points,
14,921 km2) and only for 2 months.

While we were not able to employ virus data from North
Korea, our MaxEnt results provide estimates of the potential
risk based on the common environmental characteristics
contributing to disease spread [76] by extrapolating risks
in the South to the North. As our research was not able to
use any ASF data points from North Korea, it was reasonable
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FIGURE 4: Distribution of land use and high-risk areas of ASF and HPAI.
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to believe that the lower risk in North Korea could be an arti-
fact. Nevertheless, the western region in North Korea showed
many high-risk areas, implying that there are suitable ecologi-
cal niches for ASF to spread, and as such makes it an area of
concern (Figure 3(a)). The DMZ was also an area of concern
because it included more areas with high (16.84%) and moder-
ate (34.07%) risks than North Korea (Table 4). This result
might be partly due to HPAI having fewer cases than ASF
and also due to the possibility that the study area was less
suitable for HPAI to spread than ASF. Identical to the ASF
case, our research was not able to use any HPAI data points
fromNorth Korea, and yet more high-risk areas were identified
in North Korea for the HPAI, as compared to ASF. Our Max-
Ent models presented high AUC values for both training and
test data, suggesting more reliable risk predictions [77] and
further solidifying this type of modeling approach in low-
data environments [78, 79]. However, the accuracy of theMax-
Ent model might only work for the South, as the model’s
predictive accuracy could be lower in North Korea.

To our knowledge, our research was the first to study the
simultaneous risk of ASF and HPAI. These two highly conta-
gious animal diseases were not often studied in tandem
because they were unrelated in terms of viral etiology
[80, 81]; also, our data showed these epidemics occurred in
different time periods. In the DMZ, adopting an all-hazard
threat approach, local municipalities and residents still need
to be prepared for the simultaneous outbreak of these viruses.
Moreover, integrating the DMZ infectious disease risk map
with data on the movement of individuals and vehicles in the
area can furnish essential insights into how the infectious
disease risk within the DMZmight influence the future spread
of diseases within the country.

5. Conclusions

Our research furthers understanding of the geographic pat-
terns of ASF and HPAI in the DMZ region, and the environ-
mental factors contributing to their distribution. Our study
found that the MaxEnt model accurately predicted the
occurrence of both diseases, even with the limited occurrence
data. Despite the current lower risk of ASF in North Korea
compared to South Korea, both countries face significant
threats from these diseases.

Our MaxEnt variable contribution analysis highlighted a
correlation between virus distributions and the habitats of
disease vectors. More precipitation and sunlight and higher
temperature were the primary factors driving ASF spread,
while precipitation, temperature, and land use were critical
for the HPAI epidemic. Drivers of ASF spread and known
habitat preferences of wild boars may not necessarily agree
because our MaxEnt outcome showed that land use contrib-
uted little in explaining the ASF spread.

Given the DMZ’s unique context, further research is
needed to assess the impact of wildlife populations and bor-
der restrictions on transboundary disease transmission. Such
research would aid in developing targeted prevention strate-
gies. Overall, our study emphasizes the importance of con-
sidering environmental factors and land use patterns when

assessing disease spread risks in border regions. While devel-
oping disease surveillance strategies between South and
North Korea that would more accurately capture the level
of any future outbreak, the reality is that this will not happen.
Results such as those presented here are vital to help formu-
late effective measures to mitigate the impact of these dis-
eases on animal and human health.
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