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Tamoxifen is a drug used for treating breast cancer (BC), especially for individuals diagnosed with estrogen receptor-positive
(ER+) BC. Its prolonged use could reduce the risk of recurrence and signifcantly lengthen the survival rate of BC patients.
However, an increasing number of patients developed resistance to tamoxifen treatment, which reduced therapeutic efciency and
caused substandard prognosis. Terefore, the exploration of the molecular processes involved in tamoxifen resistance (TR) is
urgently required.Tis investigation aimed to elucidate the relationship of microRNA-330 (miR-330-3p) with the TR of BC.Tere
is little information on miR-330-3p′s link with drug-resistant BC, although it is well known to regulate cell proliferation and
apoptosis. Primarily, miR-330-3p expression in parental BC (MCF7/T47D), TR (MCF7-TR), and T47D/TR cell lines was detected
by qRT-PCR. Ten, the impact of miR-330-3p on the TR of BC cells was assessed by a cell proliferation assay. Lastly, dual-
luciferase reporter, qRT-PCR, and western blot assessments were carried out to identify histone deacetylase 4 (HDAC4) as the
potential miR-330-3p target gene. Te data indicated that miRNA-330 was overexpressed in TR ER+ BC cells and its over-
expression could induce TR. Furthermore, miRNA-330 could also reduce the expression of HDAC4, which is closely linked to TR,
and overexpression of HDAC4 could reverse miRNA-330-induced drug resistance. In summary, miR-330-3p could induce TR of
ER+ BC cells by downregulating HDAC4 expression, which might be a novel marker of TR and a possible treatment target against
BC patients who are tamoxifen-resistant.

1. Introduction

In women, breast cancer (BC) is the most frequent and
threatening cancer type, accounting for 7–10% of all ma-
lignant tumors. BC incidence has increased since the late
1970s [1, 2]. Estrogen receptor positive (ER+) has been
reported to be expressed in 70–80% of BC patients, with

increasing incidence every year [3, 4]. BC has substantially
endangered women’s mental and physical health; therefore,
the investigation of BC has attracted the attention of sci-
entists worldwide.

Tamoxifen is a nonsteroidal antihormonal antineoplastic
agent [5–7], is used for the clinical treatment of BC, and is
particularly efective in ER+ patients. Tamoxifen could
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signifcantly alleviate the recurrence risk of BC and is very
efective among metastatic ER+ BC patients [8, 9]. Long-
term use of tamoxifen could prolong survival and reduce
recurrence in BC patients. However, more andmore patients
gradually developed tamoxifen resistance (TR) in recent
years [10]. TR has been reported in 30 to 40% of BC patients
treated for 5 years. Cancer cells are generally more aggressive
when they get resistant and more difcult to treat with
conventional therapies, making it even worse to continue
treatment [11, 12]. Terefore, TR is very important for
treating BC. Understanding the bio-molecular mechanism
of tamoxifen can solve the drug-resistance problem.

MicroRNA (miRNA) is an evolutionarily conservative
noncoding small RNA comprising approximately 20 nu-
cleotides [13–15]. Recently, it has been suggested that these
miRNAs correlate with the initiation and progression of
multiple tumors, including breast, lung, and gastric cancers
[16–21]. It has been demonstrated that miRNAs might be
essential bio-indices and treatment targets for clinical de-
tection and cancer therapy. Moreover, several reports have
revealed a close relationship between miRNAs in TR [22].
miRNA-181b and miRNA301a were found to be aberrantly
expressed in tamoxifen-resistant BC. Furthermore, over-
expression of miRNA375, miRNA221/222, miRNA101,
miRNA519a, miRNA451, miRNA575, miRNA32-5p,
miRNA195, and miRNA497 could induce TR [23–29].
Terefore, it is necessary to deeply understand miRNAs’
potential activity and function in TR.

Tis investigation focuses on elucidating the link be-
tween miR-330-3p and TR. It was revealed that miR-330-3p
upregulation was substantially related to TR and that miR-
330-3p could cause drug resistance by downregulating
HDAC4. Tis investigation might provide useful in-
formation to fnd new therapeutic targets and strategies for
TR BC patients.

2. Materials and Methods

2.1. Reagents and Cell Lineages. Te human BC cell lineages
(T47D and MCF7) were provided by the American Type
Culture Collection (ATCC, USA) and propagated in DMEM
(Gibco, Invitrogen China Limited, China) and RPMI-1640
Wisent (China), respectively, augmented with 10% fetal
bovine serum (FBS, Gibco), 1mM sodium pyruvate, and
100U/mL penicillin and streptomycin (Gibco), and in-
cubated at 37°C in 5% CO2. Te medium was replaced every
48 hours.

Antibodies used were β-actin (Sigma-Aldrich), HDAC4
(#15164, 140kd, Cell Signaling Technology, USA), and
Lipo2000 (Invitrogen, USA).

2.2. Cell Counting Kit-8 (CCK-8) Assay. Cell viability was
elucidated by CCK-8 (Dojindo Laboratories, Kumamoto,
Japan). Cells were propagated for 24h, the media were
refreshed by only RPMI-1640, and then 150 nMmiR-330-3p
mimics and miR-330-3p sponge (negative control; NC) were
transfected via the Lipo 2000. After 48 h, 3000 cells/wells
were propagated in 96-well plates in 100 μL of media +10%

FBS at 37°C for 24 h. Ten, the supernatant was refreshed by
200 μL full growth medium with tamoxifen; each treatment
had three replicates. Ten, 10 μL of CCK-8 solution was
incorporated in the medium for 2 h at 37°C, and their ab-
sorbance (OD) was measured via a microplate spectro-
photometer (Biotek, Germany) at 490 nm. Each sample’s
OD was subtracted from the blank value, and cell growth
reduction was measured as a percentage of control OD (no
drug). Te data are depicted as the mean± SD for repeated
experiments thrice.

2.3. Dual-Luciferase Reporter Assays. Cells at the concen-
tration of 10000/well were propagated in 48-well plates
overnight in 100 μL of media +10% FBS.Ten, cells were co-
transfected by HDAC4 3′-UTR luciferase vector and pre-
miR-330-3p or miRNA negative control via DharmaFECT
Duo Transfection Reagent (Dharmacon) for 48h at 37°C and
5% CO2. Ten, with the help of phosphate-bufered saline
(PBS), cells were rinsed before lysis with 100 ul PLB lysis
solution and collection cracking fuid. Te luciferase func-
tion was tested via the Dual-Luciferase Reporter Assay
System (Promega, USA) and a luminometer. Te experi-
ments were repeated thrice.

2.4. RNA Extraction and Real-Time Quantitative PCR.
For obtaining whole RNA, Trizol (Takara, Japan) reagent
was utilized by following the instructions provided by the
manufacturer (Invitrogen, CA, USA) [30]. Quantity and
quality were assessed via Nano-drop and Agilent 2100 Bio-
analyzer (Agilent Technologies). Ten, purifed RNA (1 μg)
was reversely transcribed with the help of PrimeScript RT
Reagent Kit (Takara, Japan). cDNA and total RNA were
quantifed via a biophotometer (Eppendorf, Germany). Te
acquired cDNA was stacked at −20°C. Te 20 μL reactions
were prepared in 96-well plates comprising 10 μL of SYBR
Green PCR Master Mix (Takara, Japan), 1 μL of each primer
(2 μM) (supporting information (SI) Table S1), and 8 μL of
template DNA. β-actin was utilized as an endogenous gene.
Each reaction was repeated thrice. Te relative expression
levels were elucidated by the 2−^̂ Ct method.

2.5. Western Blot Assessment. Proteins were acquired by
lysing cells with RIPA bufer. Ten, standard Western blot
protocol was conducted to elucidate protein expression.
Briefy, with the help of KEYGEN Protein Extraction Kit
(KEYGEN, China), protein samples were obtained at the
indicated time point, boiled in sample bufer comprising
sodium dodecyl sulfate (5 ∗ SDS) for 5minutes, exposed to
8% SDS-PAGE electrophoresis, and then translocated to
PVDF (polyvinylidene fuoride) membranes (Bio-Rad),
which were then blocked for 2 hours in 5% milk-Tris-
Bufered Saline Tween-20 (TBST) at ambient temperature,
kept with HDAC4 and β-actin (Cell Signaling Technology,
USA)monoclonal antibodies at 4°C overnight, washed thrice
in TBST, and incubated again for 2 hours in appropriate
horseradish peroxidase-linked secondary antibodies (Cell
Signaling Technology, USA) at ambient temperature.
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Enhanced chemiluminescence (Termo, USA) was utilized
for visualizing blots and assessed via the scanning densi-
tometer using molecular analysis software FluorChem M
system (Protein Simple, USA).

2.6. Statistics. Te variabilities in protein levels and invasion
rate between the treated and control cells were elucidated by
one-way ANOVA and standard student t-test. SPSS (20
version) (SPSS Inc. Chicago, Illinois, USA) was utilized for
statistical measurements. P value <0.05 was termed statis-
tically important. Each experiment was repeated thrice.

3. Results

3.1. ER+ Breast Cancer Cell’s Sensitivity to Tamoxifen. To
elucidate the undergoing TR mechanism in ER+ BC cells,
resistant BC cells (T47D-TR and MCF7-TR) against ta-
moxifen were constructed. Te drug susceptibility of MCF7,
T47D, T47D-TR, and MCF7-TR cells was assessed by elu-
cidating their viability after the tamoxifen dose. Te cell
proliferation assay results showed that the survival ratio of
T47D-TR and MCF7-TR cells is much higher than that of
parental cell lines. Te efective concentrations (EC50) were
calculated separately for MCF7 (EC50� 7.24 μM), MCF7-
TR (EC50� 39.84 μM), T47D (EC50� 6.86 μM), and
T47D-TR (EC50� 28.12 μM) cells, indicating the con-
struction of enhanced resistant cell lines (Figure 1).

3.2. miR-330-3p Is Highly Expressed in Tamoxifen-Resistant
Cell Lines. Research suggests that miR-330-3p is closely
linked with cell proliferation and apoptosis [31–33]. To
investigate whether its expression is associated with the
sensitivity of ER+ BC cells to tamoxifen, real-time RT-PCR
identifed miR-330-3p in constructed tamoxifen-resistant
and parental cell lines. Te data revealed that its levels in
T47D-TR and MCF7-TR cells were notably increased than
in T47D and MCF7 cells. Its expression in MCF7-TR cells
was 5.12 times more than that in MCF7 cells, and in
T47D-TR cells, it was about 4.21 times increased than that in
T47D cells (Figure 2). Furthermore, miR-330-3p was
upregulated in tamoxifen-resistant cells, expressing a posi-
tive correlation with the ER+ BC cells’ TR.

3.3. miR-330-3p Induced Tamoxifen Resistance in Breast
Cancer. To confrm the brief impact of miR-330-3p on
tamoxifen sensitivity of BC cells, miR-330-3p mimics
(Ribobio, China) were transfected in MCF7 cells, which
revealed that miR-330-3p upregulation enhanced cell via-
bility after tamoxifen treatment (Figure 3(a)), indicating that
miR-330-3p upregulation alleviated the sensitivity of MCF7
cells to tamoxifen. miR-330-3p sponge inhibitor (Ribobio,
China) transfected MCF7-TR revealed depression of miR-
330-3p, which decreased cell viability with tamoxifen
therapy (Figure 3(b)). EC50 of cells was upregulated from
7.02 μM (MCF7+ control) to 29.48 μM (MCF7+ miR-330
mimics), meanwhile downregulated from 40.26 μM (MCF7-
TR+ control) to 14.51 μM (MCF7-TR+ miR-330 sponge),

indicating that miR-330-3p downregulation increases
MCF7-TR cells sensitivity to tamoxifen.

3.4. Gene Ontology and Pathway Analysis of miR-330-3p
Target Genes. Te target prediction of miR-330-3p was
performed, and bioinformatics tools assessed its function.
Analyzed GO data suggested that targeted genes were
enriched in the biological processes of DNA-templated
transcription, nervous system development, cell adhesion,
ubiquitin-dependent protein catabolic process, Notch sig-
naling pathway, protein dephosphorylation, protein poly-
ubiquitination, homophilic cell adhesion via plasma mem-
brane adhesion molecules, BMP signaling pathway, and
bicellular tight junction assembly (Figure 4(a)). Te target
genes’ molecular functions included zinc, calcium, andmetal
ion binding, ubiquitin-protein ligase activity, transcription
factor activity, nucleotide binding, ubiquitin-protein
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Figure 1: Tamoxifen-resistant cells were constructed based on
parental cells with tamoxifen treatment. CCK-8 test was performed
to identify the vitality of acquired tamoxifen-resistant breast cancer
cell lines (MCF7/TR and T47D/TR) and their parental cell lines
(MCF7 and T47D). Cells were treated with the indicated tamoxifen
dose for 72 h (data are represented as mean± S.D of triplicate
experiments; p< 0.05).
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Figure 2: Endogenous expression levels of miR-330-3p in breast
cancer cells. qPCR results showed that miR-330-3p is highly
expressed in tamoxifen-resistant MCF7-TR and T47D-TR cells
(data are represented as mean± S.D of triplicate experiments;
p< 0.05).
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Figure 3: miR-330-3p regulates tamoxifen resistance in breast cancer. (a) Overexpression of miR-330-3p increased tamoxifen resistance in
the parental cell lines. (b) miR-330-3p inhibition decreased the resistance of MCF7-TR cells to tamoxifen (data are represented as
mean± S.D of triplicate experiments; p< 0.05).
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Figure 4: Gene ontology and pathway analysis of miR-330-3p. Te potential mechanism involved in miR-330-3p induced tamoxifen
resistance as predicted after analyzing the roles of miR-330-3p targeted substrates. (a) miR-330-3p participates in DNA-template tran-
scription, cell adhesion, and nervous system development biological processes. (b) miR-330-3p possesses the ability to regulate metal ion
binding, zinc ion binding, and transcription factor activity. (c)Te downstream products are mainly located on cell junction, bicellular tight
junction, intracellular ribonucleoprotein complex, nuclear pore, and PcG protein complex. (d)Te targeted genes were enriched in insulin/
neurotrophin/estrogen/ErbB/GnRH signaling pathways and ubiquitin-mediated proteolysis.
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transferase activity, ligase activity, sequence-specifc DNA
binding, thiol-dependent ubiquitin-specifc protease activ-
ity, and SH3 domain binding, (Figure 4(b)). Te product of
these genes is primarily composed of cell junction, bicellular
tight junction, intracellular ribonucleoprotein complex,
nuclear pore, and PcG protein complex (Figure 4(c)). Tese
genes were classifed into diferent biological pathways,
including signaling pathways of insulin, neurotrophin, es-
trogen, ErbB, and GnRH and pathways of chronic myeloid
leukemia, ubiquitin mediated proteolysis, spliceosome,
melanogenesis, and renal cell carcinoma (Figure 4(d)).

3.5. miR-330-3p Reduced HDAC4 Expression by Targeting the
3′-UTR Region of HDAC4 mRNA. HDAC4 could interact
with ERα N terminus in the nucleus and then suppress
transcriptional activity of estrogen-responsive genes by es-
trogen and selective ER modulators, including tamoxifen
[34, 35]. Tis investigation predicted HDAC4 as an efcient
miR-330-3p target and confrmed that both HDAC4 mRNA
(Figure 5(a)) and protein (Figure 5(b)) levels alleviate in
tamoxifen-resistant cell lines. It was also predicted that miR-
330-3p might attach to the “UGCUUUG” of HDAC4-
mRNA 3′-UTR region through the “ACGAAAC” core se-
quence. To confrm miR-330-3p binding regions within the
3′-UTR site of HDAC4-mRNA, a wild genotype (wt)/mu-
tant genotype (mut) of the miR-330-3p-binding site in
HDAC4 3′-UTR was constructed (Figure 5(c)). Ten, the
expression levels of wt and mut constructs were evaluated
based on miR-330-3p overexpression in MCF7 cells (mimics
group) via the dual-luciferase analysis system (Figure 5(d)).
Consistently, miR-330-3p upregulation could alleviate both
the protein and mRNA levels of HDAC4, and its inhibition
enhances HDAC4 expression (Figures 5(e) and 5(f )). Al-
together, the data indicate that miR-330-3p silences HDAC4
expression by targeting the 3′-UTR site of HDAC4mRNA in
ER+ BC cells.

3.6. miR-330-3p Induces Tamoxifen Resistance in ER+ Breast
Cancer through HDAC4 Downregulation. Te rescue strat-
egy elucidated HDAC4 activity in the process of miR-330-
3p-induced TR. MCF7 cells were co-transfected with miR-
330-3p mimics/HDAC4 vector or mimics/empty vector
(pcDNA-3.1-HDAC4 or pcDNA-3.1). In contrast, MCF7-
TR cells were co-transfected with miR-330-3p sponge/
HDAC4-siRNA or sponge/scramble control, respectively.
Te HDAC4 levels were assessed by qRT-PCR (Figure 6(a))
and western blot techniques (Figure 6(b)). It was indicated
that miR-330-3p-induced TR was reversed after HDAC4
overexpression in parental cells; in contrast, HDAC4 si-
lencing dramatically restored TR after blocking miR-330-3p in
resistant cell lines (Figure 6(c)). Compared to the control
group, HDAC4 overexpression decreased EC50 of MCF7 cells
from 30.01μM (MCF7+miR-330mimics+ control) to 9.79μM
(MCF7+ miR-330 mimics+ HDAC4), while HDAC4 sup-
pression increased EC50 of MCF7 cells from 8.14μM (MCF7-
TR+miR-330 sponge+ control) to 28.23μM(MCF7-TR+miR-
330 sponge+ si-HDAC4). As the same,HDAC4 overexpression
decreased EC50 of T47D cells from 29.16μM (T47D+miR-330

mimics+ control) to 10.05μM (T47D+ miR-330 mimics+
HDAC4), while HDAC4 suppression increased EC50 of T47D
cells from 10.21μM (T47D-TR+ miR-330 sponge+ control) to
19.88μM (T47D-TR+ miR-330 sponge+ si-HDAC4). Tese
results demonstrated that miR-330-3p could induce TR
through downregulation of HDAC4 expression in ER+
BC cells.

4. Discussion

Breast cancer ranks 1st among the most malignant tumors
threatening women’s health. Recently, it has been iden-
tifed that the incidence of BC is gradually increasing,
especially in ER+ patients. Tamoxifen is the frst-line agent
against ER+ BC [36, 37]. However, the recurrence increases
after 10 years of tamoxifen treatment without clear rationales
[38, 39]. Te growing number of drug-resistant patients causes
clinical therapeutic obstacles and greatly burdens society.
Clinical trials have revealed that most patients could beneft
from novel drugs which uncover drug resistance. FDA has
approved 10 oligo agents for clinical use. Tis investigation
aimed to elucidate the possible roles of highly expressed miR-
330-3p in tamoxifen-resistant BC (Figure 2).Te Tam-resistant
cells used here showed less sensitivity to tamoxifen, suggesting
that it is better to use 4OH-Tam, a more active derivative
[40, 41].

Te literature suggests that based on the cell types,
miRNAs play multi-roles in regulating cellular processes.
Te literature reveals that miR-330-3p induces tumor pro-
gression in various cancers, including nonsmall-cell lung
cancer, gastric cancer, colorectal cancer, and pancreatic
cancer. It also promotes BC cell migration through CCBE1,
Myc, and PDCD4 pathways, predicting substandard prog-
nosis in BC patients.Tis investigation reveals that miR-330-
3p overexpression could induce TR in ER+ BC cells (Fig-
ure 3); however, the underlying information on the
mechanism is still limited.

Based on the rationales of miRNAs negatively regulating
target genes, possible miR-330-3p targets were predicted via
target scan e-tools, and then gene ontology and pathway
analysis were carried out in the David database. Te data
suggested that miR-330-3p might regulate diverse biological
processes through neurotrophin signaling, spliceosome,
insulin signaling, estrogen signaling, ubiquitin-mediated
proteolysis, and ErbB signaling pathways (Figure 4). Fur-
thermore, HDAC4 was determined as the miR-330-3p target
gene and was involved in miR-330-3p-mediated TR of ER+
BC cells (Figures 5(a) and 5(b)). It is essential to elucidate
how miR-330-3p regulates HDAC4 expression and induces
TR to better understand and explore novel strategies to solve
this clinical obstacle.

HDAC4, a key member of the classic HDAC family,
regulates transcriptional activity by modulating histone in
the nucleus [42]. Aberrant HDAC4 expression has been
correlated with multiple biological processes in cancers,
including tumorigenesis, migration, and drug resistance.
Recently, HDAC4 has been found to increase gastric cis-
platin resistance via the p53-p73/BIK pathway [43]. In
addition, HDAC4 might cause 5-FU resistance in BC cells
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through deacetylation of the SMAD4 promoter [44]. Also,
HDAC4 interacts with ERα N-terminus in the nucleus and
then suppresses the transcription activity of estrogen-

responsive genes by estrogen and tamoxifen [34]. Moreover,
Ahmad et al. found that miR-10b could induce HDAC4-
mRNA degradation, resulting in BC cell’s TR [35].
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Figure 5: miR-330-3p reduced the expression of HDAC4 by targeting the 3′-UTR region of HDAC4 mRNA. (a, b) Both RNA and protein
expression levels were dysregulated in tamoxifen-resistant breast cancer cell lines. (c) Potential binding sites of miR-330-3p on HDAC4-
mRNA. (d) Dual-luciferase reporter assay confrmed the binding sites of miR-330-3p on HDAC4-mRNA. (e) miR-330-3p could regulate
HDAC4 mRNA expression directly. (f ) Inconsistency with RNA level and miR-330-3p regulated HDAC4 protein expression (data are
represented as mean± S.D of triplicate experiments; p< 0.05).
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Figure 6: miR-330-3p induces tamoxifen resistance in ER+ breast cancer through downregulating HDAC4. (a, b) MCF7 cells were
co-transfected withmiR-330-3pmimics andHDAC4 vector or scramble control (NC). MCF7-TR cells were co-transfected withmiR-330-3p
sponge inhibitor and HDAC4-siRNA (si-HDAC4) or scrambled control (NC). (a) qRT-PCR was performed to detect the mRNA expression
of HDAC4. (b) Western blotting identifed the protein expression of HDAC4. (c) Co-transfection of miR-330-3p and HDAC4 was carried
out in parental cell lines MCF7 and T47D; co-transfection of miR-330-3p sponge inhibitor and HDAC4-siRNA was carried out in resistant
MCF7-TR and T47D-TR cell lines. Subsequently, cells were treated with the indicated dose of tamoxifen for 72 h and CCK-8 assay was
performed to test cell viability. miR-330-3p could induce tamoxifen resistance in ER+ breast cancer cells through HDAC4 (data are
represented as mean± S.D of triplicate experiments; p< 0.05).
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Multiple binding sites exist in the same gene’s 3′-UTR
for diferent miRNAs. Tis investigation identifed that
despite miR-10b, miR-330-3p modifed HDAC4 expression
by targeting the 3′-UTR region of HDAC4 mRNA in ER+
BC cells (Figure 5). To further ensure HDAC4 function in
miR-330-3p-induced TR, its impact on TR was assessed
based on HDAC4 knock-down in ER+ BC cells. Te data
confrmed that miR-330-3p increases ER+ BC cells’ TR by
reducing HDAC4 (Figure 6).

5. Conclusion

In conclusion, it was revealed that aberrant miR-330-3p
expression could increase ER+ BC resistance to tamoxifen,
that miR-330-3p levels reversely correlate with HDAC4 in
ER+ BC cells, and that miR-330-3p induces TR in an
HDAC4-dependent manner. Tis research provides brief
information that explores the underlying mechanism of BC
cells’ TR and indicates that miR-330-3p might be a prog-
nostic index for ER+ BC patients and could be a candidate
therapeutic target to overcome TR.
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