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Purpose. Breast cancer is the most common cancer among women globally, with an incidence of approximately two million cases
in 2018. Organised age-based breast cancer screening programs were established worldwide to detect breast cancer earlier and to
reduce mortality. Currently, there is substantial anticipation regarding risk-adjusted screening programs, considering various risk
factors in addition to age. Te present study investigated the discriminatory accuracy of breast cancer risk prediction models and
whether they suit risk-based screening programs.Methods. Following the PICO scheme, we conducted an overview of reviews and
systematically searched four databases. All methodological steps, including the literature selection, data extraction and synthesis,
and the quality appraisal were conducted following the 4-eyes principle. For the quality assessment, the AMSTAR 2 tool was used.
Results. We included eight systematic reviews out of 833 hits based on the prespecifed inclusion criteria. Te eight systematic
reviews comprised ninety-nine primary studies that were also considered for the data analysis. Tree systematic reviews were
assessed as having a high risk of bias, while the others were rated with a moderate or low risk of bias. Most identifed breast cancer
risk prediction models showed a low prognostic quality. Adding breast density and genetic information as risk factors only
moderately improved the models’ discriminatory accuracy. Conclusion. All breast cancer risk prediction models published to date
show a limited ability to predict the individual breast cancer risk in women. Hence, it is too early to implement them in national
breast cancer screening programs. Relevant randomised controlled trials about the beneft-harm ratio of risk-adjusted breast
cancer screening programs compared to conventional age-based programs need to be awaited.

1. Introduction

Breast cancer is the most common cancer among women
globally, with an incidence of approximately two million
cases worldwide in 2018 [1]. In high-income countries, about
75% of breast cancer cases are diagnosed in postmenopausal
women and only fve–seven % afect women younger than 40
[2, 3]. Te illness exhibits heterogeneity, encompassing
various histological and molecular subtypes stemming from
diverse aetiologies, each exhibiting diferential responses to
treatment and prognosis [4, 5]. Factors such as increasing
age, high breast density, history of neoplastic breast disease,
family history of breast cancer, genetic predispositions
(single nucleotide polymorphisms (SNPs)) (single nucleo-
tide polymorphisms are variations of a single base pair in
a complementary DNA double strand and are inherited and

heritable genetic variants), as well as hormonal, lifestyle, or
radiation exposure factors, can increase the risk of de-
veloping breast cancer [6–11]. Table 1 presents the criteria
usually considered to identify women with an increased risk
of developing breast cancer.

To date, great hope is placed in a risk-based screening
approach. Since the early 1970s, organised breast cancer
mammography screening programs have been established
worldwide to reduce mortality by earlier cancer diagnosis
[12–15]. Te only risk factor considered so far in these
programs is age. In risk-based screening, risk prediction
models estimate the likelihood of women developing breast
cancer in the future, considering other risk factors next to
age [16–18]. By considering multiple risk factors, women
could be stratifed into diferent risk groups, which enable
risk-adjusted screening strategies. For example, less frequent
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mammograms could be recommended for women with
a low risk of breast cancer. Hence, risk-adjusted breast
cancer screening might reduce the disadvantages of con-
ventional age-based screening programs, e.g., overdiagnosis
and overtreatment, or enable breast cancer diagnosis at an
earlier stage [19–23].

Tere are empirical, genetic, and other original risk
predictionmodels. Empirical models, e.g., the Gail model (the
Breast Cancer Risk Assessment Tool (BRCAT)), the Breast
Cancer Surveillance Consortium (BSCS) model, and the
Rosner–Colditz model include risk factors previously iden-
tifed by logistic regression and Cox proportional hazard
regression in cohort and case-control studies [24]. Using
a statistical algorithm, these models generate the probability
that an individual will develop breast cancer in a given time
[24]. Genetic models, e.g., the International Breast Cancer
Intervention Study (IBIS)/Tyrer–Cuzick model and the
BOADICEA and BRCAPRO™ models, are based on the
evaluation of family studies and segregation analyses. In
addition, pedigree information is used to calculate age-
dependent mutation and disease risks for all family mem-
bers [25]. Tables S1a and S1b of the supplement provides an
overview of the characteristics of the most common empirical
and genetic breast cancer predictionmodels, including a list of
risk factors considered in each model. Besides, some further
original models combine various risk factors in diferent
populations with diferent algorithms, e.g., the Barlow model
[26] for pre- and postmenopausal women.

Our study aimed to investigate the prognostic quality of
the identifed breast cancer risk prediction models and
whether they are suitable for assessing individual breast
cancer risk in a screening program.

2. Materials and Methods

We conducted an overview of reviews, considering most of
the Preferred Reporting Items for Overviews of Reviews
(PRIOR) statement [27]. An overview of reviews was the
appropriate methodological approach because a preliminary
search yielded several published systematic reviews (SRs)
regarding the prognostic quality of individual breast cancer
risk prediction models. Tereby, the extensive knowledge
from the SRs could be summarised as concisely as possible.

2.1. Literature Searches. In March 2022, we conducted
a comprehensive systematic literature search in four data-
bases, namely, Ovid MEDLINE, EMBASE, the Cochrane
Library, and CRD. Te systematic literature search was
performed considering the predefned inclusion criteria
according to the PICO scheme (Table 2). Te detailed search
strategy is presented in the supplement (see Tables S2–S6).

In addition, we conducted further manual searches to
identify the full texts of the primary studies of the selected
SRs for more detailed information if relevant.

2.2. Literature Selection Process. Te systematic literature
search yielded references initially assessed at the title level.
Subsequently, references deemed pertinent underwent

screening at the abstract level. Finally, full texts of relevant
abstracts were scrutinised against predefned inclusion
criteria for incorporation or exclusion in the overview of
reviews. Two reviewers (IF and SW) conducted all pro-
cedures independently, with discrepancies resolved through
discussion involving a third author (IZK).

2.3. Assessed Primary Outcome. Te primary efectiveness
outcome of this overview of reviews was the discriminatory
accuracy of the identifed breast cancer risk predictionmodels;
that is to say, the probability that a model correctly categorises
a randomly chosen woman with the disease at higher risk than
a randomly chosen woman without the disease. To provide the
most accurate individual risk assessment, the models need to
balance the diagnostic sensitivity and specifcity represented by
the receiver operating characteristic curve (ROC). Te area
under this curve (AUC) quantifes the discriminatory accuracy
of a prediction model. An AUC value of 0.5 indicates that the
discriminatory accuracy of a model is no better than a coin
toss. In contrast, an AUC value of 1.0 denotes perfect dis-
criminatory accuracy. In practice, models with an AUC value
greater than 0.7 are deemed to predict the individual risk for
breast cancer at acceptable accuracy.

2.4. Data Extraction and Quality Appraisal. One author (IF)
extracted the characteristics of the included SRs and the data
of the SRs on primary study level. IF extracted further data
directly from the primary studies if necessary information
was missing. A second author (SW) controlled the data
extraction. Both authors (IF and SW) assessed the quality of
the selected SRs independently according to the AMSTAR 2
tool. Te checklist encompasses inquiries about the meth-
odological procedures employed in a review, the thor-
oughness of the results and conclusions, the origins of
funding, and the presence of potential conficts of interest
[28]. Te overall risk of bias of the systematic reviews in-
cluded in this overview was evaluated independently by two
authors (IF and SW) through a comparative analysis of the
checklist fndings derived from the included reviews. Dif-
ferences were discussed and resolved by consensus of all
three authors (IF, SW, and IZK).

2.5. Analysis and Synthesis. Finally, we narratively sum-
marised the evidence on the prognostic quality of the
identifed prediction models, including two tables that
present the key results. Te detailed extraction tables
showing the data on the primary study level are presented
online.

3. Results

3.1. Literature Selection. Te systematic literature search and
additional manual searches yielded 833 references. Out of
the 833 hits, we included eight SRs based on the predefned
inclusion criteria (Table 2) [16, 29, 30, 48–52]. Te detailed
literature selection process with reasons for exclusion is
illustrated in Figure 1.
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3.2. Characteristics of the Systematic Reviews. Te eight in-
cluded SRs were written in English and published between
2012 [48] and 2020 [52]. Based on the afliations of the frst
authors, fve SRs were from Europe (the UK [16, 49],
Denmark [52], the Netherlands [29], and Spain [30]). Te
remaining three SRs were from the Asian region (Tailand
[48], China [50], and Singapore [51]).

Te eight SRs included 99 studies (between 12 and 63 per
SR) published from 1989 to 2019. Often, the same studies
were included in multiple reviews. One SR [48] only re-
ported data from 18 of 25 included studies. Te remaining
seven studies were not described in detail. Seven of the eight
SRs reported the study design of the included studies. Te
predominant study designs were case-control and cohort
studies. Of the eight SRs, six included various ethnicities,
among them Caucasian/White [29, 30, 48, 49, 51, 52], Asian
[30, 48, 49, 51, 52], African-American [29, 30, 48, 51],
Hispanic [30, 49, 51], African [49], and Australian [51]. Two
SRs [16, 50] did not report which populations were included
in the studies assessed.

Te SRs investigated 30 risk prediction model versions
(between one and 17 per SR) with diferent research focuses.
One SR [50] examined the performance of various Gail/
BRCATmodel versions. Two other SRs [51, 52] investigated
the improvement in the discrimination accuracy of the
models by adding essential risk factors, such as genetic
information or breast density. Te remaining fve SRs
[16, 29, 30, 48, 49] compared the model performance with
each other or examined the use of multivariable prediction
models in risk-based cancer screening programs. One of the
fve SRs [29] evaluated breast, cervical, and colorectal cancer
risk prediction models. However, for this overview of

reviews, only the results concerning the breast cancer risk
prediction models were considered.

Te primary outcome parameters in all eight SRs were the
discriminatory accuracy and the calibration accuracy of the
breast cancer risk predictionmodels.Tis overview of reviews
focused solely on the discriminatory accuracy of the models.

Table S7 of the supplement presents the characteristics of
the included SRs in more detail.

3.3. Quality Assessment. Two of the included SRs were rated
with a low risk of bias [16, 30] and three with a moderate risk
of bias [50–52].Te remaining three systematic reviews were
rated with a high risk of bias [29, 48, 49]. Te major faws
were due to signifcant methodological limitations, in-
cluding unclear literature selection and data collection
processes. Moreover, no quality assessment of the primary
studies was performed in three SRs [29, 48, 52], while the
remaining fve SRs assessed the quality of the studies using
diferent methods [16, 30, 49–51]. Table S8 of the supplement
presents the quality assessment in detail.

3.4. Discrimination Accuracy of the Identifed Breast Cancer
Risk Prediction Models

3.4.1. Empirical and Genetic Models

(1) Te Gail/Breast Cancer Risk Assessment Model (Empir-
ical). In the eight included SRs [16, 29, 30, 48–52], 58 val-
idation studies analysed how accurately the Gail model can
predict individual breast cancer risk. 33 of the 58 validation
studies were from the United States of America (USA), 12
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Figure 1: Representation of the literature selection process (PRISMA fow diagram).
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from Asia, 10 from Europe, and 3 from Australia. Most
validation studies included Caucasian/White/European
populations. Besides, the studies also considered North
American, Asian, Hispanic, African-American, and Aus-
tralian populations. Two publications did not report on the
population.

Te Gail model is the most investigated and modifed
breast cancer risk prediction model.Te original Gail model,
developed in 1989, includes the following fve risk factors:
age, family history of breast cancer, age at frst birth, age at
menarche, and previous biopsies [53]. Since then, the
original model has been validated in various populations
(e.g., Caucasian/White/European, American, African-
American, Asian, or Hispanic) and has been modifed
many times by adding risk factors, such as breast density or
hormone replacement therapy. Regarding the prognostic
quality of the Gail model 1, AUC values ranging from 0.54
[54] to 0.69 [55] were reported. Adding or removing risk
factors, such as breast density, hormone replacement
therapy, alcohol consumption, physical activity, diet, or
ethnicity, to or from the Gail model did not improve the
models’ discrimination accuracy (e.g., AUC values of 0.56
[56] and 0.68 [57]). Solely a body mass index-adjusted Gail
model showed an AUC value of 0.85 [52], and there were
two outliers in Asian populations; one validation study
showed an AUC value of 0.41 [48] and another presented
a value of 0.93 [50] for the Gail model.

(2) Te Breast Cancer Surveillance Consortium Model
(Empirical). Six validation studies, included in three SRs
[16, 30, 51], assessed the prognostic quality of the BCSC
model, which originates from the USA. All six validation
studies included mixed ethnicities.

Te original BCSC model includes the following eight
risk factors: age, body mass index, age of menopause,
hormone replacement therapy, breast density, prior breast
biopsies, and family history of breast cancer. Concerning the
prognostic quality of the original BCSC model, the valida-
tion studies showed AUC values, ranging from 0.58 to 0.67
[58]. Tree validation studies added genetic information as
a polygenic risk score to the model. Tey achieved AUC
values of 0.69 [32], 0.65 [59], and 0.72 [58], whereby the
latter applied to the prediction of oestrogen receptor-
positive breast cancer.

(3) Te Rosner and Colditz Model (Empirical). In fve of the
eight included SRs [16, 29, 30, 48, 49], nine validation studies
investigated the prognostic quality of the Rosner and Colditz
model. Eight of the nine studies were from the USA, and one
was from France. Te nine studies considered solely Cau-
casian/White populations.

Te original Rosner and Colditz model includes the
following fve risk factors: age, body mass index, hormone
replacement therapy, benign breast disease, and family
history of breast cancer. Te original model has an AUC
value of 0.57 [31] and was often modifed. For example,
adding serum estradiol to the model improved its dis-
criminatory accuracy (AUC value of 0.635) [33]. Similarly,
adding risk factors, such as breast density, multiple hormone

level determinations, and/or a polygenic risk score, to the
original Rosner and Colditz model resulted in an improved
AUC value of 0.68 [60].

(4) Te International Breast Cancer Intervention Study/
Tyrer-Cuzick Model (Genetic). Four SRs [16, 30, 51, 52]
included eight validation studies on the IBIS model. Two of
the eight studies came from the USA, fve from the
United Kingdom (UK), and one from Australia. Te studies
included diferent populations, namely, Caucasian/Euro-
pean, North American, African-American, Hispanic, and
mixed ethnicities. One study did not report the assessed
population.

Te original IBIS/Tyrer–Cuzick model considers the
following 14 risk factors: age, body mass index, age at
menarche, age of frst live birth, age of menopause, parity,
hormone replacement therapy, breast density, atypical ductal
hyperplasia, lobular carcinoma in situ, prior breast biopsies,
family history of breast cancer (including age at diagnosis and
bilateral breast cancer), family history of ovarian cancer, and
genetic testing (BRCA1/2 and SNPs). Te SRs and validation
studies did not report an AUC value for the original IBIS/
Tyrer–Cuzickmodel.Te discriminatory accuracy of diferent
model versions ranged from AUC values between 0.51 and
0.76, with the latter AUC value reported from a study in
a high-risk European population [34–36]. IBIS/Tyrer–Cuzick
model versions, including a polygenic risk score, reached an
AUC value of 0.67 and versions that considered breast density
as a risk factor had an AUC value of 0.64 [37].

(5) BOADICEA and BRCAPRO™ Models (Genetic). One SR
[51] included two validation studies that assessed the
prognostic quality of two further genetic breast cancer risk
prediction models. Both studies were from Australia,
whereby one assessed the discriminatory accuracy of the
BOADICEAmodel and the other of the BRCAPRO™model.
Both studies included Caucasian populations.

Te original BOADICEA model includes the following
six risk factors: age, family history of breast cancer with age
at diagnosis, family history of male breast cancer, family
history of ovarian cancer, and genetic testing (BRCA1/2 and
SNPs). Te BRCAPRO™ model considers two further risk
factors, i.e., family history of bilateral breast cancer and
ethnicity of the family. Te discriminatory accuracy of the
BOADICEA and the BRACAPRO™ models is moderate,
with an AUC value of 0.66 and 0.65, respectively. Adding
a polygenic risk score with 77 risk-associated SNPs to both
models improved their discriminatory accuracy signifcantly
with AUC values of 0.70 and 0.69, respectively [61].

Table 3 presents an overview of the discriminatory ac-
curacy of the identifed empirical and genetic breast cancer
risk prediction models and shows that almost all identifed
model versions had a limited discriminatory accuracy with
AUC values <0.70. Exceptions included a modifed Gail
model applied in an Asian population, a modifed BCSC
model that applied the prediction of oestrogen receptor-
positive breast cancer, an IBIS/Tyrer–Cuzick model version
applied in a high-risk European population, and the
BOADICEA model expanded with SNPs.
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3.5. Further Original Models. Six of the eight included SRs
[16, 30, 48, 49, 51, 52] investigated 24 further original
models. Four validation studies were from Europe, nine
from the USA, nine from Asia, one from Canada, and one
from India. Most validation studies included Asian pop-
ulations. Besides, the studies also included Caucasian/
White/European, North American, and mixed ethnicities.
One study did not report on the population.

Te discriminatory accuracy of these original models
ranged from AUC values of 0.53 [38] to 0.785 [45], whereby
the latter applied to the prediction of ER-positive, HER2-
negative, invasive, and noninvasive carcinoma in a Japanese
population considering a polygenic risk score. A Swedish
model [46] including age, body mass index, hormone re-
placement therapy, family history of breast cancer, age at
menopause, breast density, microcalcifcations, and space-
occupying lesions as risk factors showed an AUC value
above 0.71 for a Caucasian population. Te discriminatory
accuracy of the models considering breast density as a risk
factor ranged from AUC values of 0.63 [40] to 0.72 [41],
depending on whether the absolute area, per cent of the area,
or fbroglandular volume of breast density measurement was
used. Te models that included a polygenic risk score as
a risk factor—except the Japanese model—had AUC values
between 0.60 [38] and 0.693 [44]. Te Barlow model had
a moderate discriminatory accuracy with AUC values of
0.631 for premenopausal and 0.624 for postmenopausal
women [26].

Table 4 summarises the discriminatory accuracy of
further original breast cancer risk prediction models,
depending on the considered risk factors and breast cancer
types. Overall, most of the identifed models have a limited
discriminatory accuracy with AUC values <0.70, except
a Swedish model with a two-year time horizon [46] and
a Japanese model that considered SNPs [45].

In the supplement (Tables S9a–S9f), the detailed ex-
traction tables present the data per prediction model on the
primary study level.

4. Discussion

Most identifed breast cancer risk prediction models with
low prognostic quality do not accurately predict the indi-
vidual breast cancer risk. Adding breast density and/or

genetic information as crucial risk factors moderately im-
proved the discriminatory accuracy of the prediction models
but remained below the minimum AUC value of 0.70.
Exceptions include a modifed Gail model assessed in an
Asian population, a modifed BCSC model that applied the
prediction of oestrogen receptor-positive breast cancer, an
IBIS/Tyrer–Cuzick model version that was applied in a high-
risk European population, the BOADICEA model that
considered SNPs, and two further original models, one from
Japan and one from Sweden. Te AUC value above 0.70 in
the Japanese study [45] may be due to the risk prediction of
solely ER-positive, HER-2-negative breast cancer. Te AUC
value above 0.70 in the Swedish model [46] could be
explained by the short time horizon of two years, as risk
prediction becomes more imprecise over a longer time
horizon. Overall, the diferences in the AUC values can be
mainly explained by diferences in study populations,
comprising various geographical regions, cancer risk groups,
and cancer types.

Besides the discriminatory accuracy of the risk pre-
diction models, further aspects need to be considered if these
models are to be used more widely.

Te identifed breast cancer risk prediction models were
developed and validated for use in a clinical (genetic) setting
and/or to identify specifc patient groups eligible for pre-
ventive intervention but not for population-based screening
[47]. For example, the Gail/BRCAT model is considered
suitable for identifying women who would beneft from
chemoprevention [39, 42].Terefore, the appropriate setting
needs to be assessed before applying a risk prediction model.

Critical risk factors, such as breast density, come with
assessment requirements. Density-based risk calculations
are often based on visual density estimates using BI-RADS
categories. However, objective criteria for a standardised
density measurement according to BI-RADS categories are
lacking in practice [43]. Volumetric density measurements
are fully automated and have excellent agreement with 3D
magnetic resonance images but are less informative than the
BI-RADS categories [62–64]. Hence, considering breast
density as a risk factor for predicting individual breast cancer
risk requires a standardised density measurement. Similarly,
assessing genetic information as an additional risk factor
requires the organisation of cooperations between qualifed
centres for medical genetics.

Table 3: Overview of the prognostic quality of the empirical and genetic models.

Risk prediction models
and derived/modifed versions

Number
of validation studies

Discriminatory accuracy: AUC
(reference), range1

Empirical risk prediction models
Gail model/BRCAT 58 0. 1 [29]–0.93 [30]
BCSC model 6 0.58 [31]–0.72 [32]
Rosner–Colditz model 9 0.57 [33]–0.68 [34]
Genetic risk prediction models
IBIS/Tyrer–Cuzick model 8 0.51 [35, 36]–0.76 [37]
BOADICEA 1 [38] 0.66 (without SNPs); 0.70 (SNP enhanced)
BRCAPRO™ 1 [38] 0.65 (without SNPs); 0.69 (SNP enhanced)
AUC� area under the curve, BCSC�Breast Cancer Surveillance Consortium, BRCAT�Breast Cancer Risk Assessment Tool, CI� confdence interval,
IBIS� International Breast Cancer Intervention Study, NR�not reported, SNPs� single-nucleotide polymorphisms. 1Range involves AUC values for varying
risk factors. Te bold values present the AUC value ranges.
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Moreover, risk-based breast cancer screening requires
valid risk prediction instruments with good prognostic
quality and risk-adjusted screening strategies. Solely con-
ducting risk assessments is not enough. Instead, low, me-
dium, and high breast cancer risk groups need to be defned
to provide women with risk-adjusted strategies where the
screening intensity matches the individual risk. However,
matching is only good if the applied risk assessment model
has good discriminatory accuracy [65, 66]. Currently, there
are no internationally uniform cutof values for the as-
signment to the risk group [25].

Besides, training in risk communication is necessary for
healthcare professionals when risk-adjusted screening is
planned to be implemented because risk-based screening is
more complex for healthcare professionals and participants
than standardised age-based screening. Risk-based screening
includes performing risk assessments, appropriately com-
municating risk results, and consulting subsequent pre-
ventive interventions. Te latter, in turn, alters the risk of
developing breast cancer.

From a scientifc point of view, evidence is lacking on the
overall beneft-harm ratio of risk-based breast cancer
screening compared to conventional age-based screening
programs. Terefore, the results of two large ongoing
randomised control trials (RCTs) on the efcacy of risk-
based breast cancer screening need to be awaited, with re-
sults expected in a few years [67, 68].

To our knowledge, this is the frst overview of reviews
assessing the prognostic quality of breast cancer risk pre-
diction models and whether they apply to a population-
based screening. However, the results of this overview
should be viewed in the context of its limitations.

While adhering to most methodological steps outlined
by the PRIOR checklist for systematic review overviews, we
did not perform sensitivity analysis to assess the robustness
of the review fndings. In addition, although we provided
results at the primary study level, we evaluated the risk of
bias solely for the systematic reviews rather than for all 99
primary studies. Finally, we did not examine reporting bias
in the primary studies or the systematic reviews.

Despite the inclusion of systematic reviews exhibiting
varying degrees of methodological rigour, our analysis in-
dicates that reviews with low or moderate risk of bias arrive
at similar conclusions to those with a high risk of bias.

Furthermore, the selected SRs included validation
studies published until 2019. Hence, the studies refer to
earlier screening data, capabilities, and programmes that
may no longer be topical. We did not conduct a further
systematic search for studies published after 2019 or sys-
tematic reviews published after March 2022. A systematic
review published in July 2022 [69] also emphasised that there
are currently no endorsed risk prediction models for breast
cancer tailored to diverse ethnic populations.

Furthermore, we did not assess a machine learning-
based software tool, the Mammo-Risk™ model (Predilife,
Villejuif, France) [70], as it was published in 2022.Temodel
was developed in the BCSC cohort [71, 72] to estimate the
risk of developing breast cancer within the next fve years
based on the following four risk factors: age, family history of

breast cancer, history of breast biopsies, and breast density
with or without a polygenic risk score. Based on the results of
the frst validation studies, the model has an AUC value of
0.659 AUC and thus does not predict the individual risk of
breast cancer with sufcient accuracy.

5. Conclusion

All breast cancer risk prediction models published to date
show a limited ability to predict the individual breast cancer
risk in women. Adding crucial risk factors, such as genetic
information and breast density, only slightly improved the
discrimination accuracy of the models. Hence, more reliable
models with better predictive power are needed before using
them in national screening programs. Besides, results of
ongoing RCTs need to be awaited to shed more light on the
beneft-harm ratio of risk-adjusted breast cancer screening
compared to conventional age-based screening.

Data Availability

Te data used to support the fndings of the overview of
reviews are presented in the main text or in the Supplement.

Disclosure

We presented the abstract at the 24th annual conference of
the evidence based medicine network in Potsdam in March
2023 [74]. Tis article was published as part of the authors’
employment at the Austrian Institute of Health Technology
Assessment GmbH in Vienna.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors thank ClaudiaWild, Priv.-Doz. Dr. Phil, and Dr.
Markus Follmann, MPH MSc, for their valuable comments
on the broader original report [73], and TarquinMittermayr,
BA (Hons), MA, for conducting the systematic literature
search.

Supplementary Materials

Table S1: characteristics of the most important empirical and
genetic breast cancer risk prediction models; Tables S2–S6:
detailed search strategies; Table S7: characteristics of the
included systematic reviews; Table S8: risk of bias assessment
of the systematic reviews according to AMSTAR 2; Tables S9
a–f: extracted data on the primary study level for each breast
cancer risk prediction model. (Supplementary Materials)

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

Te Breast Journal 9

https://downloads.hindawi.com/journals/tbj/2024/1711696.f1.docx


[2] Cancer Research Uk, “Breast cancer incidence by age,” 2022,
https://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/breast-cancer/incidence-
invasive.

[3] Netherlands Cancer Registry, “Incidence of cancer in Te
Netherlands,” 2022, http://www.dutchcancerfgures.nl/.

[4] F. M. Blows, K. E. Driver, M. K. Schmidt et al., “Subtyping of
breast cancer by immunohistochemistry to investigate a re-
lationship between subtype and short and long term survival:
a collaborative analysis of data for 10,159 cases from 12
studies,” PLoS Medicine, vol. 7, no. 5, Article ID e1000279,
2010.

[5] A. G. Waks and E. P. Winer, “Breast cancer treatment: a re-
view,” JAMA, vol. 321, no. 3, pp. 288–300, 2019.

[6] H. D. Nelson, B. Zakher, A. Cantor et al., “Risk factors for
breast cancer for women aged 40 to 49 years: a systematic
review and meta-analysis,” Annals of Internal Medicine,
vol. 156, no. 9, pp. 635–648, 2012.

[7] S. Winters, C. Martin, D. Murphy, and N. K. Shokar, “Breast
cancer epidemiology, prevention, and screening,” Prog Mol
Biol Transl Sci, vol. 151, pp. 1–32, 2017.

[8] L. C. Hartmann, T. A. Sellers, M. H. Frost et al., “Benign breast
disease and the risk of breast cancer,” New England Journal of
Medicine, vol. 353, no. 3, pp. 229–237, 2005.

[9] Collaborative Group on Hormonal Factors in Breast Cancer,
“Breast cancer and hormonal contraceptives: collaborative
reanalysis of individual data on 53,297 women with breast
cancer and 100,239 women without breast cancer from 54
epidemiological studies,” Lancet, vol. 347, no. 9017,
pp. 1713–1727, 1996.

[10] “Breast cancer and hormone replacement therapy: collabo-
rative reanalysis of data from 51 epidemiological studies of
52,705 women with breast cancer and 108,411 women without
breast cancer. Collaborative Group on Hormonal Factors in
Breast Cancer,” Lancet, vol. 350, no. 9084, pp. 1047–1059,
1997.

[11] Collaborative Group on Hormonal Factors in Breast Cancer,
“Familial breast cancer: collaborative reanalysis of individual
data from 52 epidemiological studies including 58,209 women
with breast cancer and 101,986 women without the disease,”
Lancet, vol. 358, no. 9291, pp. 1389–1399, 2001.

[12] M. G. Marmot, D. G. Altman, D. A. Cameron, J. A. Dewar,
S. G. Tompson, and M. Wilcox, “Te benefts and harms of
breast cancer screening: an independent review,” British
Journal of Cancer, vol. 108, no. 11, pp. 2205–2240, 2013.

[13] “Recommendations from European breast guidelines,” 2016,
https://ecibc.jrc.ec.europa.eu/recommendations/.

[14] K. C. Oefnger, E. T. Fontham, R. Etzioni et al., “Breast cancer
screening for women at average risk: 2015 guideline update
from the American cancer society,” JAMA, vol. 314, no. 15,
pp. 1599–1614, 2015.

[15] E. R. Myers, P. Moorman, J. M. Gierisch et al., “Benefts and
harms of breast cancer screening: a systematic review,” JAMA,
vol. 314, no. 15, pp. 1615–1634, 2015.

[16] C. Meads, I. Ahmed, and R. D. Riley, “A systematic review of
breast cancer incidence risk prediction models with meta-
analysis of their performance,” Breast Cancer Research and
Treatment, vol. 132, no. 2, pp. 365–377, 2012.

[17] M. Pavlou, G. Ambler, S. R. Seaman et al., “How to develop
a more accurate risk prediction model when there are few
events,” BMJ, vol. 351, Article ID h3868, 2015.

[18] I. Ahmed, T. P. Debray, K. G. Moons, and R. D. Riley,
“Developing and validating risk prediction models in an

individual participant data meta-analysis,” BMC Medical
Research Methodology, vol. 14, no. 1, p. 3, 2014.

[19] A. Bleyer and H. G. Welch, “Efect of three decades of
screening mammography on breast-cancer incidence,” New
England Journal of Medicine, vol. 367, no. 21, pp. 1998–2005,
2012.

[20] E. Paci, M. Broeders, S. Hofvind, D. Puliti, and S. W. Dufy,
“European breast cancer service screening outcomes: a frst
balance sheet of the benefts and harms,” Cancer Epidemi-
ology, Biomarkers & Prevention, vol. 23, no. 7, pp. 1159–1163,
2014.

[21] H. G. Welch and H. J. Passow, “Quantifying the benefts and
harms of screening mammography,” JAMA Internal Medi-
cine, vol. 174, no. 3, pp. 448–454, 2014.

[22] C. Canelo-Aybar, M. Posso, N. Montero et al., “Benefts and
harms of annual, biennial, or triennial breast cancer mam-
mography screening for women at average risk of breast
cancer: a systematic review for the European Commission
Initiative on Breast Cancer (ECIBC),” British Journal of
Cancer, vol. 126, no. 4, pp. 673–688, 2022.

[23] M. Bond, T. Pavey, K. Welch et al., “Systematic review of the
psychological consequences of false-positive screening
mammograms,”Health Technology Assessment, vol. 17, no. 13,
pp. 1–170, 2013.

[24] E. Amir, O. C. Freedman, B. Seruga, and D. G. Evans,
“Assessing women at high risk of breast cancer: a review of
risk assessment models,” JNCI Journal of the National Cancer
Institute, vol. 102, no. 10, pp. 680–691, 2010.

[25] A. S. Quante, B. Strahwald, C. Fischer, and M. Kiechle,
“Individualisiertes Brustkrebsrisiko – wie berechnen, wie
bewerten und wie besprechen?” Gynäkologe, Der, vol. 51,
no. 5, pp. 397–402, 2018.

[26] W. E. Barlow, E. White, R. Ballard-Barbash et al., “Prospective
breast cancer risk prediction model for women undergoing
screening mammography,” Journal of the National Cancer
Institute: Journal of the National Cancer Institute, vol. 98,
no. 17, pp. 1204–1214, 2006.

[27] Bmj, Reporting Guideline for Overviews of Reviews of
Healthcare Interventions: Te Preferred Reporting Items for
Overviews of Reviews (PRIOR) Statement, BMJ, London, UK,
2022.

[28] B. J. Shea, B. C. Reeves, G. Wells et al., “Amstar 2: a critical
appraisal tool for systematic reviews that include randomised
or non-randomised studies of healthcare interventions, or
both,” BMJ, vol. 358, Article ID j4008, 2017.

[29] I. Stegeman and P. M. Bossuyt, “Cancer risk models and
preselection for screening,” Cancer Epidemiology, vol. 36,
no. 5, pp. 461–469, 2012.

[30] J. Louro, M. Posso, M. Hilton Boon et al., “A systematic review
and quality assessment of individualised breast cancer risk
prediction models,” British Journal of Cancer, vol. 121, no. 1,
pp. 76–85, 2019.

[31] B. Rockhill, C. Byrne, B. Rosner, M. M. Louie, and G. Colditz,
“Breast cancer risk prediction with a log-incidence model:
evaluation of accuracy,” Journal of Clinical Epidemiology,
vol. 56, no. 9, pp. 856–861, 2003.

[32] C. M. Vachon, V. S. Pankratz, C. G. Scott et al., “Te con-
tributions of breast density and common genetic variation to
breast cancer risk,” Journal of the National Cancer Institute,
vol. 107, no. 5, Article ID dju397, 2015.

[33] B. Rosner, G. A. Colditz, J. D. Iglehart, and S. E. Hankinson,
“Risk prediction models with incomplete data with applica-
tion to prediction of estrogen receptor-positive breast cancer:

10 Te Breast Journal

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive
http://www.dutchcancerfigures.nl/
https://ecibc.jrc.ec.europa.eu/recommendations/


prospective data from the Nurses’ Health Study,” Breast
Cancer Research, vol. 10, no. 4, p. R55, 2008.

[34] J. Warwick, H. Birke, J. Stone et al., “Mammographic breast
density refnes Tyrer-Cuzick estimates of breast cancer risk in
high-risk women: fndings from the placebo arm of the In-
ternational Breast Cancer Intervention Study I,” Breast Cancer
Research, vol. 16, no. 5, p. 451, 2014.

[35] R. Allman, G. S. Dite, J. L. Hopper et al., “SNPs and breast
cancer risk prediction for African American and Hispanic
women,” Breast Cancer Research and Treatment, vol. 154,
no. 3, pp. 583–589, 2015.

[36] E. Amir, D. G. Evans, A. Shenton et al., “Evaluation of breast
cancer risk assessment packages in the family history eval-
uation and screening programme,” Journal of Medical Ge-
netics, vol. 40, no. 11, pp. 807–814, 2003.

[37] E. M. van Veen, A. R. Brentnall, H. Byers et al., “Use of single-
nucleotide polymorphisms and mammographic density plus
classic risk factors for breast cancer risk prediction,” JAMA
Oncology, vol. 4, no. 4, pp. 476–482, 2018.

[38] V. Kaklamani, N. Yi, M. Sadim et al., “Te role of the fat mass
and obesity associated gene (FTO) in breast cancer risk,” BMC
Medical Genetics, vol. 12, no. 1, p. 52, 2011.

[39] S. Pruthi, R. E. Heisey, and T. B. Bevers, “Chemoprevention
for breast cancer,” Annals of Surgical Oncology, vol. 22, no. 10,
pp. 3230–3235, 2015.

[40] M. Abdolell, K. M. Tsuruda, C. B. Lightfoot, J. I. Payne,
J. S. Caines, and S. E. Iles, “Utility of relative and absolute
measures of mammographic density vs clinical risk factors in
evaluating breast cancer risk at time of screening mam-
mography,” British Journal of Radiology, vol. 89, no. 1059,
Article ID 20150522, 2016.

[41] P. Saikiran, R. Ramzan, S. Nandish, P. D. Kamineni, Priyanka,
and A. M. John, “Mammographic breast density assessed with
fully automatedmethod and its risk for breast cancer,” Journal
of Clinical Imaging Science, vol. 9, p. 43, 2019.

[42] Bcrisktool, Gail Breast Cancer Risk Assessment Tool, NIH
National Cancer Institute, Bethesda, MD, USA, 2022.

[43] C. J. D’Orsi, ACR BI-RADS Atlas: Breast Imaging Reporting
and Data System, American College of Radiology, Reston, VA,
USA, 2013.

[44] A. Sueta, H. Ito, T. Kawase et al., “A genetic risk predictor for
breast cancer using a combination of low-penetrance poly-
morphisms in a Japanese population,” Breast Cancer Research
and Treatment, vol. 132, no. 2, pp. 711–721, 2012.

[45] J. Guo, A. Sueta, K. Nakamura et al., “Genetic and envi-
ronmental factors and serum hormones, and risk of estrogen
receptor-positive breast cancer in pre- and postmenopausal
Japanese women,”Oncotarget, vol. 8, no. 39, pp. 65759–65769,
2017.

[46] M. Eriksson, K. Czene, Y. Pawitan, K. Leifand, H. Darabi, and
P. Hall, “A clinical model for identifying the short-term risk of
breast cancer,” Breast Cancer Research, vol. 19, no. 1, p. 29,
2017.

[47] J. A. Cintolo-Gonzalez, D. Braun, A. L. Blackford et al.,
“Breast cancer risk models: a comprehensive overview of
existing models, validation, and clinical applications,” Breast
Cancer Research and Treatment, vol. 164, no. 2, pp. 263–284,
2017.

[48] T. Anothaisintawee, Y. Teerawattananon, C. Wiratkapun,
V. Kasamesup, and A. Takkinstian, “Risk prediction models
of breast cancer: a systematic review of model performances,”
Breast Cancer Research and Treatment, vol. 133, no. 1,
pp. 1–10, 2012.

[49] K. Al-Ajmi, A. Lophatananon, M. Yuille, W. Ollier, and
K. R. Muir, “Review of non-clinical risk models to aid pre-
vention of breast cancer,” Cancer Causes & Control, vol. 29,
no. 10, pp. 967–986, 2018.

[50] X. Wang, Y. Huang, L. Li, H. Dai, F. Song, and K. Chen,
“Assessment of performance of the Gail model for predicting
breast cancer risk: a systematic review and meta-analysis with
trial sequential analysis,” Breast Cancer Research, vol. 20,
no. 1, p. 18, 2018.

[51] S. M. Fung, X. Y. Wong, S. X. Lee, H. Miao, M. Hartman, and
H. L. Wee, “Performance of single-nucleotide polymorphisms
in breast cancer risk prediction models: a systematic review
and meta-analysis,” Cancer Epidemiology, Biomarkers &
Prevention, vol. 28, no. 3, pp. 506–521, 2019.

[52] B. M. Vilmun, I. Vejborg, E. Lynge et al., “Impact of adding
breast density to breast cancer risk models: a systematic re-
view,” European Journal of Radiology, vol. 127, Article ID
109019, 2020.

[53] M. H. Gail, L. A. Brinton, D. P. Byar et al., “Projecting in-
dividualized probabilities of developing breast cancer for
white females who are being examined annually,” JNCI
Journal of the National Cancer Institute, vol. 81, no. 24,
pp. 1879–1886, 1989.

[54] P. M. Vacek, J. M. Skelly, and B. M. Geller, “Breast cancer risk
assessment in women aged 70 and older,” Breast Cancer
Research and Treatment, vol. 130, no. 1, pp. 291–299, 2011.

[55] L. Rong, H. Li, and E. L. Wang, “To establish the breast cancer
risk prediction model for women in Shenzhen in China
Matern Child Health Care of China,” Maternal and child
health in China, vol. 3, pp. 470–473, 2016.

[56] M. H. Gail, J. P. Costantino, D. Pee et al., “Projecting in-
dividualized absolute invasive breast cancer risk in African
American women,” JNCI Journal of the National Cancer
Institute, vol. 99, no. 23, pp. 1782–1792, 2007.

[57] B. M. Keller, J. Chen, D. Daye, E. F. Conant, and D. Kontos,
“Preliminary evaluation of the publicly available Laboratory
for Breast Radiodensity Assessment (LIBRA) software tool:
comparison of fully automated area and volumetric density
measures in a case-control study with digital mammography,”
Breast Cancer Research, vol. 17, no. 1, p. 117, 2015.

[58] Y. Shieh, D. Hu, L. Ma et al., “Joint relative risks for estrogen
receptor-positive breast cancer from a clinical model, poly-
genic risk score, and sex hormones,” Breast Cancer Research
and Treatment, vol. 166, no. 2, pp. 603–612, 2017.

[59] Y. Shieh, D. Hu, L. Ma et al., “Breast cancer risk prediction
using a clinical risk model and polygenic risk score,” Breast
Cancer Research and Treatment, vol. 159, no. 3, pp. 513–525,
2016.

[60] X. Zhang, M. Rice, S. S. Tworoger et al., “Addition of
a polygenic risk score, mammographic density, and endog-
enous hormones to existing breast cancer risk prediction
models: a nested case-control study,” PLoS Medicine, vol. 15,
no. 9, Article ID e1002644, 2018.

[61] G. S. Dite, R. J. MacInnis, A. Bickerstafe et al., “Breast cancer
risk prediction using clinical models and 77 independent risk-
associated SNPs for women aged under 50 years: Australian
breast cancer family registry,” Cancer Epidemiology, Bio-
markers & Prevention, vol. 25, no. 2, pp. 359–365, 2016.

[62] J. Wang, A. Azziz, B. Fan et al., “Agreement of mammo-
graphic measures of volumetric breast density to MRI,” PLoS
One, vol. 8, no. 12, Article ID e81653, 2013.

[63] A. Gubern-Mérida, M. Kallenberg, B. Platel, R. M. Mann,
R. Mart́ı, and N. Karssemeijer, “Volumetric breast density

Te Breast Journal 11



estimation from full-feld digital mammograms: a validation
study,” PLoS One, vol. 9, no. 1, Article ID e85952, 2014.

[64] O. Alonzo-Proulx, G. E. Mawdsley, J. T. Patrie, M. J. Yafe,
and J. A. Harvey, “Reliability of automated breast density
measurements,” Radiology, vol. 275, no. 2, pp. 366–376, 2015.

[65] J. T. Brinton, R. E. Hendrick, B. M. Ringham, M. Kriege, and
D. H. Glueck, “Improving the diagnostic accuracy of
a stratifed screening strategy by identifying the optimal risk
cutof,” Cancer Causes & Control, vol. 30, no. 10, pp. 1145–
1155, 2019.

[66] M. H. Gail and R. M. Pfeifer, “On criteria for evaluating
models of absolute risk,” Biostatistics, vol. 6, no. 2, pp. 227–
239, 2005.

[67] L. J. Esserman, H. Anton-Culver, A. Borowsky et al., “Te
WISDOM Study: breaking the deadlock in the breast cancer
screening debate,” NPJ Breast Cancer, vol. 3, no. 1, p. 34, 2017.

[68] Horizon and MyPeBS, “International randomized study
comparing personalized, risk-stratifed to standard breast
cancer screening in women aged 40–70,” 2022, https://cordis.
europa.eu/project/rcn/212694/factsheet/en.

[69] Y. Zheng, J. Li, Z. Wu et al., “Risk prediction models for breast
cancer: a systematic review,” BMJ Open, vol. 12, 2022.

[70] M. Saghatchian, M. Abehsera, A. Yamgnane et al., “Feasibility
of personalized screening and prevention recommendations
in the general population through breast cancer risk assess-
ment: results from a dedicated risk clinic,” Breast Cancer
Research and Treatment, vol. 192, no. 2, pp. 375–383, 2022.
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