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1Department of Exercise Physiology and Sports Terapy, Institute of Sports Science, Justus-Liebig-University Giessen,
Giessen, Germany
2Nemolab, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
3Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, Germany

Correspondence should be addressed to Sebastian Hacker; sebastian.hacker@sport.uni-giessen.de

Received 12 June 2023; Revised 24 November 2023; Accepted 27 November 2023; Published 14 December 2023

Academic Editor: Abigail Mackey-Sennels

Copyright © 2023 Sebastian Hacker et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te high interindividual variability of exercise response complicates the efcient use of blood-based biomarkers in sports. To
address this problem, a useful algorithm to characterize the individual regulation and predictive value of diferent candidate
markers will be developed. Forty-nine participants completed two identical exercise trials. Blood samples were collected before,
immediately after, 3 hours after, and 24 hours after completion of exercise. Plasma concentrations of interleukin (IL-) 1RA, IL-6,
IL-8, IL-10, IL-15, creatine kinase (CK), cortisol, c-reactive protein (CRP), lactate dehydrogenase (LDH), and thiobarbituric acid
reactive substances (TBARS) were measured. Individualized regulation was analyzed using k-means clustering and a Group
Assignment Quality (GAQ) score. Regression trees with a bootstrapped-aggregated approach were used to assess the predictive
qualities of the markers. For most of the markers studied, a distinction can be made between individuals who show a stronger or
weaker response to a particular endurance training program.Te regulation of IL-6, IL-8, IL-10, and CK exhibited a high degree of
stability within the individuals. Regarding the predictive power of the markers, for all dependent variables, the most accurate
predictions were obtained for cortisol and IL-8 based on the baseline value. For CK, a good prediction of recovery of maximal
strength and subjective feeling of exhaustion can bemade. For IL-1RA and TBARS, especially their reregulation can be predicted if
the baseline level is known. Focusing individual variations in biomarker responses, our results suggest the combined use of IL-6,
IL-8, IL-10, and CK for the personalized management of stress and recovery cycles following endurance exercise.

1. Introduction

Te use of blood-based biomarkers to control exercise and
training is becoming gradually important since the demands
and density of competitions are increasing. In addition, the
scientifc knowledge for the identifcation of candidate
markers via OMICS methods is advancing, and more new
markers are being investigated, especially in the view of
measurement methods becoming more precise, less ex-
pensive, and more mobile [1, 2].

A biomarker can be one of the numerous molecules
secreted during and after exercise and induce a physiological

response resulting in a relative disturbance of homeostasis in
various organs and tissues [2]. Tis disturbance of ho-
meostasis depends on the intensity and duration and, thus,
on the relative stress of the exercise bout. Te quantity of
released molecules thereby refects the level of stress of the
afected systems. After exercise cessation, these molecules
are regulated back to baseline, refecting the return to ho-
meostasis and further the regeneration or adaptation process
of the corresponding physiological system [1]. Ideally, the
potential biomarker can then be used to identify which
system was disturbed and when in time it is regenerated.
Tis would be of particular interest as these markers might
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be used for the diferential and individual control of exercise
load and regeneration.

Possible candidate markers include, above all, immu-
nological markers such as interleukin (IL-) 1RA, IL-6, or IL-
8, since every acute bout of exercise is accompanied by an
immune reaction [3]. Other molecules refect the exercise-
induced metabolic stress, such as cortisol, or the disruption
of tissue integrity, resulting in the release of intracellular
enzymes, such as creatine kinase (CK) [4] or lactate de-
hydrogenase (LDH) [5]. A recent study by Reichel et al.
explored the reliability and the exercise-related kinetics of
a large number of these candidate markers [1].Teir analysis
identifed, for example, thiobarbituric acid reactive sub-
stances (TBARS), LDH, and IL-1RA, to be suitable markers
that might be helpful for monitoring athletes’ load
management.

One of the central goals of modern elite sports is to
individualize the control of exercise load and training, tai-
loring it to the individual athlete’s responses [6]. However,
the traditional scientifc view often neglects individual dif-
ferences in the exercise-dependent response and regulation
of the released molecules. Tus, individual diferences were
often only refected in the depicted variance and were partly
ignored, resulting in little knowledge about the individual
regulation of blood-based biomarkers. For some markers,
however, such as CK, it has already been shown that there
are individuals with a stronger or weaker response due to
diferent genetic variants, which lead to a difering stability
of the muscular sarcolemma [7]. A detailed knowledge of the
individual response pattern would then allow a better in-
terpretation of the respective measurement of the bio-
marker. Accordingly, the degree to which various
biomarkers are subject to an individual regulatory profle
becomes a key research question, which must subsequently
be considered in the interpretation of the measurements in
the context of exercise monitoring [8]. Another unresolved
issue is to what extent the measurement of these markers can
be used to make predictions regarding its reregulation, as
well as regarding subjective and objective recovery. Tis
predictive value of biomarkers is one of the central re-
quirements for a marker to be used in practice [8]. Pre-
dictability of the regulation means that the knowledge of the
individual regulation can also be used to predict how the
athlete would react to a given load regarding this biomarker.
Tis could be important for coaches and athletes at many
points of training management, for example, in the prep-
aration of important competitions, or during tournaments
with several subsequent single competitions.

On this background, the aim of our study was to de-
termine whether diferent blood-based biomarkers show an
individual response pattern after acute bouts of endurance
exercise. We addressed the question whether this response
pattern shows stability for each individual over two days of
measurement what might open up the possibility of using
the respective marker as a criterion for physical training
state, strain, fatigue, and recovery. Furthermore, we looked
at the predictive capacity of each biomarker to predict its
reregulation, the recovery of maximal strength, and the
subjective feeling of recovery. Specifcally, we quantifed the

response kinetics of 10 hormones, enzymes, cytokines, and
correlates of oxidative stress after two identical exhausting
60min running trials. We then analyzed the individual
response kinetic of the measured blood-based biomarkers by
using k-means clustering to group similar individual re-
sponses to the exercise stimulus for each day and determined
the characteristics of the groups. We further quantifed
whether an individual is assigned to the same group on each
day and the response pattern of each biomarker is a char-
acteristic of each individual. In a last step, we investigated the
predictive quality of each biomarker to predict the value
24 hours after exercise exposure as well as the recovery of
maximal strength and the subjective feeling of recovery.
Terefore, we applied regression trees, where we additionally
determined the relative importance of each predictor.

2. Methods

2.1. Subjects. Te study is a machine learning reanalysis of
a subgroup of a larger collective whose data have already
been published in other analyses and contexts [1]. A total of
49 male and female subjects (male: 25, female 24) with
diferent training status participated in the study. Personal
characteristics and anthropometric data are shown in Ta-
ble 1. To ensure that all subjects were physically healthy and
able to participate in sporting activities, they were medically
screened. Exclusion criteria consisted of smoking, preg-
nancy, mothers in the lactation period, cardiovascular dis-
eases, acute infections, musculoskeletal injuries, acute
symptomatic respiratory defcits, and chronic diseases. All
procedures were approved by the local Ethics Committee of
the Department of Psychology and Sports Science of the
Justus-Liebig-University Giessen and adhered to the Dec-
laration of Helsinki. All participants provided written in-
formed consent prior to participating.

2.2. Experimental Approach

2.2.1. Preliminary Testing. In a frst step, we tested the
endurance capacity of each participant to monitor the ki-
netics of various markers during two following identical
strenuous exercise trials under controlled conditions. En-
durance capacity was determined by a continuous pro-
gressive exercise feld test using lactate diagnostics. On
a 200m running track, subjects started at 6 km/h and in-
creased their running speed by 2 km/h every three minutes
until subjective exhaustion (using the BORG scale). Prior to
the feld test, between all three-minute stages with a break of
30 s and immediately after exhaustion, 20 µL of capillary
blood was taken from the earlobe with an end-to-end glass
capillary. Te heart rate (HR) was continuously tracked
using HR monitors (Polar FT1, Polar Electro Oy, Finland).
Blood lactate values were subsequently analyzed using
enzymatic-amperometrical detection (Bosen S-Line Plus,
EKF-Diagnostics Sales GmbH, Magdeburg, Germany). HR
and blood lactate values were used to evaluate the individual
anaerobic threshold (IAT) using the Ergonizer Software for
medical application (Ergonizer Software 4.9.4, Freiburg,
Germany). Te IAT was used to determine the individual

2 Translational Sports Medicine



running intensity during the following two strenuous ex-
ercise trials. Calculation of IATwas performed by adding the
constant value of 1.5mmol/L to lactate concentration at the
individual’s lactate threshold. To investigate the maximum
voluntary contraction (MVC) of the knee fexors and ex-
tensors, an isometric strength test utilizing the m3diagnos
dynamometer (Schnell, Peutenhausen, Germany) was
conducted as described elsewhere [1].

2.2.2. Testing Days of Strenuous Exercise Trials.
Approximately one week after preliminary testing, the frst
of two strenuous exercise trials took place. Both testing days
(TDs) started between 8:00 and 9:00 am for each subject.
Prior to the TDs, subjects were instructed on several stan-
dardized conditions to which they had to comply. From four
days before the TDs, subjects were not allowed to take part in
any exhausting physical activity; only regenerative training
was acceptable. Furthermore, it was forbidden to consume
alcohol the day before. A nutrition protocol had to be drawn
up, which included all consumed drinks and meals one day
prior to TD1 as well as breakfast on the TD. Te protocol
served as a guideline for food intake prior to the second
testing day (TD2) to ensure standardized conditions. At the
respective testing day, subjects had to fll out a questionnaire
concerning their regular physical activity and their usual
nutrition. All participants did not change their regularities in
nutrition as well as in physical activity in between the ex-
ercise trials. Furthermore, all female subjects documented
their menstrual cycle. Tese questionnaires were issued to
document large deviations in these habits and to exclude
possible changes in physical performance between TD1 and
TD2.Te exhaustive physical activity on both TDs consisted
of two identical 60-min continuous endurance running feld
tests (RFTs), intermitted by a recovery period of approxi-
mately four weeks. Highly standardized conditions were
created for both testing days.Te exercise protocol consisted
of 40min running at an intensity corresponding to 95% of
HR at IAT, followed by 20min at 110% to ensure exhaustion
and the same relative exercise intensity for all subjects. All
participants completed both RFTs at the same duration at
the respective HR. Blood samples were collected before,
immediately after, 3 h, and 24 h after each exercise test. Te
complete study design is presented in Figure 1(a).

2.2.3. Blood-Based Biomarkers. Venous blood samples were
collected at four points in time on each testing day (prior to
exercise = t1; immediately after exercise = t2; 3 hours after
exercise = t3; 24 hours after exercise = t24) in vacutainers.

Plasma vacutainers were anticoagulated with EDTA. Te
vacutainers were centrifuged at 2,500× g for 10min at 4°C
immediately after sampling, while serum samples had
clotted for 30min before centrifugation. Samples were
separated into aliquots and stored in Eppendorf tubes at
−80°C until analysis. Te measurement methodology and
analytical sensitivities of the assays have already been de-
scribed by Reichel et al. [1]. Briefy, IL-1RA, IL-6, IL-8, IL-10,
and IL-15 were determined by high-sensitivity ELISA
(Quantikine ELISA Kits: R&D Systems, MVZ, Koblenz,
Germany). Enzymes, CK and LDH, as well as the plasma
protein CRP, were analyzed by ELISA using a Cobas 8,000
immunoassay system (Roche Diagnostics). Levels of cortisol
and IL-6 were measured by using an Advia Centaur XPT
immunoassay system (Siemens MVZ, Koblenz, Germany).
Plasma concentration of TBARS, a metabolite of lipid
peroxidation, was determined spectrofuorimetrically
(Fluorescence Spectrometer LS55, PerkinElmer, Rodgau,
Germany).

2.3. Statistics. As a frst step, we standardized the values of
all 10 biomarkers via z-transformation for both days to make
their values directly comparable.

2.3.1. Classifcation: k-Means Clustering. In the next step, we
performed k-means clustering. We used this unsupervised
machine learning approach to cluster individuals that are
characterized by similar response patterns under the
strenuous exercise performance on TD1 and TD2. Using the
k-means cluster method requires a given number of clusters.
To extract this parameter from our data, we calculated the
silhouette value for diferent group sizes. We set a cut of at
six groups to prevent overftting while simultaneously
uncovering practical and relevant diferences. Te silhouette
value gives us an approximation of the optimum group size.
Te closer the value is to 1, the more similar the groups are
within their clusters and the less similar they are to the other
clusters (Figure 1(b)). For most biomarkers, k= 2 was found
to be the optimal number of possible clusters based on the
data of TD1. We therefore decided to use k= 2 for all
biomarkers on both days to ensure comparability across
markers and days. Next, we performed 10.000 iterations with
k= 2. Per iteration, 5 diferent initial centroids were used,
and the one with the best arrangement was chosen for each
iteration.

2.3.2. Determining the Group Assignment Quality (GAQ)
Score. To quantify whether an individual is assigned to the
same cluster and, therefore, has a stable group membership
on both days, we defned a Group Assignment Quality
(GAQ) score. We calculated the standard deviation over
both days (0� same group on both days over all iterations;
0.5� one group on one day and the other group on the other
day), as the k-means approach is susceptible to variance in
the dataset. Tis measure defnes the variation across all
iterations and depicts the stability of the assignment of each
subject to a group. Last, we have subtracted the standard

Table 1: Personal characteristics and anthropometric data.

Age (years) 25.61± 4.97
Height (cm) 176.71± 9.68
Weight (kg) 74.32± 14.64
BMI (kg/m2) 23.7± 3
HFmax (bpm) 194.22± 7.8
Max. lactate (mmol/L) 11.83± 2.38
Rel. VO2max (mL/min/kg) 45.9± 5.24
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Figure 1: Data sampling and data analysis. (a) Time schedule of the experimental procedure. (b) z-standardization was performed for each
biomarker before (c) k-means clustering and (d) regression were calculated. Predictions were based on two diferent models. A binary group
model (model 1) or a bag of regression trees based on the prevalue (model 2).
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deviation over both days and iterations from 1 to make it
easier to interpret. High values correspond to a high degree
of certainty in the group assignment and vice versa:

GAQ � 1 − std  [group assingment day 1, group assignment day  ].

(1)

In order to give more weight to subjects who changed
group memberships across the two intervention days, we
further multiplied the individual standard deviations per
subject by a value between 0 (same group across all it-
erations on both days) and 2 (one group on one day and
another on another day). We have applied this weighting
because we want to represent group changes more
strongly as this event is opposed to group stability. Tis
results in a GAQ value of 0 for all uncertain assignments
over both days. Te closer the GAQ tends to 1, the more
certain we are about the group assignment. For example, if
a marker has a GAQ of 0.8, this means that 9 of 49
participants have changed the group across the two days,
whereas a GAQ of 0.96 means that none of the partici-
pants changed the group (GAQ weighted, Figure 2).

2.3.3. Group Characterization. To describe the key features
and diferences (pre- and post-exercise level, the re-
sponsiveness of the group members, the ability to recover,
etc.) of the determined groups for each biomarker, we
calculated the mean baseline level, the mean postexercise
level, the mean initial increase after the endurance exercise,
and the mean performance capacity as well as the recovery
and reregulation capacity (i.e., the diference of t24 minus t1
for TD1 and t24 minus t1 for TD2, respectively) for each
group. We further tested whether the determined groups
revealed signifcant diferences with respect to these features
via independent t-tests. In case of distribution violations, we
used the Mann–Whitney U-Test. Our signifcance level was
set at p≤ 0.05.

2.3.4. Prediction: Regression Trees. To explore the potential
of each biomarker to predict aspects of reregulation as well
as objective and subjective measures of performance and
recovery, regression tree classifers were trained using
MATLAB Statistics and Machine Learning Toolbox (version
12.0) with a bootstrapped-aggregated approach. Prediction
of the biomarker concentration at 24 h post exercise and the
subjective feeling of exhaustion and recovery (BORG scale)
as well as the recovery of the maximum isometric quadriceps
fexion (t24-t1) was performed using diferent models with
varying features and increasing complexity. Model 1 in-
cluded only the grouping variable of the cluster analysis,
model 2 used t1 (i.e., the baseline value), and model 3
consisted of the combination of group assignment and t1 of
TD1. Afterwards, we compared the performances of the
diferent models and examined which feature is the most
suitable for prediction of the aforementioned outcomes. It
must be emphasized that training and validation were based
on the data delivered from TD1, while model performance
was evaluated with data delivered from TD1 and TD2 as test

datasets by computing root mean squared errors (RMSE).
Te decision to also use data from TD2 as another test
dataset is because it can be considered completely in-
dependent of TD1. If a good prediction is also possible for
this independent dataset, this underpins the stability of
a marker.

2.3.5. Determining the Quality of Candidate Markers. In
a last step, we ranked the GAQ values as well as the summed
RMSEs across all predictions to identify the most suitable
markers depending on their performance in both analyses by
determining the average rank for each marker.

Te data analysis procedure is shown again in
Figure 1(b)–(d). All statistical analyses were carried out
using MATLAB version R2020b Update 4 (the MathWorks
Inc., Natick, Massachusetts, USA) and JASP version 0.17.1
(JASP Team, University of Amsterdam, Amsterdam,
Netherlands). Figures were created with MATLAB
and Canva for Teams version 1.78.0 (Canva Pty Ltd, Sydney,
Australia).

3. Results

3.1.ClusterAnalysis. For CK, cluster 1 consists of 42 subjects
and cluster 2 consists of 7 subjects (Figure 3(a)). Signifcant
diferences were found with respect to the CK level prior to
exercise (M1 =−0.56, SD1 = 0.26; M2 = 0.04, SD2 = 0.43;
p < 0.001), the postexercise level (M1 =−0.34, SD1 = 0.35;
M2 = 0.8, SD2 = 0.39; p < 0.001), the initial exercise response
(M1 = 0.22, SD1 = 0.12; M2 = 0.76, SD2 = 0.47; p < 0.001),
and to the recovery period (M1 = 0.6, SD1 = 0.46;M2 = 2.73,
SD2 = 1.12; p< 0.001). Group 2 showed a higher baseline
and postexercise blood concentration and a steeper increase
and decrease in CK concentration than group 1. Te GAQ
for CK was 0.86, which means a rather stable assignment for
each individual to a given cluster refecting that the re-
spective CK response seems to be a characteristic response
for the individual under strenuous endurance exercise
(Figure 2).

For LDH, two clusters were observed, whereby cluster 1
consists of 26 subjects and cluster 2 consists of 23 subjects.
Signifcant diferences were found with respect to the LDH
level prior to exercise (M1� −0.3, SD1� 0.62; M2� −1.24,
SD2� 0.41; p < 0.001), the postexercise level (M1� 1.31,
SD1� 0.63; M2� −0.11, SD2� 0.46; p < 0.001), the training
status (VO2max equivalent) (M1� 48.04, SD1� 4.47;
M2� 43.49, SD2� 5.08; p � 0.002), and to the initial exercise
response of both clusters (M1� 1.62, SD1� 0.47; M2�1.13,
SD2� 0.46; p < 0.001). Group 1 showed a higher pre- and
post-exercise level of LDH as well as a steeper increase
during exercise. Furthermore, group 1 showed a higher
VO2max. Te GAQ of LDH, however, was rather poor at
0.24 (Figure 2), refecting a rather low stability of the group
assignment across the two testing days.

Te k-means clustering of the cortisol response of 49
individuals resulted in two clusters. Cluster 1 consists of 37
subjects, and cluster 2 consists of 12 subjects. Both clusters
were well separated from each other as illustrated in
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Figure 3(b). By determining the key features of each cluster,
we found signifcant diferences with respect to the cortisol
level prior to exercise (M1� 0.13, SD1� 0.61; M2�1.84,
SD2� 0.68; p < 0.001), the postexercise level (M1� 0.41,
SD1� 0.73; M2�1.6, SD2� 0.88; p < 0.001), the training
status (VO2max equivalent) (M1� 46.8, SD1� 5.15;
M2� 43.15, SD2� 4.71; p � 0.035), and to the recovery pe-
riod of both clusters (M1� −0.74, SD1� 0.7; M2� −1.4,
SD2� 0.53; p< 0.01). Group 1 is characterized by a lower
pre- and post-exercise level, a shorter recovery period, and
a higher VO2max. Te GAQ for cortisol is 0.76 (Figure 2),
refecting a quite moderate stability for assigning an indi-
vidual to the same group on both testing days.

TBARS response kinetic resulted in two clusters, which
were relatively evenly distributed. Cluster 1 consists of 27
subjects, and cluster 2 consists of 21 subjects. Signifcant
diferences between groups were found for pre-exercise
levels (M1� −0.74, SD1� 0.47; M2� 0.61, SD2� 0.62;
p < 0.001) and for postexercise levels (M1� −0.18,
SD1� 0.59; M2�1.37, SD2� 0.72; p < 0.001). Group 1
revealed lower pre- and post-exercise levels. For TBARS,
a GAQ of 0.8 was determined.

Te k-means clustering of the CRP response kinetic
resulted in two clusters, whereby cluster 1 consists of 41
subjects and cluster 2 consists of 8 subjects. Both clusters
were well separated from each other. We found signifcant
diferences with respect to the CRP level prior to exercise
(M1� −0.51, SD1� 0.3; M2�1.68, SD2� 0.75; p < 0.001)
and the postexercise level (M1� −0.51, SD1� 0.31;
M2�1.84, SD2� 0.82; p < 0.001), whereas group 1 revealed
lower prelevels and postlevels. Te GAQ was 0.8 (Figure 2).

For IL-1RA, 31 subjects formed cluster 1 and 17 subjects
formed cluster 2. Both clusters were well separated from
each other. Signifcant diferences were found with respect to
the IL1RA level postexercise (M1 =−0.21, SD1 = 0.92;
M2 = 0.33, SD2 = 0.86; p < 0.01) and the initial exercise

response (M1 = 0.34, SD1 = 0.38; M2 = 0.71, SD2 = 0.68;
p = 0.017), whereas group 1 revealed lower prelevels and
postlevels of IL1RA. GAQ for IL1RA was 0.71 (Figure 2).

For the IL-6 response, two clusters were identifed,
whereby cluster 1 consisted of 41 subjects and cluster 2
consisted of 8 subjects. Signifcant diferences were found
with respect to the IL-6 level prior to exercise (M1� −0.71,
SD1� 0.34; M2� 0.65, SD2� 0.76; p< 0.001) and the post-
exercise level (M1� 0.84, SD1� 0.97; M2� 2.1, SD2�1.77;
p � 0.035). Group 1 revealed lower prelevels and postlevels
of IL-6. Te GAQ was 0.89 (Figure 2).

For IL-8, two clusters were found. Cluster 1 consisted of 28
subjects, and cluster 2 consisted of 21 subjects (Figure 3(c)).We
found signifcant diferences with respect to the IL-8 level
before exercise (M1=−0.68, SD1=0.47;M2=0.68, SD2=0.65;
p< 0.001) and the postexercise level (M1= -0.08, SD1=0.45;
M2=1.56, SD2=0.81; p< 0.001). Group 1 revealed lower
prelevels and postlevels. Te GAQ was 0.82 (Figure 2).

IL-10 analysis resulted in two clusters of 35 and 14
subjects, respectively (Figure 3(d)). Signifcant diferences
were found with respect to the IL-10 level prior to exercise
(M1� −0.38, SD1� 0.41; M2� 0.42, SD2�1.23; p� 0.013),
the postexercise level (M1� 0.32, SD1� 0.67; M2� 2.81,
SD2�1.35; p < 0.001), and the initial exercise response
(M1� 0.7, SD1� 0.76; M2� 2.39, SD2�1.94; p < 0.001).
Group 1 revealed a lower prelevel and postlevel as well as
a fatter increase. Te GAQ was very high with 0.96,
refecting a high group stability (Figure 2).

Similarly, the IL-15 response resulted in two clusters.
Cluster 1 included 26 subjects, while cluster 2 included 23
subjects. Signifcant diferences were found with respect to
the IL-15 level prior to exercise (M1� −0.76, SD1� 0.36;
M2� 0.64, SD2� 0.71; p< 0.001) and the postexercise level
(M1� −0.02, SD1� 0.47; M2�1.52, SD2�1.09; p< 0.001).
Group 1 revealed a lower prelevel and postlevel. Te GAQ
was 0.72 (Figure 2).
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Figure 2: Group Assignment Quality (GAQ) score. For each biomarker, the GAQ and SEM were calculated and then sorted in
descending order. Individuals are indicated by dots. High values correspond to a high degree of certainty in the group assignment and
vice versa.
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3.2. Predictive Values of Blood-Based Biomarkers. By cal-
culating regression trees, we analyzed the potential of each
marker to predict its reregulation as well as objective and
subjective measures of performance and recovery. Te re-
sults of the best-performing model for each biomarker at

TD1 and TD2 are presented in Table 2. Te complete results
table with all calculated models can be found in Supplement
1 (S1). For all three output variables (biomarker concen-
tration at 24 h, subjective exercise response (BORG scale),
and the diference in isometric quadriceps fexion (24 h post
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Figure 3: Grouping results based on k-means clustering. Depicted are the median and the 25% quantile for the total group (left column) in
grey and for both groups after clustering for day 1 (second column) and day 2 (third column) as well as VO2max for the corresponding
groups. (a) CK kinetics for the whole group and for the identifed subgroups for both testing days, as well as the VO2max for the subgroups.
(b) Cortisol for the whole group and for the identifed subgroups for both testing days, as well as the VO2max for the subgroups. (c) IL-8
kinetics for the whole group and for the identifed subgroups for both testing days, as well as the VO2max for the subgroups. (d) IL-10
kinetics for the whole group and for the identifed subgroups for both testing days, as well as the VO2max for the subgroups.
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minus pre)), the prediction is best achieved via model 2,
which uses the baseline level (t1) of the corresponding
marker for prediction. Tis applies to all biomarkers.

Temost accurate predictions based on the baseline level
are obtained for all dependent variables for cortisol and IL-8.
For CK, a good prediction of recovery of maximum strength
and subjective feeling of exhaustion can be made. For
IL-1RA and TBARS, especially their reregulation can be
predicted when knowing the baseline level.

3.2.1. Possible Candidate Markers. By creating two rankings
(for prediction performances and for the calculated GAQ)
and averaging the ranks for each marker, we determined the
best-performing markers over the two analyses. After this,
CK, cortisol, IL-8, and IL-10 appear to be the most suitable
biomarkers.

4. Discussion

A central goal of modern elite sports is to individualize the
management of exercise load and training [6]. While every
athlete initially experiences subjective exhaustion in the
context of load and recovery in terms of an internal load, also
various body systems, such as muscular integrity, meta-
bolism, or the immune system, are brought out of ho-
meostasis and reregulate during recovery. Tis leaves
molecular traces in the blood which can be used as objective
markers for the diferential quantifcation of these processes.
Many studies point to a rather unstable interindividual
regulation of these markers by high standard deviations,
hindering many studies from yielding clear results in the
application of various molecules as biomarkers [9]. Te
present study elucidated that various blood biomarkers
exhibit diferential response patterns after acute bouts of
endurance exercise. For most of the markers studied,
a distinction can be made between individuals who show
a stronger responseand others who show a weaker response
to a similar endurance exercise program (e.g., IL-10 and
CK). In addition, our data revealed that individuals also

difer in terms of basal and postexercise levels of some
markers (e.g., IL-8 and cortisol). Tese diferences in
baseline and response behavior reveal the necessity of
a tailored treatment of each physiological system fromwhich
the biomarker originates.Te present study further provided
evidence that the response pattern for IL-6, IL-8, IL-10, and
CK exhibited a high degree of stability within the in-
vestigated individuals, implicating a high intraindividual
reliability for the given markers. Our results further show
that, depending on the candidate marker, exercise and re-
covery cycles can be predicted with reasonable precision for
specifc markers. Temost accurate predictions are obtained
for cortisol, the cytokines IL-8 and IL-1RA, and CK. Given
the baseline level, subjective and objective recovery as well as
reregulation can be best predicted for cortisol and IL-8
compared to the other markers. For CK, a good pre-
diction of recovery of maximum strength and subjective
feeling of exhaustion can be made. For IL-1RA, especially its
reregulation can be predicted when knowing the baseline
level. When merging the results of all conducted analyses,
CK, IL-8, IL-10, and cortisol appear to be the best-
performing biomarkers in the context of the present
study. In the next paragraphs, we will discuss these possible
candidates and their suitability in more detail.

4.1. Cortisol as a Biomarker for Exercise Control? Cortisol is
a glucocorticoid hormone secreted by the adrenal cortex in
response to physical, psychological, or physiological
stressors [10, 11]. Exercise is one such stressor that has been
shown to signifcantly alter the circulating amounts of
cortisol in the human body [12, 13]. Tis is due to the fact
that exercise causes the activation of the hypothalamus
resulting in the release of corticotropin-releasing hormone
(CRH), which then stimulates the anterior pituitary to se-
crete adrenocorticotropic hormone (ACTH) followed by the
release of cortisol from the adrenal cortex [14]. Te present
results revealed two groups difering regarding their pre- and
post-exercise level, by reregulation to baseline as well as with
regard to their VO2max, whereby group 1 exhibited lower

Table 2: Summary of statistics of the calculated regression trees and subsequent ranking of the best-performing biomarkers considering
their prediction ability and GAQ.

Biomarker

Biomarker
concentration at

24 h post

Diference in
isometric quadriceps

fexion
(24 h post-pre)

Subjective feeling
of exhaustion
(BORG scale)

Summary

TD1 TD2 TD1 TD2 TD1 TD2 Σ RMSE RankingRMSE
Cortisol 0.16 0.19 7.72 6.34 0.66 0.70 15.77 1
IL-1RA 0.32 0.41 9.19 6.69 1.16 1.15 18.92 2
IL-8 0.24 0.32 11.45 7.78 0.89 0.93 21.61 3
CK 0.35 0.47 11.58 8.51 1.10 1.19 23.2 4
TBARS 0.19 0.19 14.43 7.81 1.01 1.25 24.88 5
IL-15 0.39 0.35 17.43 13.35 1.11 1.46 34.09 6
LDH 0.35 0.34 18.19 13.31 1.66 1.40 35.25 7
IL-10 0.80 0.24 18.66 13.47 1.36 1.38 35.91 8
IL-6 0.26 0.41 20.79 14.10 1.90 1.81 39.27 9
CRP 0.63 0.75 23.47 15.81 1.87 2.00 44.53 10
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pre- and post-exercise levels, a shorter recovery period, and
a higher VO2max. In this regard, a study by Lucertini et al.
showed that, in healthy elderly men, higher cardiorespira-
tory ftness levels are associated with a lower diurnal cortisol
output and with minor efects on the cortisol response to
acute mental stress [15]. Among the subjects who responded
to mental stress, the amplitude of cortisol response and the
steepness of recovery decline displayed an increasing trend
in the high ft subjects. Tese as well as our data pin to the
notion that higher ftness might lead to reduced cortisol
levels and a reduced responsiveness of the hypothalamic-
pituitary-adrenal axis (HPA), as well as to a shorter recovery
period. It is possible that the cause of the infuence of
training status on cortisol levels is that while acute exercise
stimulates the HPA axis, regular training induces an ad-
aptation of HPA axis activity to repeated exercise. Tus,
particularly intense physical training might lead to adaptive
changes in basal HPA function, including a phase shift and
increased pituitary ACTH secretion, but also blunting of the
adrenal cortisol response.Te fact that cortisol levels seem to
refect exercise-induced changes is interesting in terms of its
potential use as a biomarker [11].

It is noteworthy that cortisol is one of the tested markers
for which subjective and objective recovery as well as
reregulation could be best predicted only by knowing its
baseline level. Tus, cortisol as a molecule refecting the
(exercise-induced metabolic) stress-level appears to be very
promising for predicting recovery cycles. However, the GAQ
for cortisol is 0.76 (Figure 2), refecting only a moderate
stability over the two days and some interchanges for
assigning an individual to the same group on both testing
days. Hence, it must be stated that cortisol has a clear cir-
cadian rhythmwith fatter and wavier diurnal cortisol curves
depending on many behavioral and health factors. Tis
characteristic must be considered as a confounding factor
that makes cortisol difcult to use as a biomarker without
control measurements outside of sports [16], including, for
example, sleep-wake cycles, diet, and the daytime.

4.2. IL-8 as a Biomarker for Exercise Control? IL-8 is an
important chemotactic factor involved in neutrophil gran-
ulocyte recruitment and activation. It can be secreted by
many structural and immune cells, including macrophages,
bronchial epithelial cells, and muscle cells, which also
classifes it as a myokine. IL-8 increases in response to the
intensity and duration of exercise, and the increase seems to
be somewhat fatter but more persistent than for IL-6 [17].
Tis is because IL-8 is probably released mainly in the
muscle to act paracrine and autocrine as an angiogenic factor
in human microvascular endothelial cells [18]. As an in-
fammatory mediator, it seems to be quite clearly assigned to
the dimension of the exercise-induced immune response.
Since it is afected in many disease states, such as asthma, its
stability as a biomarker is to be expected especially in healthy
individuals [19]. Our results point to two groups that difer
in terms of their initial level as well as their level after
exhausting exercise. Tus, there are individuals with a sig-
nifcantly higher basal level of IL-8. Te assignment to the

groups is quite stable. Diferent basal levels of IL-8 could be
due to present, even small, sources of infammation, such as
periodontitis, or could be due to genetic factors, such as
polymorphisms in genes related to IL-8 and CXCR2 [20].
However, these variables were not assessed in this study, and
we can only speculate on it.

Te present results also show that the basal levels of IL-8
are very well suited for predicting reregulation, the sub-
jective exhaustion, and the recovery of muscle function
24 hours after exercise. Tis is particularly signifcant for
practical application as a biomarker in sports, as it allows
efective planning of a regeneration cycle and thus the start
of the next training session in a reasonable and adjusted
period. Te use in a competition or a match can also be
planned based on an objective parameter against the
background of sufcient recovery. Physiologically, we would
interpret the role of IL-8 here as being directly involved in
the recovery process as an infammatory parameter, par-
ticularly in the phase in which infammatory tissue repair
takes place, which then transitions into a reparative
remodeling process.

4.3. Creatine Kinase as a Biomarker for Exercise Control?
CK is an enzyme that is found in higher concentrations in
muscle cells and only slightly concentrated in plasma. Te
appearance of CK in blood has been generally considered to
be an indirect marker of muscle damage, particularly for
diagnosis of medical conditions such as myocardial in-
farction, muscular dystrophy, and cerebral diseases [21].
After muscular exercise, plasma CK levels increase, in-
dicating a loss of integrity of the sarcolemma. CK is one of
the few blood parameters that are more appropriately used
in competitive sports [4]. Here, CK is used to diagnose
muscular recovery with test strips and point-of-care analysis.
However, there is controversy in the literature concerning its
validity in refecting muscle damage as a consequence of the
level and intensity of physical exercise. Nonmodifable
factors, for example, ethnicity, age, and gender, can also
afect enzyme tissue activity and subsequent CK serum levels
[21]. Te present results revealed two groups that difer with
respect to their CK level prior to exercise, the postexercise
level, and the initial exercise response as well as to the re-
covery period. Group 2 showed a higher baseline and
postexercise blood concentration and a steeper increase and
decrease in CK concentration. Tus, individuals in this
group react much more sensitively and intensively to the
exercise stressor and that their recovery times are also
longer. Te GAQ for CK was 0.86, which means that the
respective CK response seems to be a characteristic response
for the individual under strenuous endurance exercise. Tis
is supported by data revealing that there are high responders
regarding CK, who develop very high values after exercise,
and low responders, with only a very fat response what
seems to be genetically based and related to the stability of
the muscle architecture [22].

Our data further showed that there is a clear relationship
to muscular recovery and to the subjective sensation of
exertion as both can be predicted when knowing the baseline
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level prior to exercise. Tis is consistent with the literature,
which has also already linked muscle pain to the CK re-
sponse [23]. Consequently, when using CK as a biomarker, it
is critical to determine the athlete’s baseline level and gather
knowledge about the athlete’s specifc group assignment to
ensure a proper individualized evaluation.

4.4. Il-10 as a Biomarker for Exercise Control? IL-10 is
expressed by cells of many leukocyte subpopulations in-
cluding macrophages, natural killer cells, and T cells. It is
a rather immunoregulatory and anti-infammatory cytokine
that has a strong downregulatory efect on the secretion of
proinfammatory cytokines such as IL-1, IL-1β, and TNF-α.
Te magnitude of the increase in the concentration of IL-10
seems to be mainly dependent on the release of IL-6 and the
exercise duration. It is not yet fully understood what triggers
the increase in IL-6 during exercise. Tere are indications of
a progressive depletion of glycogen stores as well as leaky gut
phenomena during prolonged exercise, which initially in-
duce a pro-infammatory and then an anti-infammatory
counterreaction [24]. Te degree to which group diferences
are due to genetic factors around IL-6 polymorphisms re-
mains rather speculative [25].

IL-10 analysis resulted in two clusters of 35 and 14
subjects, respectively, whereby group 2 revealed a higher
pre- and post-exercise level as well as a steeper increase
speaking to the notion that that there are IL-10-high- and
low responders to exercise. Te GAQ was very high with
0.96, refecting that none of the participants changed groups
over the two testing days. However, IL-10 does not perform
as well as the other markers in predicting recovery. IL-10
triggers changes in macrophage phenotypes that promote
muscle growth and regeneration. Due to its secondary re-
lease to an infammatory stimulus, IL-10 might be less di-
rectly related to recovery than the other markers [26].

4.5. Should We Use a Panel of Diferent Biomarkers?
Despite the remarkable stability and predictive value of
single biomarkers, it would be worth considering a combi-
nation of biomarkers in the form of a panel for the diagnosis
of exercise response and recovery processes. Te risk in the
use of individual biomarkers is always a certain susceptibility
to error as well as the limited informative value for indi-
vidual physiological systems [27]. A panel of markers
identifed here as particularly stable and predictive would
add particular value in their use as biomarkers to diagnose
exercise recovery cycles. A combined analysis of cortisol, IL-
6, IL-8, IL-10, and CK can be very helpful in giving in-
formation about the homeostasis of diferent systems. While
interleukins are markers related to infammation, cortisol is
a stress marker related to metabolism and CK is a marker
related to muscle damage. Accordingly, by using this marker
panel, a clearer and more holistic picture can be obtained of
athletic stress regarding diferent physiological systems. Te
diferentiated regulation of the markers can then provide
valuable information on the recovery process and possibly
be used for diferentiated and personalized recovery
management [28].

4.6. Methodological Considerations. We scheduled two ex-
ercise sessions with a four-week interval between them to
prevent any carryover efects during this period. Te re-
peated bout efect is mainly shown after eccentric exercises
[29]. For the exercise unit, we opted for a moderate intensity
but exhaustive regimen.

In a frst step, we aimed to analyze the reliability of the
chosen blood-based biomarkers under identical exercise
conditions using intraclass correlation coefcients [1]. In
a second step, the aim was to retrospectively ascertain the
feasibility whether it is possible to predict the outcomes of
the frst trial. In addition, the choice of a four-week interval
was chosen to maintain relative consistency in the menstrual
cycles of female subjects, thus minimizing its potential
impact as a confounding factor.

4.7. Statistical Considerations. Our analytical approach is
crucial for the results presented here; hence, the following
implications should be acknowledged. K-means requires the
optimal number of clusters. We determined the optimal
number of k quantitatively and compared it with our a priori
assumption. While there was agreement for most of the
markers, IL-1RA and TBARS revealed additional subgroups
(k= 3), comprising only 1-2 individuals with low silhouette
values. In such cases, we decided to categorize these in-
dividuals as outliers and excluded them from further
analysis. Since the classifcation results are highly infuenced
by the initial centroids’ starting points, we decided to
conduct 10,000 iterations with varying starting points and
averaged them later.

Nonetheless, k-means enables the exploration of simi-
larities in the overall trajectory of blood-based biomarkers
from pre to 24 h post. Tis multivariate approach integrates
all time points into the classifcation, reducing information
loss compared to a single clustering time point, such as
a threshold at 3 h post. A further important strength for our
analytical approach lies in the experimental setting of the
study. Te high degree of standardization allowed us to
conduct the classifcation across two distinct training ses-
sions, enabling us to assess the temporal stability of the
identifed groups using the GAQ value.

4.8. Perspectives. Overall, the present data show that some
molecular blood markers for the diagnosis of athletes’ stress
and recovery cycles exhibit a high degree of intraindividual
stability and, therefore, are possible biomarkers. Tis is
especially remarkable because studies often must deal with
high standard deviations undermining successful analyses of
group means. Based on the present analyses, IL-10, IL-6, IL-
8, and CK seem to be suitable for the intraindividual di-
agnosis of exercise recovery cycles. In a practical sense, this
could be additionally helpful in the prescription of re-
generation treatments for “high” and “low” responding
athletes by coaches or the medical staf. In addition to their
stable regulation and thus high reliability, they also show
a relation to subjective stress perception and functional
muscular fatigue. It should be noted that for all markers,
there are either groups of stronger and weaker responders or
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individuals with diferent basal levels. Such a fnding must be
included in the use of the markers and determined by
preanalytics before the markers are used as biomarkers. At
the same time, we would recommend analyzing the markers
as a panel because they address diferent systems, such as
metabolism, muscular integrity, and exercise-induced im-
mune response. Accordingly, future studies should focus
further factors infuencing these markers and the practical
use in athletic training.
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of subjective feeling of exhaustion at 24 h post. (Supple-
mentary Materials)

References

[1] T. Reichel, T. K. Boßlau, J. Palmowski et al., “Reliability and
suitability of physiological exercise response and recovery
markers,” Scientifc Reports, vol. 10, no. 1, Article ID 11924,
2020.

[2] E. C. Lee, M. S. Fragala, S. A. Kavouras, R. M. Queen,
J. L. Pryor, and D. J. Casa, “Biomarkers in sports and exercise:
tracking health, performance, and recovery in athletes,”
Journal of Strength and Conditioning, vol. 31, no. 10,
pp. 2920–2937, 2017.

[3] S. Proschinger and J. Freese, “Neuroimmunological and
neuroenergetic aspects in exercise-induced fatigue,” Exercise
Immunology Review, vol. 25, pp. 8–19, 2019.

[4] P. Brancaccio, N. Mafulli, and F. M. Limongelli, “Creatine
kinase monitoring in sport medicine,” British Medical,
vol. 81–82, no. 1, pp. 209–230, 2007.

[5] G. A. Callegari, J. S. Novaes, G. R. Neto, I. Dias, N. D. Garrido,
and C. Dani, “Creatine kinase and lactate dehydrogenase
responses after diferent resistance and aerobic exercise
protocols,” Journal of human kinetics, vol. 58, pp. 65–72, 2017.

[6] A. Hecksteden, W. Pitsch, R. Julian et al., “A new method to
individualize monitoring of muscle recovery in athletes,”
International Journal of Sports Physiology and Performance,
vol. 12, no. 9, pp. 1137–1142, 2017.

Translational Sports Medicine 11

https://downloads.hindawi.com/journals/tsmed/2023/6614990.f1.docx
https://downloads.hindawi.com/journals/tsmed/2023/6614990.f1.docx


[7] P. Baumert, M. J. Lake, C. E. Stewart, B. Drust, and
R. M. Erskine, “Genetic variation and exercise-induced
muscle damage: implications for athletic performance, in-
jury and ageing,” European journal of applied physiology,
vol. 116, no. 9, pp. 1595–1625, 2016.

[8] W. B. Mattes and F. Goodsaid, “Regulatory landscapes for
biomarkers and diagnostic tests: qualifcation, approval, and
role in clinical practice,” Experimental Biology and Medicine,
vol. 243, no. 3, pp. 256–261, 2018.

[9] S. Hacker, T. Reichel, A. Hecksteden et al., “Recovery-stress
response of blood-based biomarkers,” International Journal of
Environmental Research and Public Health, vol. 18, no. 11,
p. 5776, 2021.

[10] A. C. Hackney, “Stress and the neuroendocrine system: the
role of exercise as a stressor and modifer of stress,” Expert
Review of Endocrinology and Metabolism, vol. 1, no. 6,
pp. 783–792, 2006.

[11] G. A. Wittert, J. H. Livesey, E. A. Espiner, and R. A. Donald,
“Adaptation of the hypothalamopituitary adrenal axis to
chronic exercise stress in humans,” Medicine and Science in
Sports and Exercise, vol. 28, no. 8, pp. 1015–1019, 1996.

[12] C. T. Davies and J. D. Few, “Efects of exercise on adreno-
cortical function,” Journal of Applied Physiology, vol. 35, no. 6,
pp. 887–891, 1973.

[13] R. G. McMurray, T. K. Eubank, and A. C. Hackney, “Noc-
turnal hormonal responses to resistance exercise,” European
Journal of Applied Physiology, vol. 72, no. 1–2, pp. 121–126,
1995.

[14] A. Viru andM. Viru, “Cortisol--essential adaptation hormone
in exercise,” International Journal of Sports Medicine, vol. 25,
no. 6, pp. 461–464, 2004.

[15] F. Lucertini, E. Ponzio, M. Di Palma, C. Galati, A. Federici,
and P. Barbadoro, “High cardiorespiratory ftness is nega-
tively associated with daily cortisol output in healthy aging
men,” PLoS One, vol. 10, no. 11, Article ID e0141970, 2015.

[16] E. K. Adam, M. E. Quinn, R. Tavernier, M. T. McQuillan,
K. A. Dahlke, and K. E. Gilbert, “Diurnal cortisol slopes and
mental and physical health outcomes: a systematic review and
meta-analysis,” Psychoneuroendocrinology, vol. 83, pp. 25–41,
2017.
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